An efficient algorithm for biomechanical problems based on a fully implicit nested Newton solver

Numerical simulations of the dynamics of soft biological tissues are highly non-trivial because tissues generally exhibit complex biological response to external and internal actions, including large deformations and remodeling. Combining the advantages of globally implicit approach (GIA) solvers wi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical and applied mechanics (Belgrade, Serbia) Ročník 49; číslo 2; s. 183 - 221
Hlavní autoři: Knodel, Markus, di, Stefano, Nägel, Arne, Grillo, Alfio
Médium: Journal Article
Jazyk:angličtina
Vydáno: 2022
ISSN:1450-5584, 2406-0925
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Numerical simulations of the dynamics of soft biological tissues are highly non-trivial because tissues generally exhibit complex biological response to external and internal actions, including large deformations and remodeling. Combining the advantages of globally implicit approach (GIA) solvers with the general applicability of the semi-implicit General Plasticity Algorithm (GPA), introduced by some of us some years ago, we present a new, efficient plasticity algorithm, which we call Bio Mechanics Basis Plasticity Algorithm (BMBPA). This is fully implicit, based on a nested Newton solver, and naturally suited for massively parallel computations. The Bilby?Kr?ner?Lee (BKL) multiplicative decomposition of the deformation gradient tensor is employed to introduce the unknowns of our model. We distinguish between global and local unknowns, associated with local and global equations, which are connected by means of a resolution function. The BMBPA asks for very few conditions to be applied and thus can be easily employed to solve several types of biological and biomechanical problems. We demonstrate the efficacy of BMBPA by performing two numerical experiments of a monophasic model of fiber-reinforced tissues. In one case, we consider the shear-compression test of a cubic specimen of tissue, while, in the other case, we focus on the unconfined compression test of a cylinder. The BMBPA is capable of solving the deformation and the remodeling of anisotropic biological tissues by employing a computation time of hours, while the GPA, applied to the same problems as the BMBPA, needs a substantially longer amount of time. All computations were performed in parallel and, within all tests, the performance of the BMBPA displayed substantially higher than the one of the GPA. The results of our simulations permit to study the overall mechanical behavior of the considered tissue and enable further investigations in the field of tissue biomechanics.
AbstractList Numerical simulations of the dynamics of soft biological tissues are highly non-trivial because tissues generally exhibit complex biological response to external and internal actions, including large deformations and remodeling. Combining the advantages of globally implicit approach (GIA) solvers with the general applicability of the semi-implicit General Plasticity Algorithm (GPA), introduced by some of us some years ago, we present a new, efficient plasticity algorithm, which we call Bio Mechanics Basis Plasticity Algorithm (BMBPA). This is fully implicit, based on a nested Newton solver, and naturally suited for massively parallel computations. The Bilby?Kr?ner?Lee (BKL) multiplicative decomposition of the deformation gradient tensor is employed to introduce the unknowns of our model. We distinguish between global and local unknowns, associated with local and global equations, which are connected by means of a resolution function. The BMBPA asks for very few conditions to be applied and thus can be easily employed to solve several types of biological and biomechanical problems. We demonstrate the efficacy of BMBPA by performing two numerical experiments of a monophasic model of fiber-reinforced tissues. In one case, we consider the shear-compression test of a cubic specimen of tissue, while, in the other case, we focus on the unconfined compression test of a cylinder. The BMBPA is capable of solving the deformation and the remodeling of anisotropic biological tissues by employing a computation time of hours, while the GPA, applied to the same problems as the BMBPA, needs a substantially longer amount of time. All computations were performed in parallel and, within all tests, the performance of the BMBPA displayed substantially higher than the one of the GPA. The results of our simulations permit to study the overall mechanical behavior of the considered tissue and enable further investigations in the field of tissue biomechanics.
