Hyperparameter optimization based on a priori and a posteriori knowledge about classification problem

Subject of Research. The paper deals with Bayesian method for hyperparameter optimization of algorithms, used in machine learning for classification problems. A comprehensive survey is carried out about using a priori and a posteriori knowledge in classification task for hyperparameter optimization...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki Ročník 20; číslo 6; s. 828 - 834
Hlavní autoři: Smirnova, V.S., Shalamov, V.V., Efimova, V.A., Filchenkov, A.A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: ITMO University 01.12.2020
Témata:
ISSN:2226-1494, 2500-0373
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Subject of Research. The paper deals with Bayesian method for hyperparameter optimization of algorithms, used in machine learning for classification problems. A comprehensive survey is carried out about using a priori and a posteriori knowledge in classification task for hyperparameter optimization quality improvement. Method. The existing Bayesian optimization algorithm for hyperparameter setting in classification problems was expanded. We proposed a target function modification calculated on the basis of hyperparameters optimized for the similar problems and a metric for determination of similarity classification problems based on generated meta-features. Main Results. Experiments carried out on the real-world datasets from OpenML database have confirmed that the proposed algorithm achieves usually significantly better performance results than the existing Bayesian optimization algorithm within a fixed time limit. Practical Relevance. The proposed algorithm can be used for hyperparameter optimization in any classification problem, for example, in medicine, image processing or chemistry.
AbstractList Subject of Research. The paper deals with Bayesian method for hyperparameter optimization of algorithms, used in machine learning for classification problems. A comprehensive survey is carried out about using a priori and a posteriori knowledge in classification task for hyperparameter optimization quality improvement. Method. The existing Bayesian optimization algorithm for hyperparameter setting in classification problems was expanded. We proposed a target function modification calculated on the basis of hyperparameters optimized for the similar problems and a metric for determination of similarity classification problems based on generated meta-features. Main Results. Experiments carried out on the real-world datasets from OpenML database have confirmed that the proposed algorithm achieves usually significantly better performance results than the existing Bayesian optimization algorithm within a fixed time limit. Practical Relevance. The proposed algorithm can be used for hyperparameter optimization in any classification problem, for example, in medicine, image processing or chemistry.
Author Efimova, V.A.
Shalamov, V.V.
Filchenkov, A.A.
Smirnova, V.S.
Author_xml – sequence: 1
  givenname: V.S.
  surname: Smirnova
  fullname: Smirnova, V.S.
– sequence: 2
  givenname: V.V.
  surname: Shalamov
  fullname: Shalamov, V.V.
– sequence: 3
  givenname: V.A.
  surname: Efimova
  fullname: Efimova, V.A.
– sequence: 4
  givenname: A.A.
  surname: Filchenkov
  fullname: Filchenkov, A.A.
BookMark eNqNkc1O3TAQha0KpPL3Dll0a7DHTuJIbCiigITUDaytsT1BprlxZKdC8PT1vRc2rLo5Ho_Gn8bnHLODOc3E2A8pzmXfmu4CADou9aA5CBBVeMcNGG6U_saOoBWCC9Wrg1p_Tn5nZ6W8CCFkXwXgiNHd20J5wYwbWik3aVnjJr7jGtPcOCwUmlpgs-SYcmxwDttLKnV21_gzp9eJwjM16NLftfETlhLH6PeEJSc30eaUHY44FTr7OE_Y06-bx-s7_vD79v766oF7UKA5eVQDgTASVUdajqDboEko7MH5rnfog_MhKFCqD6YdBJBw5A0ChaCdOmH3e25I-GLrzhvMbzZhtLtGys8W8xr9RJZIuV6QacF1WqIbSJvRhAGrb8Z7WVk_9yyfUymZRuvjuvvVmjFOVgq7y8Fu3bVbd-02hyq2szUHW3OokMsvkM-l_uv5P_3zkqA
