Self‐Attention‐Based Deep Convolutional Sparse Dense Autoencoder Model With Chebyshev‐Based Osprey Algorithm for Cardiovascular Disease Detection

ABSTRACT Cardiovascular disease (CVD) refers to disorders affecting the heart and blood arteries. Automated screening methods can be used to identify CVDs, the leading cause of death worldwide. Electrocardiogram (ECG)‐based techniques are widely utilized to detect CVDs since they are both noninvasiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions on emerging telecommunications technologies Jg. 36; H. 9
Hauptverfasser: Divya, N. J., Kumar, N. Suresh, Devi, R. Kanniga
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Chichester, UK John Wiley & Sons, Ltd 01.09.2025
Schlagworte:
ISSN:2161-3915, 2161-3915
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract ABSTRACT Cardiovascular disease (CVD) refers to disorders affecting the heart and blood arteries. Automated screening methods can be used to identify CVDs, the leading cause of death worldwide. Electrocardiogram (ECG)‐based techniques are widely utilized to detect CVDs since they are both noninvasive and efficient. This paper presents a deep convolutional neural network (CNN) for categorizing five CVDs using conventional 12‐lead ECG data. The proposed approach comprises three steps: preprocessing, feature extraction, and classification. Initially, input signals are collected from a publicly available dataset; then, pre‐processing is performed using a windowed infinite impulse response notch filter (W‐I2RNF) to remove unwanted noise. The appropriate features are extracted from the preprocessed signals using the mel frequency cepstrum coefficient (MFCC) and modified discrete wavelet transform (Mod‐DWT). CVDs are detected and classified based on the retrieved features using a new self‐attention‐based deep convolutional sparse dense autoencoder (SA_DC_SDAE) model. A deep CNN is combined with a sparse dense autoencoder (AE) technique to enable classification tasks. Also, the parameters of the proposed deep learning model are optimized using the Chebyshev‐based Osprey Algorithm (C‐OA). Therefore, the proposed model efficiently classifies CVDs with an accuracy range of 98.75%, sensitivity of 97.9%, precision of 95%, F1 score of 96%, and specificity of 99% for the PTB‐XL dataset. The proposed model outperforms the state‐of‐the‐art models in terms of performance. To reduce the unwanted noises and thereby enhance the input signal's quality via the windowed infinite impulse response notch filter (W‐I2RNF). To enhance the classification accuracy and reduce the complexity issues, needed features are extracted using the mel frequency cepstrum coefficient (MFCC) and modified discrete wavelet transform (Mod‐DWT) methods. To perform disease classification, a self‐attention based deep convolutional sparse dense autoencoder (SA_DC_SDAE) model is proposed.
AbstractList Cardiovascular disease (CVD) refers to disorders affecting the heart and blood arteries. Automated screening methods can be used to identify CVDs, the leading cause of death worldwide. Electrocardiogram (ECG)‐based techniques are widely utilized to detect CVDs since they are both noninvasive and efficient. This paper presents a deep convolutional neural network (CNN) for categorizing five CVDs using conventional 12‐lead ECG data. The proposed approach comprises three steps: preprocessing, feature extraction, and classification. Initially, input signals are collected from a publicly available dataset; then, pre‐processing is performed using a windowed infinite impulse response notch filter (W‐I 2 RNF) to remove unwanted noise. The appropriate features are extracted from the preprocessed signals using the mel frequency cepstrum coefficient (MFCC) and modified discrete wavelet transform (Mod‐DWT). CVDs are detected and classified based on the retrieved features using a new self‐attention‐based deep convolutional sparse dense autoencoder (SA_DC_SDAE) model. A deep CNN is combined with a sparse dense autoencoder (AE) technique to enable classification tasks. Also, the parameters of the proposed deep learning model are optimized using the Chebyshev‐based Osprey Algorithm (C‐OA). Therefore, the proposed model efficiently classifies CVDs with an accuracy range of 98.75%, sensitivity of 97.9%, precision of 95%, F 1 score of 96%, and specificity of 99% for the PTB‐XL dataset. The proposed model outperforms the state‐of‐the‐art models in terms of performance.