Author di, Stefano
Nägel, Arne
Grillo, Alfio
Knodel, Markus
Author_xml – sequence: 1
  givenname: Markus
  surname: Knodel
  fullname: Knodel, Markus
  organization: Goethe Center for Scientific Computing (GCSC), Universität Frankfurt, Frankfurt am Main, Germany
– sequence: 2
  givenname: Stefano
  surname: di
  fullname: di, Stefano
  organization: Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Bari, Italy
– sequence: 3
  givenname: Arne
  surname: Nägel
  fullname: Nägel, Arne
  organization: Goethe Center for Scientific Computing (GCSC), Universität Frankfurt, Frankfurt am Main, Germany
– sequence: 4
  givenname: Alfio
  surname: Grillo
  fullname: Grillo, Alfio
  organization: Dipartimento di Scienze Matematiche “G.L. Lagrange” (DISMA), Politecnico di Torino, Torino, Italy
BookMark eNpVkL1OwzAYRS1UJELpyO4XCNif4zgZq4qfigJLmYPt2NTIsSM7gPr2BMHCXe5wpDOcc7QIMRiELim5Amib6_36EYBSygmFhxNUQEXqkrTAF6igFScl5011hlY5v5N5rBUtbwv0ug7YWOu0M2HC0r_F5KbDgG1MWLk4GH2QwWnp8Zii8mbIWMlsehwDlth-eH_Ebhj9LJhwMHma0ZP5mmaco_806QKdWumzWf39Er3c3uw39-Xu-W67We9KDQymkipOoBHCVkJRVlPgUoq6Z0ChZ3WlKOkltVXTCABGeiN6wYwEpRuhFWecLVH569Up5pyM7cbkBpmOHSXdT6HuXyH2DXXTWsI
Cites_doi 10.1146/annurev.bioeng.6.040803.140250
10.1016/S0045-7825(98)00210-2
10.1017/CBO9780511623059
10.1007/BF00281393
10.1115/1.3005109
10.1177/1081286513515265
10.1016/j.ijnonlinmec.2022.104157
10.1007/s00791-014-0231-x
10.1002/nme.1620371004
10.1093/imammb/dqr008
10.1016/j.ijsolstr.2007.11.014
10.1016/j.mechmat.2011.07.010
10.1007/978-3-642-33374-3_32
10.1007/s00791-016-0261-7
10.1016/j.jbiomech.2003.09.026
10.1016/j.cma.2003.10.010
10.1016/S0749-6419(97)00043-0
10.1093/imamat/hxu039
10.1177/1081286515612280
10.1007/s10665-017-9940-8
10.1007/s10237-007-0076-z
10.1142/S0218202502001878
10.1016/S0749-6419(99)00081-9
10.1177/1081286505059739
10.1007/978-3-642-22167-5_4
10.1115/1.1324665
10.1017/S0962492911000079
10.1016/S0020-7683(02)00352-9
10.1016/0021-9290(90)90007-P
10.1007/978-0-387-89490-4
10.1016/j.jmps.2015.07.009
10.1007/978-3-7091-1838-2_2
10.1007/3-540-31184-X_4
10.1002/gamm.201900015
10.1016/0021-9290(94)90021-3
10.1371/journal.pcbi.1000915
10.1007/s00791-014-0232-9
10.1007/s10596-009-9162-x
10.1007/978-3-319-52794-9_11
10.1016/j.jbiomech.2004.09.020
10.1007/s00161-015-0465-y
10.1007/s00033-022-01692-1
10.1007/978-3-642-02677-5_12
10.1016/j.jmbbm.2011.06.005
10.1098/rsif.2019.0233
10.1137/17M1142338
10.1016/j.jmps.2010.12.011
10.1016/j.cma.2022.114630
10.1002/nme.1620362005
10.1016/0021-9290(83)90041-6
10.1016/j.ijnonlinmec.2022.103966
10.1137/S1064827502405318
10.1007/978-3-642-11445-8_9
10.1007/978-0-387-70914-7
10.1016/j.ijnonlinmec.2011.09.026
10.1016/j.ijnonlinmec.2018.08.003
10.1177/1081286515598661
10.1016/j.crhy.2009.10.003
10.1016/j.ijnonlinmec.2018.08.022
10.1007/BF01187433
10.1098/rsif.2009.0502
10.1016/j.cma.2009.04.007
10.1007/s10237-008-0125-2
10.1007/978-3-030-79385-2
10.1007/s10237-010-0241-7
10.1016/j.jtbi.2009.08.023
10.1016/j.mechrescom.2015.04.004
10.1007/s10237-007-0091-0
