Hyperparameter optimization based on a priori and a posteriori knowledge about classification problem
Subject of Research. The paper deals with Bayesian method for hyperparameter optimization of algorithms, used in machine learning for classification problems. A comprehensive survey is carried out about using a priori and a posteriori knowledge in classification task for hyperparameter optimization...
Uloženo v:
| Vydáno v: | Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki Ročník 20; číslo 6; s. 828 - 834 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
ITMO University
01.12.2020
|
| Témata: | |
| ISSN: | 2226-1494, 2500-0373 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Subject of Research. The paper deals with Bayesian method for hyperparameter optimization of algorithms, used in machine learning for classification problems. A comprehensive survey is carried out about using a priori and a posteriori knowledge in classification task for hyperparameter optimization quality improvement. Method. The existing Bayesian optimization algorithm for hyperparameter setting in classification problems was expanded. We proposed a target function modification calculated on the basis of hyperparameters optimized for the similar problems and a metric for determination of similarity classification problems based on generated meta-features. Main Results. Experiments carried out on the real-world datasets from OpenML database have confirmed that the proposed algorithm achieves usually significantly better performance results than the existing Bayesian optimization algorithm within a fixed time limit. Practical Relevance. The proposed algorithm can be used for hyperparameter optimization in any classification problem, for example, in medicine, image processing or chemistry. |
|---|---|
| AbstractList | Subject of Research. The paper deals with Bayesian method for hyperparameter optimization of algorithms, used in machine learning for classification problems. A comprehensive survey is carried out about using a priori and a posteriori knowledge in classification task for hyperparameter optimization quality improvement. Method. The existing Bayesian optimization algorithm for hyperparameter setting in classification problems was expanded. We proposed a target function modification calculated on the basis of hyperparameters optimized for the similar problems and a metric for determination of similarity classification problems based on generated meta-features. Main Results. Experiments carried out on the real-world datasets from OpenML database have confirmed that the proposed algorithm achieves usually significantly better performance results than the existing Bayesian optimization algorithm within a fixed time limit. Practical Relevance. The proposed algorithm can be used for hyperparameter optimization in any classification problem, for example, in medicine, image processing or chemistry. |
| Author | Efimova, V.A. Shalamov, V.V. Filchenkov, A.A. Smirnova, V.S. |
| Author_xml | – sequence: 1 givenname: V.S. surname: Smirnova fullname: Smirnova, V.S. – sequence: 2 givenname: V.V. surname: Shalamov fullname: Shalamov, V.V. – sequence: 3 givenname: V.A. surname: Efimova fullname: Efimova, V.A. – sequence: 4 givenname: A.A. surname: Filchenkov fullname: Filchenkov, A.A. |
| BookMark | eNqNkc1O3TAQha0KpPL3Dll0a7DHTuJIbCiigITUDaytsT1BprlxZKdC8PT1vRc2rLo5Ho_Gn8bnHLODOc3E2A8pzmXfmu4CADou9aA5CBBVeMcNGG6U_saOoBWCC9Wrg1p_Tn5nZ6W8CCFkXwXgiNHd20J5wYwbWik3aVnjJr7jGtPcOCwUmlpgs-SYcmxwDttLKnV21_gzp9eJwjM16NLftfETlhLH6PeEJSc30eaUHY44FTr7OE_Y06-bx-s7_vD79v766oF7UKA5eVQDgTASVUdajqDboEko7MH5rnfog_MhKFCqD6YdBJBw5A0ChaCdOmH3e25I-GLrzhvMbzZhtLtGys8W8xr9RJZIuV6QacF1WqIbSJvRhAGrb8Z7WVk_9yyfUymZRuvjuvvVmjFOVgq7y8Fu3bVbd-02hyq2szUHW3OokMsvkM-l_uv5P_3zkqA |