ABSTRACT Cardiovascular disease (CVD) refers to disorders affecting the heart and blood arteries. Automated screening methods can be used to identify CVDs, the leading cause of death worldwide. Electrocardiogram (ECG)‐based techniques are widely utilized to detect CVDs since they are both noninvasive and efficient. This paper presents a deep convolutional neural network (CNN) for categorizing five CVDs using conventional 12‐lead ECG data. The proposed approach comprises three steps: preprocessing, feature extraction, and classification. Initially, input signals are collected from a publicly available dataset; then, pre‐processing is performed using a windowed infinite impulse response notch filter (W‐I2RNF) to remove unwanted noise. The appropriate features are extracted from the preprocessed signals using the mel frequency cepstrum coefficient (MFCC) and modified discrete wavelet transform (Mod‐DWT). CVDs are detected and classified based on the retrieved features using a new self‐attention‐based deep convolutional sparse dense autoencoder (SA_DC_SDAE) model. A deep CNN is combined with a sparse dense autoencoder (AE) technique to enable classification tasks. Also, the parameters of the proposed deep learning model are optimized using the Chebyshev‐based Osprey Algorithm (C‐OA). Therefore, the proposed model efficiently classifies CVDs with an accuracy range of 98.75%, sensitivity of 97.9%, precision of 95%, F1 score of 96%, and specificity of 99% for the PTB‐XL dataset. The proposed model outperforms the state‐of‐the‐art models in terms of performance. To reduce the unwanted noises and thereby enhance the input signal's quality via the windowed infinite impulse response notch filter (W‐I2RNF). To enhance the classification accuracy and reduce the complexity issues, needed features are extracted using the mel frequency cepstrum coefficient (MFCC) and modified discrete wavelet transform (Mod‐DWT) methods. To perform disease classification, a self‐attention based deep convolutional sparse dense autoencoder (SA_DC_SDAE) model is proposed.
Author Divya, N. J.
Kumar, N. Suresh
Devi, R. Kanniga
Author_xml – sequence: 1
  givenname: N. J.
  orcidid: 0000-0002-8383-8866
  surname: Divya
  fullname: Divya, N. J.
  email: divya.ssmcse@gmail.com
  organization: SSM Institute of Engineering and Technology
– sequence: 2
  givenname: N. Suresh
  orcidid: 0000-0001-9484-4965
  surname: Kumar
  fullname: Kumar, N. Suresh
  organization: School of Computing, Kalasalingam Academy of Research and Education
– sequence: 3
  givenname: R. Kanniga
  orcidid: 0000-0001-6288-5607
  surname: Devi
  fullname: Devi, R. Kanniga
  organization: School of Computer Science and Engineering, Vellore Institute of Technology
BookMark eNp1UMtOwzAQtFCRKKUH_sBXDqG2k9bJMaTlIRX10CKOkeOsaVAaR7ZblBufwI3_40twW4S4sIfZkWZ2Vppz1Gt0AwhdUnJNCWEjcO6aE8aSE9RndEKDMKHj3h9-hobWvhI_fMzGUdxHn0uo1df7R-ocNK7Sjec3wkKJpwAtznSz0_V2L4gaL1thLHil8ZhunYZG6hIMfvRY4-fKrXG2hqKza9j9Bi1sa6DDaf2ijXdssNIGZ8KUld4JK7e1MHhaWRCHaAdy_-0CnSpRWxj-7AF6up2tsvtgvrh7yNJ5IFlIk4ApURRc0SiUIk5CFpckiidFyTjhQEoWgRI8LkIiRCllomLiOZM89DIjnIUDdHXMlUZba0Dlrak2wnQ5Jfm-1NyXmh9K9d7R0ftW1dD9b8xnq9Xx4hveB4CT
Cites_doi 10.1016/S0140-6736(21)00684-X
10.1093/eurheartj/ehab892