10.1016/j.ijnonlinmec.2009.02.005
10.1007/s00791-019-00313-1
10.1039/C9SM01628G
10.1016/j.cma.2004.08.006
10.1016/j.euromechsol.2007.12.006
10.1016/S0045-7825(98)00211-4
10.1007/s00791-017-0278-6
10.1515/JNETDY.2008.009
10.1007/s10596-009-9163-9
10.1016/j.jcp.2009.05.044
10.1007/978-3-662-04864-1
10.1007/978-3-0348-9229-2_25
10.1007/s10596-022-10140-y
10.1007/s00791-020-00322-5
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.2298/TAM221115012K
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2406-0925
EndPage 221
ExternalDocumentID 10_2298_TAM221115012K
GroupedDBID .4S
.DC
123
2WC
53S
5IG
AAYXX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CITATION
CS3
EOJEC
GROUPED_DOAJ
I-F
IPNFZ
KQ8
OBODZ
OK1
RIG
RNS
TUS
ID FETCH-LOGICAL-c232t-1b502877f47b136125aa76d3212d364b10da1f48872230de7d73ea2bc87cb5353
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000950617300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1450-5584
IngestDate Sat Nov 29 02:28:33 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c232t-1b502877f47b136125aa76d3212d364b10da1f48872230de7d73ea2bc87cb5353
OpenAccessLink http://www.doiserbia.nb.rs/ft.aspx?id=1450-55842200012K
PageCount 39
ParticipantIDs crossref_primary_10_2298_TAM221115012K
PublicationCentury 2000
PublicationDate 2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationTitle Theoretical and applied mechanics (Belgrade, Serbia)
PublicationYear 2022
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref92
ref51
ref50
ref91
ref90
ref46
ref45
ref89
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref88
ref43
ref87
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref14
  doi: 10.1146/annurev.bioeng.6.040803.140250
– ident: ref2
  doi: 10.1016/S0045-7825(98)00210-2
– ident: ref1
– ident: ref35
  doi: 10.1017/CBO9780511623059
– ident: ref64
  doi: 10.1007/BF00281393
– ident: ref85
– ident: ref86
  doi: 10.1115/1.3005109
– ident: ref50
  doi: 10.1177/1081286513515265
– ident: ref20
  doi: 10.1016/j.ijnonlinmec.2022.104157
– ident: ref81
  doi: 10.1007/s00791-014-0231-x
– ident: ref27
  doi: 10.1002/nme.1620371004
– ident: ref42
  doi: 10.1093/imammb/dqr008
– ident: ref34
  doi: 10.1016/j.ijsolstr.2007.11.014
– ident: ref30
  doi: 10.1016/j.mechmat.2011.07.010
– ident: ref55
  doi: 10.1007/978-3-642-33374-3_32
– ident: ref61
  doi: 10.1007/s00791-016-0261-7
– ident: ref40
  doi: 10.1016/j.jbiomech.2003.09.026
– ident: ref79
  doi: 10.1016/j.cma.2003.10.010
– ident: ref71
  doi: 10.1016/S0749-6419(97)00043-0
– ident: ref87
  doi: 10.1093/imamat/hxu039
– ident: ref69
– ident: ref84
  doi: 10.1177/1081286515612280
– ident: ref46
  doi: 10.1007/s10665-017-9940-8
– ident: ref6
  doi: 10.1007/s10237-007-0076-z
– ident: ref7
  doi: 10.1142/S0218202502001878
– ident: ref26
  doi: 10.1016/S0749-6419(99)00081-9
– ident: ref5
  doi: 10.1177/1081286505059739
– ident: ref75
  doi: 10.1007/978-3-642-22167-5_4
– ident: ref13
  doi: 10.1115/1.1324665
– ident: ref53
– ident: ref91
  doi: 10.1017/S0962492911000079