CitedBy_id crossref_primary_10_1016_j_archger_2022_104835
crossref_primary_10_1063_5_0176239
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.17586/2226-1494-2020-20-6-828-834
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2500-0373
EndPage 834
ExternalDocumentID oai_doaj_org_article_ee3b70e852b641ab9e48f8d9a5008cc1
10_17586_2226_1494_2020_20_6_828_834
GroupedDBID 642
AAYXX
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BPHCQ
BYOGL
CITATION
GROUPED_DOAJ
KQ8
PIMPY
PQQKQ
PROAC
VCL
VIT
ID FETCH-LOGICAL-c2324-eca39e2081a36e41f245d4e03a72bc67bacdbcdd32337d85902e0bec8a2edd4b3
IEDL.DBID DOA
ISSN 2226-1494
IngestDate Mon Nov 10 19:22:54 EST 2025
Tue Nov 18 22:06:30 EST 2025
Sat Nov 29 03:57:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2324-eca39e2081a36e41f245d4e03a72bc67bacdbcdd32337d85902e0bec8a2edd4b3
ORCID 0000-0002-4774-3624
0000-0002-5309-2207
0000-0002-1133-8432
0000-0002-5647-6521
OpenAccessLink https://doaj.org/article/ee3b70e852b641ab9e48f8d9a5008cc1
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_ee3b70e852b641ab9e48f8d9a5008cc1
crossref_citationtrail_10_17586_2226_1494_2020_20_6_828_834
crossref_primary_10_17586_2226_1494_2020_20_6_828_834
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki
PublicationYear 2020
Publisher ITMO University
Publisher_xml – name: ITMO University
SSID ssj0001700022
ssib026971427
Score 2.1262586
Snippet Subject of Research. The paper deals with Bayesian method for hyperparameter optimization of algorithms, used in machine learning for classification problems....
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 828
SubjectTerms bayesian optimization
classification
gaussian processes
hyperparameter optimization
machine learning
Title Hyperparameter optimization based on a priori and a posteriori knowledge about classification problem
URI https://doaj.org/article/ee3b70e852b641ab9e48f8d9a5008cc1
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2500-0373
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001700022
  issn: 2226-1494
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQVSE4ID5FgSIfuEZNbG9si1O2zaoV20203ULhYjn2RCpCCyqlv78zTrranuDAJUqsTGS9GXnmRfYbxj4UkHujbZFNfECCEoLJjLBdprGYtb1Q0qfj0Z_nerEwFxe23Wr1RXvCBnngAbgDANnpHMxEdKUqfGdBmd5ES0r-JoREfHJtt8gURpIorS7UqG_5fRCJoWxFneaw3siQFqiHOFFcMbBeLg82gxg0SKeIUdH56sxIdS9fbcn6p_wze8qejIUjr4YJP2MPYP2cPd6SE3zB4PhrWy_balmd1lil8qZd4dL0Lf2F4tPqrD7ieFPxdnnSLE94tTiih-YM300DnxbNlySRzKtpc77ih_MK19rZeNYYzZrpvD59yc5n9erwOBvbKGSByqUMgpcWBOZ-L0tQBXpgEhXk0mvRhVJ3PsQuxCiFlDoa0nOBHF1rvIAYVSdfsZ31zzW8Ztya0OehVyD6iH6NSIdMT0VFH0WIAfbYxzuwXBg1xqnVxQ9HXIOgdgS1I6gdQY0XVzqE2iHUe2yysf41aG38o92U_LKxIcXsNIBx5MY4cn-Lozf_4yNv2aMUQGm7yzu2c331B_bZbri5vvx99T6F6C08tdok
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HYPERPARAMETER+OPTIMIZATION+BASED+ON+A+PRIORI+AND+A+POSTERIORI+KNOWLEDGE+ABOUT+CLASSIFICATION+PROBLEM&rft.jtitle=Nauchno-tekhnicheski%C4%AD+vestnik+informat%CD%A1s%EF%B8%A1ionnykh+tekhnologi%C4%AD%2C+mekhaniki+i+optiki&rft.au=Valentina+S.+Smirnova&rft.au=Viacheslav+V.+Shalamov&rft.au=Valeria+A.+Efimova&rft.au=Andrey+A.+Filchenkov&rft.date=2020-12-01&rft.pub=ITMO+University&rft.issn=2226-1494&rft.eissn=2500-0373&rft.volume=20&rft.issue=6&rft.spage=828&rft.epage=834&rft_id=info:doi/10.17586%2F2226-1494-2020-20-6-828-834&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ee3b70e852b641ab9e48f8d9a5008cc1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2226-1494&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2226-1494&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2226-1494&client=summon