10.2991/978-94-6463-496-9_17
10.1038/s41569-020-00503-2
10.1007/s00521-021-06399-4
10.1016/j.snb.2020.129336
10.1007/s42452-021-04185-4
10.3390/math11194107
10.1016/j.bspc.2021.102968
10.1161/CIRCULATIONAHA.120.050686
10.1038/s41598-024-72382-3
10.1016/j.jacasi.2021.04.007
10.1109/TCSS.2022.3151643
10.1016/j.ygeno.2020.10.024
10.3390/e23091121
10.1016/j.cmpb.2021.106035
10.1016/j.compbiomed.2021.104457
10.1038/s41598-022-15374-5
10.1007/s00521-020-05542-x
10.1007/s12553-021-00552-8
10.1007/s13369-020-05105-1
10.1016/j.metabol.2021.154766
10.1007/s12559-021-09914-w
10.1016/j.icte.2021.08.021
10.1016/j.cmpb.2021.105940
10.1109/ACCESS.2021.3066365
10.1093/europace/euab021
10.1109/ACCESS.2020.2979256
10.3390/electronics11152292
10.1007/s00521-022-07064-0
10.32604/csse.2022.021698
10.52810/TIOT.2021.100035
10.3390/s21030951
10.1111/coin.12405
10.1038/s41746-023-00869-w
10.1109/JIOT.2021.3053420
10.3390/s22072431
10.1016/j.neucom.2019.10.007
10.1109/JIOT.2023.3240536
10.1038/s41569-021-00607-3
10.1002/hsr2.1802
10.1201/9781003144694-7
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
DOI 10.1002/ett.70229
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2161-3915
EndPage n/a
ExternalDocumentID 10_1002_ett_70229
ETT70229
Genre researchArticle
GroupedDBID .GA
.Y3
05W
1OB
1OC
31~
50Z
8-0
8-1
8-3
8-4
8-5
930
A03
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCZN
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZFZN
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F21
G-S
GODZA
HGLYW
IN-
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
RX1
SUPJJ
V2E
WIH
WIK
WXSBR
AAYXX
CITATION
ID FETCH-LOGICAL-c2319-2fabb7f143ca89328d0486bd2707e0d24efa78b30aadcc9f80b302c7307e20723
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001563134700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2161-3915
IngestDate Sat Nov 29 07:30:20 EST 2025
Wed Sep 17 09:20:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2319-2fabb7f143ca89328d0486bd2707e0d24efa78b30aadcc9f80b302c7307e20723
Notes The authors received no specific funding for this work.
Funding
ORCID 0000-0001-6288-5607
0000-0001-9484-4965
0000-0002-8383-8866
PageCount 17
ParticipantIDs crossref_primary_10_1002_ett_70229
wiley_primary_10_1002_ett_70229_ETT70229
PublicationCentury 2000
PublicationDate September 2025
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Transactions on emerging telecommunications technologies
PublicationYear 2025
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References 2021; 9
2021; 8
2023; 10
2021; 46
2021; 21
2023; 35
2021; 23
2021; 3
2023; 11
2021; 2
2021; 200
2023; 6
2021; 203
2024; 81
2022; 42
2022; 43
2021; 143
2022; 22
2024
2021; 1
2024; 14
2021; 70
2020; 8
2021; 13
2021; 37
2021; 33
2021; 11
2021; 113
2021; 134
2022
2021
2024; 7
2021; 18
2022; 8
2021; 119
2022; 12
2022; 34
2020; 379
2021; 397
2021; 330
2022; 11
2021; 2021
2022; 19
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
Khan A. H. (e_1_2_8_32_1) 2021; 2021
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
Wagner P. (e_1_2_8_48_1) 2022
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
Moorthi M. (e_1_2_8_43_1) 2024; 81
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Pollard J. D. (e_1_2_8_14_1) 2021; 2