– ident: ref68
  doi: 10.1016/S0020-7683(02)00352-9
– ident: ref36
– ident: ref56
  doi: 10.1016/0021-9290(90)90007-P
– ident: ref72
  doi: 10.1007/978-0-387-89490-4
– ident: ref23
  doi: 10.1016/j.jmps.2015.07.009
– ident: ref28
  doi: 10.1007/978-3-7091-1838-2_2
– ident: ref52
  doi: 10.1007/3-540-31184-X_4
– ident: ref47
  doi: 10.1002/gamm.201900015
– ident: ref83
  doi: 10.1016/0021-9290(94)90021-3
– ident: ref44
– ident: ref82
– ident: ref39
  doi: 10.1371/journal.pcbi.1000915
– ident: ref90
  doi: 10.1007/s00791-014-0232-9
– ident: ref8
  doi: 10.1007/s10596-009-9162-x
– ident: ref31
  doi: 10.1007/978-3-319-52794-9_11
– ident: ref32
  doi: 10.1016/j.jbiomech.2004.09.020
– ident: ref49
  doi: 10.1007/s00161-015-0465-y
– ident: ref21
  doi: 10.1007/s00033-022-01692-1
– ident: ref45
  doi: 10.1007/978-3-642-02677-5_12
– ident: ref76
  doi: 10.1016/j.jmbbm.2011.06.005
– ident: ref54
– ident: ref3
  doi: 10.1098/rsif.2019.0233
– ident: ref92
  doi: 10.1137/17M1142338
– ident: ref4
  doi: 10.1016/j.jmps.2010.12.011
– ident: ref62
  doi: 10.1016/j.cma.2022.114630
– ident: ref67
  doi: 10.1002/nme.1620362005
– ident: ref58
– ident: ref65
  doi: 10.1016/0021-9290(83)90041-6
– ident: ref18
  doi: 10.1016/j.ijnonlinmec.2022.103966
– ident: ref63
  doi: 10.1137/S1064827502405318
– ident: ref77
  doi: 10.1007/978-3-642-11445-8_9
– ident: ref10
  doi: 10.1007/978-0-387-70914-7
– ident: ref48
  doi: 10.1016/j.ijnonlinmec.2011.09.026
– ident: ref22
  doi: 10.1016/j.ijnonlinmec.2018.08.003
– ident: ref51
  doi: 10.1177/1081286515598661
– ident: ref89
  doi: 10.1016/j.crhy.2009.10.003
– ident: ref15
  doi: 10.1016/j.ijnonlinmec.2018.08.022
– ident: ref70
– ident: ref25
  doi: 10.1007/BF01187433
– ident: ref29
  doi: 10.1098/rsif.2009.0502
– ident: ref88
  doi: 10.1016/j.cma.2009.04.007
– ident: ref38
  doi: 10.1007/s10237-008-0125-2
– ident: ref59
  doi: 10.1007/978-3-030-79385-2
– ident: ref74
  doi: 10.1007/s10237-010-0241-7
– ident: ref78
  doi: 10.1016/j.jtbi.2009.08.023
– ident: ref43
  doi: 10.1016/j.mechrescom.2015.04.004
– ident: ref33
  doi: 10.1007/s10237-007-0091-0
– ident: ref24
  doi: 10.1016/j.ijnonlinmec.2009.02.005
– ident: ref19
  doi: 10.1007/s00791-019-00313-1
– ident: ref41
  doi: 10.1039/C9SM01628G
– ident: ref57
  doi: 10.1016/j.cma.2004.08.006
– ident: ref73
  doi: 10.1016/j.euromechsol.2007.12.006
– ident: ref9
  doi: 10.1016/S0045-7825(98)00211-4
– ident: ref11
  doi: 10.1007/s00791-017-0278-6
– ident: ref12
  doi: 10.1515/JNETDY.2008.009
– ident: ref16
  doi: 10.1007/s10596-009-9163-9
– ident: ref17
  doi: 10.1016/j.jcp.2009.05.044
– ident: ref66
  doi: 10.1007/978-3-662-04864-1
– ident: ref37
  doi: 10.1007/978-3-0348-9229-2_25
– ident: ref60
  doi: 10.1007/s10596-022-10140-y
– ident: ref80
  doi: 10.1007/s00791-020-00322-5
SSID ssj0000397959
Score 2.1752763
Snippet Numerical simulations of the dynamics of soft biological tissues are highly non-trivial because tissues generally exhibit complex biological response to...