| CitedBy_id | crossref_primary_10_1016_j_archger_2022_104835 crossref_primary_10_1063_5_0176239 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.17586/2226-1494-2020-20-6-828-834 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2500-0373 |
| EndPage | 834 |
| ExternalDocumentID | oai_doaj_org_article_ee3b70e852b641ab9e48f8d9a5008cc1 10_17586_2226_1494_2020_20_6_828_834 |
| GroupedDBID | 642 AAYXX ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BPHCQ BYOGL CITATION GROUPED_DOAJ KQ8 PIMPY PQQKQ PROAC VCL VIT |
| ID | FETCH-LOGICAL-c2324-eca39e2081a36e41f245d4e03a72bc67bacdbcdd32337d85902e0bec8a2edd4b3 |
| IEDL.DBID | DOA |
| ISSN | 2226-1494 |
| IngestDate | Mon Nov 10 19:22:54 EST 2025 Tue Nov 18 22:06:30 EST 2025 Sat Nov 29 03:57:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2324-eca39e2081a36e41f245d4e03a72bc67bacdbcdd32337d85902e0bec8a2edd4b3 |
| ORCID | 0000-0002-4774-3624 0000-0002-5309-2207 0000-0002-1133-8432 0000-0002-5647-6521 |
| OpenAccessLink | https://doaj.org/article/ee3b70e852b641ab9e48f8d9a5008cc1 |
| PageCount | 7 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ee3b70e852b641ab9e48f8d9a5008cc1 crossref_citationtrail_10_17586_2226_1494_2020_20_6_828_834 crossref_primary_10_17586_2226_1494_2020_20_6_828_834 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki |
| PublicationYear | 2020 |
| Publisher | ITMO University |
| Publisher_xml | – name: ITMO University |
| SSID | ssj0001700022 ssib026971427 |
| Score | 2.1262586 |
| Snippet | Subject of Research. The paper deals with Bayesian method for hyperparameter optimization of algorithms, used in machine learning for classification problems.... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 828 |
| SubjectTerms | bayesian optimization classification gaussian processes hyperparameter optimization machine learning |
| Title | Hyperparameter optimization based on a priori and a posteriori knowledge about classification problem |
| URI | https://doaj.org/article/ee3b70e852b641ab9e48f8d9a5008cc1 |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2500-0373 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001700022 issn: 2226-1494 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQVSE4ID5FgSIfuEZNbG9si1O2zaoV20203ULhYjn2RCpCCyqlv78zTrranuDAJUqsTGS9GXnmRfYbxj4UkHujbZFNfECCEoLJjLBdprGYtb1Q0qfj0Z_nerEwFxe23Wr1RXvCBnngAbgDANnpHMxEdKUqfGdBmd5ES0r-JoREfHJtt8gURpIorS7UqG_5fRCJoWxFneaw3siQFqiHOFFcMbBeLg82gxg0SKeIUdH56sxIdS9fbcn6p_wze8qejIUjr4YJP2MPYP2cPd6SE3zB4PhrWy_balmd1lil8qZd4dL0Lf2F4tPqrD7ieFPxdnnSLE94tTiih-YM300DnxbNlySRzKtpc77ih_MK19rZeNYYzZrpvD59yc5n9erwOBvbKGSByqUMgpcWBOZ-L0tQBXpgEhXk0mvRhVJ3PsQuxCiFlDoa0nOBHF1rvIAYVSdfsZ31zzW8Ztya0OehVyD6iH6NSIdMT0VFH0WIAfbYxzuwXBg1xqnVxQ9HXIOgdgS1I6gdQY0XVzqE2iHUe2yysf41aG38o92U_LKxIcXsNIBx5MY4cn-Lozf_4yNv2aMUQGm7yzu2c331B_bZbri5vvx99T6F6C08tdok |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HYPERPARAMETER+OPTIMIZATION+BASED+ON+A+PRIORI+AND+A+POSTERIORI+KNOWLEDGE+ABOUT+CLASSIFICATION+PROBLEM&rft.jtitle=Nauchno-tekhnicheski%C4%AD+vestnik+informat%CD%A1s%EF%B8%A1ionnykh+tekhnologi%C4%AD%2C+mekhaniki+i+optiki&rft.au=Valentina+S.+Smirnova&rft.au=Viacheslav+V.+Shalamov&rft.au=Valeria+A.+Efimova&rft.au=Andrey+A.+Filchenkov&rft.date=2020-12-01&rft.pub=ITMO+University&rft.issn=2226-1494&rft.eissn=2500-0373&rft.volume=20&rft.issue=6&rft.spage=828&rft.epage=834&rft_id=info:doi/10.17586%2F2226-1494-2020-20-6-828-834&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ee3b70e852b641ab9e48f8d9a5008cc1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2226-1494&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2226-1494&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2226-1494&client=summon |