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 19
  start-page: 133
  issue: 2
  year: 2022
  end-page: 143
  article-title: Epidemiology of Cardiovascular Disease in Europe
  publication-title: Nature Reviews Cardiology
– start-page: 167
  year: 2021
  end-page: 202
– volume: 143
  start-page: 1157
  issue: 11
  year: 2021
  end-page: 1172
  article-title: Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options
  publication-title: Circulation
– volume: 1
  start-page: 1
  issue: 1
  year: 2021
  end-page: 3
  article-title: Epidemiological Features of Cardiovascular Disease in Asia
  publication-title: JACC Asia
– volume: 70
  year: 2021
  article-title: Time Adaptive ECG Driven Cardiovascular Disease Detector
  publication-title: Biomedical Signal Processing and Control
– volume: 8
  start-page: 47103
  year: 2020
  end-page: 47117
  article-title: Arrhythmia Recognition and Classification Using Combined Parametric and Visual Pattern Features of ECG Morphology
  publication-title: IEEE Access
– volume: 34
  start-page: 375
  issue: 1
  year: 2022
  end-page: 390
  article-title: Infinite Impulse Response System Identification Using Average Differential Evolution Algorithm With Local Search
  publication-title: Neural Computing and Applications
– start-page: 215
  year: 2024
  end-page: 230
– volume: 8
  start-page: 16921
  issue: 23
  year: 2021
  end-page: 16932
  article-title: Deep Learning Methods in Internet of Medical Things for Valvular Heart Disease Screening System
  publication-title: IEEE Internet of Things Journal
– volume: 379
  start-page: 152
  year: 2020
  end-page: 161
  article-title: Autonomous Deep Learning: A Genetic DCNN Designer for Image Classification
  publication-title: Neurocomputing
– volume: 37
  start-page: 315
  issue: 1
  year: 2021
  end-page: 343
  article-title: A Hybrid Recurrent Neural Network‐Logistic Chaos‐Based Whale Optimization Framework for Heart Disease Prediction With Electronic Health Records
  publication-title: Computational Intelligence
– volume: 11
  start-page: 2292
  issue: 15
  year: 2022
  article-title: Iot‐Cloud‐Based Smart Healthcare Monitoring System for Heart Disease Prediction via Deep Learning
  publication-title: Electronics
– volume: 81
  start-page: 75
  year: 2024
  end-page: 84
  article-title: Detection and Classification of Electrocardiography Using Hybrid Deep Learning Models
  publication-title: Hellenic Journal of Cardiology
– volume: 21
  start-page: 951
  issue: 3
  year: 2021
  article-title: A Hybrid Deep CNN Model for Abnormal Arrhythmia Detection Based on Cardiac ECG Signal
  publication-title: Sensors
– volume: 42
  start-page: 183
  issue: 1
  year: 2022
  end-page: 199
  article-title: Automated Deep Learning Based Cardiovascular Disease Diagnosis Using ECG Signals
  publication-title: Computer Systems Science and Engineering
– volume: 200
  year: 2021
  article-title: Convolutional and Recurrent Neural Networks for the Detection of Valvular Heart Diseases in Phonocardiogram Recordings
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 7
  issue: 1
  year: 2024
  article-title: CARDPSoML: Comparative Approach to Analyze and Predict Cardiovascular Disease Based on Medical Report Data and Feature Fusion Approach