SourceID crossref
SourceType Index Database
StartPage 183
Title An efficient algorithm for biomechanical problems based on a fully implicit nested Newton solver
Volume 49
WOSCitedRecordID wos000950617300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2406-0925
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000397959
  issn: 1450-5584
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZC4cCF8hTQgnxAXKKFtddb7x63iIeEqDgEqbdgr70lVXCqJI3KX-PXMWN7nU3FoRy4rKLVxnnMJ8834_lmCHkljQYvJ-qs6DqRCS7brOKqyqqaCVm3Nlet8MMm5MlJdXpafx2NfvdamM1cOlddXdUX_9XUcA-MjdLZfzB3WhRuwGswOlzB7HC9keEbh0UaMy90HKv52QLC_x8_Q1kmau1R6ustE2fJrMboyQyeGqgxZuN_oXRyDgusx85nQ3EnxO4b8L03sZj3PIEsySB919fIaftP8SndY4tDjkJ7X9iaNJbnbku8HY7i6VVDl4nhm1msQeuUW6SMtT_WF2exsmC5LQn4uJzFQ6Rm3oXSsj6XwQeJTSbKPCvLMC7ujfX3kGxkeR2E0f1uHRqcRlTywdbLwkCc6MV50F1fdxCc1yh6mDRf4AEkw4x_3nrC_vT_moNMZYsQMOEC05233yK3uYSwbBDOexaAB6Z-Vl_6aaHFK67wdmeFASUacJvJfXIvBiW0CWB6QEbWPST7MUChcftfPSLfG0cTtmjCFgVs0R1s0R5b1GOLLhxV1GOL9tiiAVs0YIsGbD0m3z68n7z7lMURHVkLVHydMV0CQZWyE1KzAtmyUvLIFECITHEkNMuNYh04CQk0NDdWGllYxXVbyVaXRVk8IXtu4exTQoFIa9mZSqlOi6KzirVGVVaqVjIDgcoz8rr_l6YXoRPL9K8GeX7TBw_IXQRhSKgdkr318tK-IHfazXq2Wr705vwDmCp-eQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+algorithm+for+biomechanical+problems+based+on+a+fully+implicit+nested+Newton+solver&rft.jtitle=Theoretical+and+applied+mechanics+%28Belgrade%2C+Serbia%29&rft.au=Knodel%2C+Markus&rft.au=di%2C+Stefano&rft.au=N%C3%A4gel%2C+Arne&rft.au=Grillo%2C+Alfio&rft.date=2022&rft.issn=1450-5584&rft.eissn=2406-0925&rft.volume=49&rft.issue=2&rft.spage=183&rft.epage=221&rft_id=info:doi/10.2298%2FTAM221115012K&rft.externalDBID=n%2Fa&rft.externalDocID=10_2298_TAM221115012K
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1450-5584&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1450-5584&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1450-5584&client=summon