  publication-title: Health Science Reports
– volume: 9
  start-page: 45137
  year: 2021
  end-page: 45146
  article-title: Artificial Intelligence and Internet of Things Enabled Disease Diagnosis Model for Smart Healthcare Systems
  publication-title: IEEE Access
– volume: 46
  start-page: 3409
  issue: 4
  year: 2021
  end-page: 3422
  article-title: Prediction of Heart Disease Using Deep Convolutional Neural Networks
  publication-title: Arabian Journal for Science and Engineering
– volume: 2
  start-page: 137
  issue: 1
  year: 2021
  end-page: 151
  article-title: Electrocardiogram Machine Learning for Detection of Cardiovascular Disease in African Americans: The Jackson Heart Study
  publication-title: European Heart Journal
– volume: 134
  year: 2021
  article-title: Automated Detection of Coronary Artery Disease, Myocardial Infarction and Congestive Heart Failure Using GaborCNN Model With ECG Signals
  publication-title: Computers in Biology and Medicine
– volume: 10
  start-page: 18505
  issue: 21
  year: 2023
  end-page: 18516
  article-title: A Physics‐Guided Deep Learning Approach for Functional Assessment of Cardiovascular Disease in IoT‐Based Smart Health
  publication-title: IEEE Internet of Things Journal
– volume: 119
  year: 2021
  article-title: Insulin Resistance, Cardiovascular Stiffening and Cardiovascular Disease
  publication-title: Metabolism
– volume: 6
  start-page: 124
  issue: 1
  year: 2023
  article-title: Detection of Left Ventricular Systolic Dysfunction From Single‐Lead Electrocardiography Adapted for Portable and Wearable Devices
  publication-title: npj Digital Medicine
– volume: 203
  year: 2021
  article-title: Convolutional Neural Network Based Automatic Screening Tool for Cardiovascular Diseases Using Different Intervals of ECG Signals
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 33
  start-page: 7979
  year: 2021
  end-page: 7996
  article-title: Predicting Cardiovascular Events With Deep Learning Approach in the Context of the Internet of Things
  publication-title: Neural Computing and Applications
– volume: 3
  issue: 2
  year: 2021
  article-title: Intellectual Heartbeats Classification Model for Diagnosis of Heart Disease From ECG Signal Using Hybrid Convolutional Neural Network With GOA
  publication-title: SN Applied Sciences
– volume: 1
  start-page: 30
  issue: 1
  year: 2021
  end-page: 35
  article-title: Prediction of Cardiovascular Diseases Based on Machine Learning
  publication-title: ASP Transactions on Internet of Things
– volume: 330
  year: 2021
  article-title: Electrochemical Paper‐Based Analytical Device for Multiplexed, Point‐Of‐Care Detection of Cardiovascular Disease Biomarkers
  publication-title: Sensors and Actuators B: Chemical
– volume: 43
  start-page: 716
  issue: 8
  year: 2022
  end-page: 799
  article-title: European Society of Cardiology: Cardiovascular Disease Statistics 2021
  publication-title: European Heart Journal
– volume: 113
  start-page: 1233
  issue: 1
  year: 2021
  end-page: 1246
  article-title: Non‐Coding RNAs: The Key Detectors and Regulators in Cardiovascular Disease
  publication-title: Genomics
– volume: 23
  issue: 9
  year: 2021
  article-title: ECG Signal Classification Using Deep Learning Techniques Based on the PTB‐XL Dataset
  publication-title: Entropy
– year: 2022
– volume: 23
  start-page: 1295
  issue: 8
  year: 2021
  end-page: 1301
  article-title: Diagnostic Yield and Financial Implications of a Nationwide Electrocardiographic Screening Programme to Detect Cardiac Disease in the Young
  publication-title: EP Europace
– volume: 35
  start-page: 7253
  issue: 10
  year: 2023
  end-page: 7266
  article-title: An Automatic Heart Disease Prediction Using Cluster‐Based Bi‐Directional LSTM (C‐BiLSTM) Algorithm
  publication-title: Neural Computing and Applications
– volume: 13
  start-page: 1136
  issue: 5
  year: 2021
  end-page: 1153
  article-title: Mel‐Frequency Cepstral Coefficient Features Based on Standard Deviation and Principal Component Analysis for Language Identification Systems
  publication-title: Cognitive Computation
– volume: 18
  start-page: 465
  issue: 7
  year: 2021
  end-page: 478
  article-title: Artificial Intelligence‐Enhanced Electrocardiography in Cardiovascular Disease Management
  publication-title: Nature Reviews Cardiology
– volume: 8
  start-page: 109
  issue: 1
  year: 2022
  end-page: 116
  article-title: A Comparative Study of Classification and Prediction of Cardio‐Vascular Diseases (CVD) Using Machine Learning and Deep Learning Techniques
  publication-title: ICT Express
– volume: 11
  issue: 19
  year: 2023
  article-title: Performance of Osprey Optimization Algorithm for Solving Economic Load Dispatch Problem
  publication-title: Mathematics
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 8
  article-title: Cardiac Disorder Classification by Electrocardiogram Sensing Using Deep Neural Network
  publication-title: Complexity
– volume: 11
  start-page: 663
  issue: 3
  year: 2021
  end-page: 671
  article-title: A Comparative Study and Analysis of LSTM Deep Neural Networks for Heartbeats Classification
  publication-title: Health and Technology
– volume: 22
  issue: 7
  year: 2022
  article-title: IoT Based Smart Monitoring of Patients' With Acute Heart Failure
  publication-title: Sensors
– volume: 14
  issue: 1
  year: 2024
  article-title: Deep Residual 2D Convolutional Neural Network for Cardiovascular Disease Classification
  publication-title: Scientific Reports
– volume: 11
  start-page: 3060
  issue: 3
  year: 2022
  end-page: 3069
  article-title: InfusedHeart: A Novel Knowledge‐Infused Learning Framework for Diagnosis of Cardiovascular Events
  publication-title: IEEE Transactions on Computational Social Systems
– volume: 397
  start-page: 2385
  issue: 10292
  year: 2021
  end-page: 2438
  article-title: The Lancet Women and Cardiovascular Disease Commission: Reducing the Global Burden by 2030
  publication-title: Lancet
– volume: 12
  issue: 1
  year: 2022
  article-title: RF‐CNN‐F: Random Forest With Convolutional Neural Network Features for Coronary Artery Disease Diagnosis Based on Cardiac Magnetic Resonance
  publication-title: Scientific Reports
– ident: e_1_2_8_3_1
  doi: 10.1016/S0140-6736(21)00684-X
– ident: e_1_2_8_5_1
  doi: 10.1093/eurheartj/ehab892
– ident: e_1_2_8_40_1
  doi: 10.2991/978-94-6463-496-9_17
– ident: e_1_2_8_7_1
  doi: 10.1038/s41569-020-00503-2
– ident: e_1_2_8_44_1
  doi: 10.1007/s00521-021-06399-4
– ident: e_1_2_8_10_1
  doi: 10.1016/j.snb.2020.129336
– ident: e_1_2_8_35_1
  doi: 10.1007/s42452-021-04185-4
– volume: 2021
  start-page: 1
  year: 2021
  ident: e_1_2_8_32_1
  article-title: Cardiac Disorder Classification by Electrocardiogram Sensing Using Deep Neural Network
  publication-title: Complexity
– ident: e_1_2_8_47_1
  doi: 10.3390/math11194107
– ident: e_1_2_8_12_1
  doi: 10.1016/j.bspc.2021.102968
– ident: e_1_2_8_2_1
  doi: 10.1161/CIRCULATIONAHA.120.050686
– ident: e_1_2_8_41_1
  doi: 10.1038/s41598-024-72382-3
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jacasi.2021.04.007
– ident: e_1_2_8_20_1
  doi: 10.1109/TCSS.2022.3151643
– ident: e_1_2_8_9_1
  doi: 10.1016/j.ygeno.2020.10.024
– ident: e_1_2_8_42_1
  doi: 10.3390/e23091121
– ident: e_1_2_8_38_1
  doi: 10.1016/j.cmpb.2021.106035
– ident: e_1_2_8_18_1
  doi: 10.1016/j.compbiomed.2021.104457
– ident: e_1_2_8_34_1
  doi: 10.1038/s41598-022-15374-5
– ident: e_1_2_8_22_1
  doi: 10.1007/s00521-020-05542-x
– volume: 2
  start-page: 137
  issue: 1
  year: 2021
  ident: e_1_2_8_14_1
  article-title: Electrocardiogram Machine Learning for Detection of Cardiovascular Disease in African Americans: The Jackson Heart Study
  publication-title: European Heart Journal
– ident: e_1_2_8_26_1
  doi: 10.1007/s12553-021-00552-8
– ident: e_1_2_8_36_1
  doi: 10.1007/s13369-020-05105-1
– ident: e_1_2_8_6_1
  doi: 10.1016/j.metabol.2021.154766
– volume: 81
  start-page: 75
  year: 2024
  ident: e_1_2_8_43_1
  article-title: Detection and Classification of Electrocardiography Using Hybrid Deep Learning Models
  publication-title: Hellenic Journal of Cardiology
– volume-title: PTB‐XL, A Large Publicly Available Electrocardiography Dataset (Version 1.0.3)
  year: 2022
  ident: e_1_2_8_48_1
– ident: e_1_2_8_45_1
  doi: 10.1007/s12559-021-09914-w
– ident: e_1_2_8_27_1
– ident: e_1_2_8_33_1
  doi: 10.1016/j.icte.2021.08.021
– ident: e_1_2_8_21_1
  doi: 10.1016/j.cmpb.2021.105940
– ident: e_1_2_8_13_1
  doi: 10.1109/ACCESS.2021.3066365
– ident: e_1_2_8_16_1
  doi: 10.1093/europace/euab021
– ident: e_1_2_8_15_1
  doi: 10.1109/ACCESS.2020.2979256
– ident: e_1_2_8_31_1
  doi: 10.3390/electronics11152292
– ident: e_1_2_8_23_1
  doi: 10.1007/s00521-022-07064-0
– ident: e_1_2_8_39_1
  doi: 10.32604/csse.2022.021698
– ident: e_1_2_8_11_1
  doi: 10.52810/TIOT.2021.100035
– ident: e_1_2_8_17_1
  doi: 10.3390/s21030951
– ident: e_1_2_8_24_1
  doi: 10.1111/coin.12405
– ident: e_1_2_8_19_1
  doi: 10.1038/s41746-023-00869-w
– ident: e_1_2_8_28_1
  doi: 10.1109/JIOT.2021.3053420
– ident: e_1_2_8_30_1
  doi: 10.3390/s22072431
– ident: e_1_2_8_46_1
  doi: 10.1016/j.neucom.2019.10.007
– ident: e_1_2_8_29_1
  doi: 10.1109/JIOT.2023.3240536
– ident: e_1_2_8_4_1
  doi: 10.1038/s41569-021-00607-3
– ident: e_1_2_8_37_1
  doi: 10.1002/hsr2.1802
– ident: e_1_2_8_25_1
  doi: 10.1201/9781003144694-7
SSID ssj0000752548
Score 2.3245997
Snippet ABSTRACT Cardiovascular disease (CVD) refers to disorders affecting the heart and blood arteries. Automated screening methods can be used to identify CVDs, the...
Cardiovascular disease (CVD) refers to disorders affecting the heart and blood arteries. Automated screening methods can be used to identify CVDs, the leading...
SourceID crossref
wiley
SourceType Index Database
Publisher
SubjectTerms artificial intelligence (AI)
cardiovascular disease (CVD)
convolutional neural network (CNN)
coronary heart disease (CHD)
World Health Organization (WHO)
Title Self‐Attention‐Based Deep Convolutional Sparse Dense Autoencoder Model With Chebyshev‐Based Osprey Algorithm for Cardiovascular Disease Detection
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.70229
Volume 36
WOSCitedRecordID wos001563134700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2161-3915
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000752548
  issn: 2161-3915
  databaseCode: DRFUL
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZYCBN-ItCzGwBFKnrRMxlT7EgADRVrBFdnymlUpataYzP4GN_8cv4ey0pQxISCzRSXFOkX32PXz3HSGnWpakKgQlL9B-4BVFMfJCpcueFH4ow1AoJl2h8A2_vQ2fnqL7BXI5rYXJ8CFmATe7M9x5bTe4kKOLb9BQMOacowaKFkneFlWh55WvPTTaN7MQC2pDdH9cT7qCjbJEhdIUW8hnF7Pvf2ikeQvVqZjG2r9-bp2sTixLWslEYYMsQLpJVubwBrfIRxN6-vPtvWJMluWI9BWqMUVrAANa7afjiSQio-YAfV7ANyk-K6-mbyEvFQypbZ_Wo49d06HVDtj4NoxnjO5GAxQOWuk994c44oWiUUyrP5JeaS27FELWxiWCpduk3ai3qtfepDODlzBb9cS0kJJrtLUSgQYPC5VF7pMK14GDr1gRtOChDHwhVJJEOvSRZgmeJhyYz1mwQ3JpP4VdQnUAiShxDiBlsaDRe0HxQCNJlhUorfQeOZmuTjzIADjiDGqZxTjLsZvlPXLmVuP3EXG91XLE_t-HHpBlZrv9uoyyQ5Izw1c4IkvJ2HRHw-OJtH0Bjlzfog
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtswDCbadEC3w_7aodmvMPSwixtHdiIZ2CVLGnRYlg1tivZmSBbVFkidIFFz3iPstvfbk4ySk6w9DCiwi0HANGFIlEhR5EeAfatb2jSTVpTYOIlSlWaRNLYdaRVLLaUyXIdC4YEYDuX5efZ9Az6uamEqfIh1wM2vjLBf-wXuA9KNv6ih6NyBIBOUbcJW2k6ErMFW77h_OljHWMgc0vknNKVr-jBL1mytwIVi3lh_f8ck3XZRg43pP_m_v3sKj5e-JetUyvAMNrB8Do9uIQ7uwK8THNvfP352nKvyHIn-RIbMsB7ilHUn5WKpiyToZEqnXqQ3JT07N27iQS8NzphvoDZmZ1fuknUv0Ue4cbEW9G0-JfVgnfHFZEYc14zcYta9k_bKetW1EIl2IRWs3IXT_uGoexQtezNEBfd1T9wqrYUlb6tQ5PJwaTx2nzZcxAJjw1O0SkidxEqZosisjInmBe0nAnksePICauWkxD1gNsFCtYRA1DptWjq_kIKQm6TbBo01tg7vV9OTTysIjrwCW-Y5jXIeRrkOH8J0_JsjPxyNAvHy_qzvYPto9HWQDz4Pv7yCh9z3_g35Za-h5mY3-AYeFAt3NZ-9XareH-KW45I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED9BmabtAfaHafydNe1hL1lTJ8GJxEtpqTat6tAoGm-RHZ8HUpdGxfSZj8Ab349PwtlpCzxMQuIlOimXU2Sffefz3e8AvhiVKN2KkiAyYRTEMs6CVJu9QMkwVWkqNVe-ULgvBoP09DQ7WoL9eS1MjQ-xCLi5leH3a7fAsdKmeY8aitZ-E2SCsmVYiZMsiRuw0v3dO-kvYixkDun845vStVyYJWslc3ChkDcX3z8ySQ9dVG9jemvP-7s3sDrzLVm7Voa3sITlO3j9AHHwPdwc48jcXl23ra3zHIk-IEOmWRexYp1xOZ3pIgk6rujUi_SmpGf70o4d6KXGCXMN1Ebsz7k9Y50zdBFunC4E_bqoSD1Ye_R3PCGOf4zcYtZ5lPbKuvW1EIm2PhWsXIeT3uGw8z2Y9WYICu7qnriRSglD3lYhyeXhqXbYfUpzEQoMNY_RSJGqKJRSF0Vm0pBoXtB-IpCHgkcfoFGOS_wIzERYyEQIRKXilqHzCykIuUlqT6M22mzA5_n05FUNwZHXYMs8p1HO_ShvwFc_Hf_nyA-HQ09sPp31E7w86vby_o_Bzy14xV3rX59etg0NO7nEHXhRTO35xWR3pnl3moHjDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Attention%E2%80%90Based+Deep+Convolutional+Sparse+Dense+Autoencoder+Model+With+Chebyshev%E2%80%90Based+Osprey+Algorithm+for+Cardiovascular+Disease+Detection&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Divya%2C+N.+J.&rft.au=Kumar%2C+N.+Suresh&rft.au=Devi%2C+R.+Kanniga&rft.date=2025-09-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=36&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fett.70229&rft.externalDBID=10.1002%252Fett.70229&rft.externalDocID=ETT70229
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon