A Quasi Energy and Momentum Conservative Algorithm Implemented With a Co‐Rotational Quadrilateral Shell Element Formulation Using Vectorial Rotational Variables

ABSTRACT This paper proposes a flexible multi‐body dynamics approach for elastic smooth and non‐smooth shells undergoing large deformations and large overall motions. The formulation is based on a co‐rotational curved quadrilateral shell element employing vectorial rotational variables and a quasi e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal for numerical methods in engineering Ročník 126; číslo 17
Hlavní autoři: Li, Zhongxue, Lin, Xunda, Vu‐Quoc, Loc, Izzuddin, Bassam A., Wei, Haoyan, Xu, Jin, Qian, Hongtao, Zhuo, Xin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 15.09.2025
ISSN:0029-5981, 1097-0207
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT This paper proposes a flexible multi‐body dynamics approach for elastic smooth and non‐smooth shells undergoing large deformations and large overall motions. The formulation is based on a co‐rotational curved quadrilateral shell element employing vectorial rotational variables and a quasi energy and momentum conservation algorithm. Hamilton's principle is adopted to derive the system's dynamic differential equations. When differentiating the kinetic energy functional with respect to time, the part involving the first‐order differentiation of vectorial rotational variables with respect to time is integrated into an equivalent load vector, yielding a symmetric equivalent mass matrix. Accelerations, velocities, displacements, body, and surface loads of the generalized midpoints are generated by convex functions. The Newmark scheme is applied to transform the dynamic differential equations of the system into a set of nonlinear equations. Instead of using strains and their first/second derivatives with respect to local nodal variables at the midpoint configuration, the formulation employs time‐averaged assumed strains (computed via the MITC method) and their corresponding derivatives evaluated at both ends of the time step for calculating the internal force vector and element tangent stiffness matrix in the local coordinate system. The transformation matrix from local to global coordinates, however, remains computed at the midpoint configuration. This approach ensures near‐exact conservation of total energy and exact conservation of linear and angular momenta once the external loads vanish, while also yielding symmetric tangent stiffness matrices in both local and global coordinate systems. Finally, four examples of three smooth shells and one non‐smooth shell problems subjected to impulse loads are solved to verify the proposed formulation for flexible multi‐body dynamics of shells. It is shown that the results exhibit excellent agreement with those from other references, demonstrating the reliability, accuracy, and long‐term stability of the proposed quasi energy and momentum conserving algorithm.
AbstractList ABSTRACT This paper proposes a flexible multi‐body dynamics approach for elastic smooth and non‐smooth shells undergoing large deformations and large overall motions. The formulation is based on a co‐rotational curved quadrilateral shell element employing vectorial rotational variables and a quasi energy and momentum conservation algorithm. Hamilton's principle is adopted to derive the system's dynamic differential equations. When differentiating the kinetic energy functional with respect to time, the part involving the first‐order differentiation of vectorial rotational variables with respect to time is integrated into an equivalent load vector, yielding a symmetric equivalent mass matrix. Accelerations, velocities, displacements, body, and surface loads of the generalized midpoints are generated by convex functions. The Newmark scheme is applied to transform the dynamic differential equations of the system into a set of nonlinear equations. Instead of using strains and their first/second derivatives with respect to local nodal variables at the midpoint configuration, the formulation employs time‐averaged assumed strains (computed via the MITC method) and their corresponding derivatives evaluated at both ends of the time step for calculating the internal force vector and element tangent stiffness matrix in the local coordinate system. The transformation matrix from local to global coordinates, however, remains computed at the midpoint configuration. This approach ensures near‐exact conservation of total energy and exact conservation of linear and angular momenta once the external loads vanish, while also yielding symmetric tangent stiffness matrices in both local and global coordinate systems. Finally, four examples of three smooth shells and one non‐smooth shell problems subjected to impulse loads are solved to verify the proposed formulation for flexible multi‐body dynamics of shells. It is shown that the results exhibit excellent agreement with those from other references, demonstrating the reliability, accuracy, and long‐term stability of the proposed quasi energy and momentum conserving algorithm.
This paper proposes a flexible multi‐body dynamics approach for elastic smooth and non‐smooth shells undergoing large deformations and large overall motions. The formulation is based on a co‐rotational curved quadrilateral shell element employing vectorial rotational variables and a quasi energy and momentum conservation algorithm. Hamilton's principle is adopted to derive the system's dynamic differential equations. When differentiating the kinetic energy functional with respect to time, the part involving the first‐order differentiation of vectorial rotational variables with respect to time is integrated into an equivalent load vector, yielding a symmetric equivalent mass matrix. Accelerations, velocities, displacements, body, and surface loads of the generalized midpoints are generated by convex functions. The Newmark scheme is applied to transform the dynamic differential equations of the system into a set of nonlinear equations. Instead of using strains and their first/second derivatives with respect to local nodal variables at the midpoint configuration, the formulation employs time‐averaged assumed strains (computed via the MITC method) and their corresponding derivatives evaluated at both ends of the time step for calculating the internal force vector and element tangent stiffness matrix in the local coordinate system. The transformation matrix from local to global coordinates, however, remains computed at the midpoint configuration. This approach ensures near‐exact conservation of total energy and exact conservation of linear and angular momenta once the external loads vanish, while also yielding symmetric tangent stiffness matrices in both local and global coordinate systems. Finally, four examples of three smooth shells and one non‐smooth shell problems subjected to impulse loads are solved to verify the proposed formulation for flexible multi‐body dynamics of shells. It is shown that the results exhibit excellent agreement with those from other references, demonstrating the reliability, accuracy, and long‐term stability of the proposed quasi energy and momentum conserving algorithm.
Author Qian, Hongtao
Lin, Xunda
Izzuddin, Bassam A.
Wei, Haoyan
Xu, Jin
Zhuo, Xin
Li, Zhongxue
Vu‐Quoc, Loc
Author_xml – sequence: 1
  givenname: Zhongxue
  orcidid: 0000-0001-8688-2099
  surname: Li
  fullname: Li, Zhongxue
  email: lizx19993@zju.edu.cn
  organization: Zhejiang University
– sequence: 2
  givenname: Xunda
  surname: Lin
  fullname: Lin, Xunda
  organization: Zhejiang University
– sequence: 3
  givenname: Loc
  surname: Vu‐Quoc
  fullname: Vu‐Quoc, Loc
  organization: University of Illinois at Urbana‐Champaign
– sequence: 4
  givenname: Bassam A.
  orcidid: 0000-0001-5746-463X
  surname: Izzuddin
  fullname: Izzuddin, Bassam A.
  organization: Imperial College London
– sequence: 5
  givenname: Haoyan
  surname: Wei
  fullname: Wei, Haoyan
  organization: ANSYS Inc
– sequence: 6
  givenname: Jin
  surname: Xu
  fullname: Xu, Jin
  organization: Altair Engineering Inc
– sequence: 7
  givenname: Hongtao
  surname: Qian
  fullname: Qian, Hongtao
  organization: Zhejiang University
– sequence: 8
  givenname: Xin
  surname: Zhuo
  fullname: Zhuo, Xin
  organization: Zhejiang University
BookMark eNp1kM1OAjEUhRuDiYAufINuXQy0U8dOl4SAkoDGH3A5KZ07MKbTknbAsPMRfAYfzSexMC7cmNzk5p77nbM4HdQy1gBCl5T0KCFx31TQ44TG6QlqUyJ4RGLCW6gdfiJKRErPUMf7N0IoTQhro68BftxKX-KRAbfaY2lyPLMVmHpb4aE1HtxO1uUO8ECvrCvrdYUn1UbDAYEcvwYFy0B-f3w-2Tqg1kh9yMxdqWUNLlzPa9AajxoTHltXbfWRxHNfmhVegKpDdiD_RCxkUJYa_Dk6LaT2cPG7u2g-Hr0M76Lpw-1kOJhGKmY0jRQvKNACrguhhEqVZIyHAqgSvEgTIGQJjBUiDFVUCn4jgiOFJOYpyxNBWRddNbnKWe8dFNnGlZV0-4yS7FBuFsrNjuUGtt-w76WG_f9gdj8bNY4fgk2B6Q
Cites_doi 10.1007/BF00913408
10.1023/A:1021109015553
10.1016/0045-7825(88)90073-4
10.1002/nme.4681
10.1002/nme.1620380903
10.1002/nme.4975
10.1007/978-3-319-94911-6_4
10.1061/JMCEA3.0000098
10.1016/j.cma.2019.112701
10.1115/1.3423721
10.1007/s00466-023-02438-0
10.1002/nme.3084
10.1007/s11012-024-01799-x
10.1016/j.cja.2020.09.038
10.1002/nme.7605
10.1002/nme.7451
10.1007/s42967‐025‐00476‐4
10.1016/S0045-7825(02)00336-5
10.1002/nme.7611
10.1016/0045-7825(95)00963-9
10.1016/0168-874X(95)00024-2
10.1007/BF01833292
10.1016/j.cma.2015.06.016
10.1016/S0045-7825(02)00243-8
10.1016/j.cma.2024.116970
10.1016/j.cma.2023.116050
10.1016/S0045-7825(96)01161-9
10.1002/nme.1620381605
10.1016/j.cma.2020.113625
10.1016/j.cma.2004.10.008
10.1002/nme.1415
10.1007/s11431-012-5002-7
10.1016/j.cma.2024.117258
10.1002/(SICI)1097-0207(19980615)42:3<409::AID-NME363>3.0.CO;2-B
10.1002/nme.1620371503
10.1002/nme.5936
10.1016/S0045-7825(99)00024-9
10.2514/1.J063821
10.1002/nme.463
10.1016/S0045-7949(02)00034-2
10.1016/0045-7825(92)90115-Z
10.1002/nme.4668
10.1016/j.cma.2014.05.005
10.1002/cnm.1208
10.2514/3.20255
10.1016/j.cma.2009.05.011
10.1016/S0045-7949(02)00053-6
10.1002/nme.4978
10.1007/s00466-011-0584-7
10.1016/j.camwa.2024.09.025
10.1016/j.cma.2022.114776
10.1016/S0045-7825(98)00031-0
10.1002/nme.4471
10.1002/nme.2064
10.1002/(SICI)1097-0207(19990620)45:5<569::AID-NME595>3.0.CO;2-A
10.1016/0045-7825(96)01009-2
10.1016/j.cma.2025.117893
10.1007/s00466-019-01775-3
10.1007/s00466-008-0289-8
10.1115/1.3424303
10.1090/S0025-5718-07-01998-9
10.1016/j.tws.2017.05.001
10.1016/j.cma.2021.113843
10.1108/02644409810225715
10.1016/j.compstruc.2015.12.007
10.1016/j.compstruct.2021.115083
10.1007/s00707-020-02884-4
10.1002/nme.1620340108
10.1007/s00466-020-01936-9
10.1002/nme.5217
10.1016/j.tws.2018.08.010
10.2514/1.J053147
10.1061/(ASCE)0733-9399(2005)131:1(12)
10.1007/BF02736211
10.1002/nme.95
10.1002/nme.535
10.1051/m2an/2013138
10.1016/S0045-7949(02)00483-2
10.1002/(SICI)1097-0207(20000110/30)47:1/3<101::AID-NME763>3.0.CO;2-C
10.1016/j.cma.2004.07.035
10.1007/s00466-015-1138-1
10.1016/j.jcp.2020.109235
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
DOI 10.1002/nme.70128
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage n/a
ExternalDocumentID 10_1002_nme_70128
NME70128
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 11672266
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
O8X
ID FETCH-LOGICAL-c2318-c7f1e1fe4f9c9c8ca3370971c97f85e00be33f93f91c1a9769c7f8e52783d5913
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001574604300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Sat Nov 29 07:01:51 EST 2025
Fri Sep 12 09:20:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2318-c7f1e1fe4f9c9c8ca3370971c97f85e00be33f93f91c1a9769c7f8e52783d5913
Notes Funding
This work was supported by the National Natural Science Foundation of China (11672266).
ORCID 0000-0001-8688-2099
0000-0001-5746-463X
PageCount 32
ParticipantIDs crossref_primary_10_1002_nme_70128
wiley_primary_10_1002_nme_70128_NME70128
PublicationCentury 2000
PublicationDate 15 September 2025
2025-09-15
PublicationDateYYYYMMDD 2025-09-15
PublicationDate_xml – month: 09
  year: 2025
  text: 15 September 2025
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2007; 39
2001; 50
2021; 67
2002; 191
2005; 131
2000; 47
2020; 360
1995; 38
2016; 108
2024; 426
2002; 54
2000; 7
2002; 55
2009; 198
1999; 45
2005; 64
2024; 74
2003; 192
2016; 105
2007; 72
2025
2024
2007; 76
2025; 439
2012; 55
1998; 42
1996; 34
2020; 407
2017; 118
2015; 295
1998; 15
2025; 126
2018; 132
2022; 284
2010; 26
2021; 34
2013; 95
1997; 143
1995; 21
2010; 199
2023; 411
1975; 42
2014; 282
1994; 37
2024; 431
2021; 232
1999; 178
1992; 43
1996; 136
1996; 9
2010; 6
2014; 99
2025; 63
1998; 164
2014; 98
1959; 85
2005; 194
2022; 393
1987; 10
2003; 81
2024; 126
1992; 100
2015; 53
2015; 55
2002; 8
2014; 48
2021; 381
2016; 165
2002; 80
2024; 125
1995; 2
2024; 59
1992; 34
2023; 61
1978; 45
2018; 116
2011; 86
1988; 66
2024; 174
2021; 375
2011; 48
2008; 42
2020; 65
2018; 2219
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
Stolarski H. (e_1_2_10_10_1) 1995; 2
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Li Z. X. (e_1_2_10_23_1) 2010; 6
Li Z. X. (e_1_2_10_24_1) 2007; 39
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_83_1
e_1_2_10_64_1
Guo Y. J. (e_1_2_10_66_1) 2023; 61
Betsch P. (e_1_2_10_81_1) 2009; 198
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
e_1_2_10_89_1
References_xml – volume: 38
  start-page: 2727
  issue: 16
  year: 1995
  end-page: 2751
  article-title: Numerical‐Integration of Nonlinear Elastic Multibody Systems
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 26
  start-page: 1188
  issue: 9
  year: 2010
  end-page: 1202
  article-title: Discrepancies of Energy Values in Dynamics of Three Intersecting Plates
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
– volume: 53
  start-page: 663
  issue: 3
  year: 2015
  end-page: 677
  article-title: Corotational Nonlinear Dynamic Analysis of Thin‐Shell Structures With Finite Rotations
  publication-title: AIAA Journal
– volume: 50
  start-page: 1801
  issue: 8
  year: 2001
  end-page: 1823
  article-title: Energy and Momentum Conserving Elasto‐Dynamics of a Non‐Linear Brick‐Type Mixed Finite Shell Element
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 9
  start-page: 37
  issue: 1–2
  year: 1996
  end-page: 52
  article-title: An Energy Conserving Co‐Rotational Procedure for Non‐Linear Dynamics With Finite Elements
  publication-title: Nonlinear Dynamics
– volume: 232
  start-page: 1515
  issue: 4
  year: 2021
  end-page: 1542
  article-title: A Co‐Rotational Triangular Finite Element for Large Deformation Analysis of Smooth, Folded and Multi‐Shells
  publication-title: Acta Mechanica
– volume: 375
  year: 2021
  article-title: Energy‐Decaying and Momentum‐Conserving Schemes for Transient Simulations With Mixed Finite Elements
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 194
  start-page: 4135
  issue: 39–41
  year: 2005
  end-page: 4195
  article-title: Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 165
  start-page: 96
  year: 2016
  end-page: 106
  article-title: A Quadrature Element Formulation of an Energy‐Momentum Conserving Algorithm for Dynamic Analysis of Geometrically Exact Beams
  publication-title: Computers & Structures
– volume: 100
  start-page: 63
  issue: 1
  year: 1992
  end-page: 116
  article-title: Exact Energy‐Momentum Conserving Algorithms and Symplectic Schemes for Nonlinear Dynamics
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 80
  start-page: 871
  issue: 9–10
  year: 2002
  end-page: 889
  article-title: Time Integrators for Shells in Multibody Dynamics
  publication-title: Computers & Structures
– year: 2024
– volume: 45
  start-page: 569
  issue: 5
  year: 1999
  end-page: 599
  article-title: Energy‐Conserving and Decaying Algorithms in Non‐Linear Structural Dynamics
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 199
  start-page: 276
  issue: 5–8
  year: 2010
  end-page: 289
  article-title: Isogeometric Shell Analysis: The Reissner‐ Mindlin Shell
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 295
  start-page: 39
  year: 2015
  end-page: 55
  article-title: Conservative Fourth‐Order Time Integration of Non‐Linear Dynamic Systems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 178
  start-page: 343
  issue: 3–4
  year: 1999
  end-page: 366
  article-title: Generalized Energy‐Momentum Method for Non‐Linear Adaptive Shell Dynamics
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 8
  start-page: 459
  issue: 4
  year: 2002
  end-page: 489
  article-title: On the Modeling of Shells in Multibody Dynamics
  publication-title: Multibody System Dynamics
– volume: 38
  start-page: 1431
  issue: 9
  year: 1995
  end-page: 1473
  article-title: Nonlinear Dynamics of 3‐Dimensional Rods ‐ Exact Energy and Momentum Conserving Algorithms
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 284
  year: 2022
  article-title: Static and Dynamic NURBS‐Based Isogeometric Analysis of Composite Plates Under Hygrothermal Environment
  publication-title: Composite Structures
– volume: 125
  issue: 12
  year: 2024
  article-title: An Efficient Shear and Bending‐Locking‐Free Quadrilateral Plate Element Using a Modified Hellinger‐Reissner Functional and the Bergan Free Formulation
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 282
  start-page: 132
  year: 2014
  end-page: 160
  article-title: On the Virtual Element Method for Three‐Dimensional Linear Elasticity Problems on Arbitrary Polyhedral Meshes
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 116
  start-page: 570
  issue: 8
  year: 2018
  end-page: 600
  article-title: A 9‐Node Co‐Rotational Curved Quadrilateral Shell Element for Smooth, Folded and Multi‐Shell Structures
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 55
  start-page: 837
  issue: 5
  year: 2015
  end-page: 859
  article-title: A 6‐Node Co‐Rotational Triangular Elasto‐Plastic Shell Element
  publication-title: Computational Mechanics
– volume: 67
  start-page: 341
  issue: 1
  year: 2021
  end-page: 364
  article-title: An Energy‐Momentum Conserving Scheme for Geometrically Exact Shells With Drilling DOFs
  publication-title: Computational Mechanics
– volume: 66
  start-page: 125
  year: 1988
  end-page: 161
  article-title: On the Dynamics in Space of Rods Undergoing Large Motions ‐ A Geometrically Exact Approach
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 118
  start-page: 56
  year: 2017
  end-page: 72
  article-title: On the Nonlinear Dynamics of Shell Structures: Combining a Mixed Finite Element Formulation and a Robust Integration Scheme
  publication-title: Thin‐Walled Structures
– volume: 407
  year: 2020
  article-title: Virtual Element Method for the Numerical Simulation of Long‐Term Dynamics of Transitional Environments
  publication-title: Journal of Computational Physics
– volume: 59
  start-page: 1351
  issue: 8
  year: 2024
  end-page: 1368
  article-title: A Geometrically Nonlinear Hellinger‐Reissner Shell Element for the Postbuckling Analysis of Variable Stiffness Composite Laminate Structures
  publication-title: Meccanica
– volume: 2219
  start-page: 237
  year: 2018
  end-page: 315
– volume: 81
  start-page: 477
  year: 2003
  end-page: 489
  article-title: Towards Improving the MITC9 Shell Element
  publication-title: Computers & Structures
– volume: 55
  start-page: 3311
  issue: 12
  year: 2012
  end-page: 3321
  article-title: Energy Conserving and Decaying Algorithms for Corotational Finite Element Nonlinear Dynamic Responses of Thin Shells
  publication-title: Science China Technological Sciences
– volume: 6
  start-page: 767
  issue: 2
  year: 2010
  end-page: 787
  article-title: A Mixed Co‐Rotational 3D Beam Element Formulation for Arbitrarily Large Rotations
  publication-title: Advanced Steel Construction
– volume: 2
  start-page: 125
  year: 1995
  end-page: 212
  article-title: A Review of Shell Finite Elements and Corotational Theories
  publication-title: Computational Mechanics Advances
– volume: 42
  start-page: 873
  issue: 6
  year: 2008
  end-page: 884
  article-title: A 9‐Node Co‐Rotational Quadrilateral Shell Element
  publication-title: Computational Mechanics
– volume: 191
  start-page: 3099
  issue: 27–28
  year: 2002
  end-page: 3121
  article-title: An Energy Decaying Scheme for Nonlinear Dynamics of Shells
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 15
  start-page: 552
  issue: 5
  year: 1998
  end-page: 576
  article-title: An Energy‐Conserving Co‐Rotational Procedure for the Dynamics of Shell Structures
  publication-title: Engineering Computations
– volume: 64
  start-page: 1350
  year: 2005
  end-page: 1374
  article-title: An Enhanced Co‐Rotational Approach for Large Displacement Analysis of Plates
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 43
  start-page: 757
  issue: 5
  year: 1992
  end-page: 792
  article-title: The Discrete Energy‐Momentum Method. Conserving Algorithms for Nonlinear Elastodynamics
  publication-title: Zeitschrift für Angewandte Mathematik und Physik
– volume: 48
  start-page: 1227
  issue: 4
  year: 2014
  end-page: 1240
  article-title: Basic Principles of Mixed Virtual Element Methods
  publication-title: ESAIM. Mathematical Modelling and Numerical Analysis
– volume: 10
  start-page: 549
  year: 1987
  end-page: 558
  article-title: Dynamics of Earth‐Orbiting Flexible Satellites With Multibody Components
  publication-title: Journal of Guidance, Control, and Dynamics
– volume: 105
  start-page: 286
  year: 2016
  end-page: 320
  article-title: Bisector and Zero‐Macrospin Co‐Rotational Systems for Shell Elements
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 54
  start-page: 1043
  issue: 7
  year: 2002
  end-page: 1086
  article-title: Numerical Integration of the Stiff Dynamics of Geometrically Exact Shells: An Energy‐Dissipative Momentum‐Conserving Scheme
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 55
  start-page: 853
  issue: 7
  year: 2002
  end-page: 878
  article-title: An Eight‐Node Hybrid‐Stress Solid‐Shell Element for Geometric Non‐Linear Analysis of Elastic Shells
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 74
  start-page: 393
  issue: 2
  year: 2024
  end-page: 415
  article-title: A Hu‐Washizu Variational Approach to Self‐Stabilized Quadrilateral Virtual Elements: 2D Linear Elastodynamics
  publication-title: Computational Mechanics
– volume: 174
  start-page: 431
  year: 2024
  end-page: 448
  article-title: Mixed Virtual Element Methods for the Poro‐Elastodynamics Model on Polygonal Grids
  publication-title: Computers & Mathematics With Applications
– volume: 80
  start-page: 677
  issue: 7–8
  year: 2002
  end-page: 689
  article-title: An Energy Conserving Non‐Linear Dynamic Finite Element Formulation for Flexible Composite Laminates
  publication-title: Computers & Structures
– volume: 99
  start-page: 547
  issue: 8
  year: 2014
  end-page: 565
  article-title: A Time‐Marching Collocation Method Based on Quintic Hermite Polynomials and Adjustable Acceleration and Jerk Constraints
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 42
  start-page: 865
  issue: 4
  year: 1975
  end-page: 869
  article-title: On the Unconditional Stability of an Implicit Algorithm for Nonlinear Structural Dynamics
  publication-title: Journal of Applied Mechanics
– volume: 194
  start-page: 2285
  year: 2005
  end-page: 2335
  article-title: A Unified Formulation of Small‐Strain Corotational Finite Elements: I. Theory
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 34
  start-page: 197
  issue: 3–4
  year: 1996
  end-page: 222
  article-title: On the Stability of Symplectic and Energy‐Momentum Algorithms for Non‐Linear Hamiltonian Systems With Symmetry
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 360
  year: 2020
  article-title: A High‐Precision Co‐Rotational Formulation of 3D Beam Elements for Dynamic Analysis of Flexible Multibody Systems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 45
  start-page: 366
  issue: 2
  year: 1978
  end-page: 370
  article-title: Finite‐Element Methods for Non‐Linear Elastodynamics Which Conserve Energy
  publication-title: Journal of Applied Mechanics
– volume: 126
  issue: 1
  year: 2024
  article-title: Arbitrary Order Virtual Element Methods for High‐Order Phase‐Field Modeling of Dynamic Fracture
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 192
  start-page: 1017
  issue: 9–10
  year: 2003
  end-page: 1059
  article-title: Optimal Solid Shells for Non‐Linear Analyses of Multilayer Composites. II. Dynamics
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 381
  year: 2021
  article-title: Symplectic Hamiltonian Finite Element Methods for Linear Elastodynamics
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 164
  start-page: 307
  issue: 3–4
  year: 1998
  end-page: 331
  article-title: Integrating Finite Rotations
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 72
  start-page: 1029
  issue: 9
  year: 2007
  end-page: 1062
  article-title: An Efficient Co‐Rotational Formulation for Curved Triangular Shell Element
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 105
  start-page: 483
  issue: 7
  year: 2016
  end-page: 513
  article-title: Degenerated Shell Element With Composite Implicit Time Integration Scheme for Geometric Nonlinear Analysis
  publication-title: International Journal for Numerical Methods in Engineering
– year: 2025
  article-title: On the Superconvergence of a Conforming Mixed Finite Element for Linear Elasticity on Uniform n‐Square Grids
  publication-title: Communications on Applied Mathematics and Computation
– volume: 63
  start-page: 274
  issue: 1
  year: 2025
  end-page: 291
  article-title: Modeling Challenges and Limitation Principles of Reissner's Mixed Approaches to Laminates
  publication-title: AIAA Journal
– volume: 136
  start-page: 293
  issue: 3–4
  year: 1996
  end-page: 315
  article-title: Constraint Energy Momentum Algorithm and Its Application to Non‐Linear Dynamics of Shells
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 76
  start-page: 1699
  issue: 260
  year: 2007
  end-page: 1723
  article-title: Mixed Finite Element Methods for Linear Elasticity With Weakly Imposed Symmetry
  publication-title: Mathematics of Computation
– volume: 34
  start-page: 266
  issue: 1
  year: 2021
  end-page: 280
  article-title: Dynamic Analysis of the Composite Laminated Repaired Perforated Plates by Using Multi‐Patch IGA Method
  publication-title: Chinese Journal of Aeronautics
– volume: 42
  start-page: 409
  year: 1998
  end-page: 442
  article-title: On Non‐Linear Dynamics of Shells: Implementation of Energy‐Momentum Conserving Algorithm for a Finite Rotation Shell Model
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 132
  start-page: 682
  year: 2018
  end-page: 699
  article-title: Simulation of Shell Buckling by Implicit Dynamics and Numerically Dissipative Schemes
  publication-title: Thin‐Walled Structures
– volume: 411
  year: 2023
  article-title: Virtual Element Method for Phase Field Modeling of Dynamic Fracture
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 426
  year: 2024
  article-title: A Hybrid Virtual Element Formulation for 2D Elasticity Problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 39
  start-page: 293
  issue: 3
  year: 2007
  end-page: 308
  article-title: A Co‐Rotational Formulation for 3D Beam Element Using Vectorial Rotational Variables
  publication-title: Computational Mechanics
– volume: 431
  year: 2024
  article-title: High‐Order 3D Virtual Element Method for Linear and Nonlinear Elasticity
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 21
  start-page: 5
  issue: 1–2
  year: 1995
  end-page: 20
  article-title: State‐Of‐The‐Art Development of Hybrid Mixed Finite‐Element Method
  publication-title: Finite Elements in Analysis and Design
– volume: 143
  start-page: 393
  issue: 3–4
  year: 1997
  end-page: 415
  article-title: Energy Preserving/Decaying Schemes for Non‐Linear Beam Dynamics Using the Helicoidal Approximation
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 108
  start-page: 423
  issue: 5
  year: 2016
  end-page: 455
  article-title: An Energy‐Momentum Consistent Method for Transient Simulations With Mixed Finite Elements Developed in the Framework of Geometrically Exact Shells
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 439
  year: 2025
  article-title: Explicit Dual‐Mesh Virtual Element Method for 2D Nonlinear Dynamic Problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 131
  start-page: 12
  issue: 1
  year: 2005
  end-page: 22
  article-title: Energy‐Momentum Conserving Algorithm for Nonlinear Dynamics of Laminated Shells Based on a Third‐Order Shear Deformation Theory
  publication-title: Journal of Engineering Mechanics
– volume: 48
  start-page: 195
  issue: 2
  year: 2011
  end-page: 211
  article-title: An Exact Conserving Algorithm for Nonlinear Dynamics With Rotational DOFs and General Hyperelasticity. Part 2: Shells
  publication-title: Computational Mechanics
– volume: 198
  start-page: 1609
  year: 2009
  end-page: 1630
  article-title: On the Use of Geometrically Exact Shells in a Conserving Framework for Flexible Multibody Dynamics
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 98
  start-page: 625
  issue: 9
  year: 2014
  end-page: 662
  article-title: Dimensional Reduction of Nonlinear Finite Element Dynamic Models With Finite Rotations and Energy‐Based Mesh Sampling and Weighting for Computational Efficiency
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 61
  start-page: 5620
  issue: 12
  year: 2023
  end-page: 5634
  article-title: Isogeometric Dynamic Buckling Analysis of Trimmed and Multipatch Thin‐Shell Structures
  publication-title: AIAA Journal
– volume: 393
  year: 2022
  article-title: Unconditional Stability in Large Deformation Dynamic Analysis of Elastic Structures With Arbitrary Nonlinear Strain Measure and Multi‐Body Coupling
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 34
  start-page: 117
  issue: 1
  year: 1992
  end-page: 164
  article-title: On a Stress Resultant Geometrically Exact Shell‐Model. Part VI: Conserving Algorithms for Nonlinear Dynamics
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 95
  start-page: 181
  issue: 3
  year: 2013
  end-page: 211
  article-title: A 4‐Node Co‐Rotational Quadrilateral Elasto‐Plastic Shell Element Using Vectorial Rotational Variables
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 47
  start-page: 101
  year: 2000
  end-page: 127
  article-title: A Survey of Recent Shell Finite Elements
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 85
  start-page: 67
  issue: 3
  year: 1959
  end-page: 94
  article-title: A Method of Computation for Structural Dynamics
  publication-title: Journal of the Engineering Mechanics Division, ASCE
– volume: 7
  start-page: 299
  issue: 3
  year: 2000
  end-page: 332
  article-title: Time Integration in the Context of Energy Control and Locking Free Finite Elements
  publication-title: Archives of Computational Methods in Engineering
– volume: 65
  start-page: 405
  year: 2020
  end-page: 427
  article-title: A New Conservative/Dissipative Time Integration Scheme for Nonlinear Mechanical Systems
  publication-title: Computational Mechanics
– volume: 126
  issue: 1
  year: 2025
  article-title: An Energy‐Conserving Time Integration Scheme for Nonlinear Dynamics Analysis of Geometrically Exact 3D Euler‐Bernoulli Beams
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 37
  start-page: 2527
  issue: 15
  year: 1994
  end-page: 2549
  article-title: A New Energy and Momentum Conserving Algorithm for the Non‐Linear Dynamics of Shells
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 86
  start-page: 975
  issue: 8
  year: 2011
  end-page: 999
  article-title: A Stabilized Co‐Rotational Curved Quadrilateral Composite Shell Element
  publication-title: International Journal for Numerical Methods in Engineering
– ident: e_1_2_10_4_1
  doi: 10.1007/BF00913408
– ident: e_1_2_10_46_1
  doi: 10.1023/A:1021109015553
– ident: e_1_2_10_52_1
  doi: 10.1016/0045-7825(88)90073-4
– volume: 61
  start-page: 5620
  issue: 12
  year: 2023
  ident: e_1_2_10_66_1
  article-title: Isogeometric Dynamic Buckling Analysis of Trimmed and Multipatch Thin‐Shell Structures
  publication-title: AIAA Journal
– ident: e_1_2_10_33_1
  doi: 10.1002/nme.4681
– ident: e_1_2_10_32_1
  doi: 10.1002/nme.1620380903
– ident: e_1_2_10_83_1
  doi: 10.1002/nme.4975
– ident: e_1_2_10_65_1
  doi: 10.1007/978-3-319-94911-6_4
– ident: e_1_2_10_80_1
  doi: 10.1061/JMCEA3.0000098
– ident: e_1_2_10_16_1
  doi: 10.1016/j.cma.2019.112701
– ident: e_1_2_10_35_1
  doi: 10.1115/1.3423721
– ident: e_1_2_10_72_1
  doi: 10.1007/s00466-023-02438-0
– ident: e_1_2_10_19_1
  doi: 10.1002/nme.3084
– ident: e_1_2_10_57_1
  doi: 10.1007/s11012-024-01799-x
– ident: e_1_2_10_68_1
  doi: 10.1016/j.cja.2020.09.038
– ident: e_1_2_10_77_1
  doi: 10.1002/nme.7605
– volume: 198
  start-page: 1609
  year: 2009
  ident: e_1_2_10_81_1
  article-title: On the Use of Geometrically Exact Shells in a Conserving Framework for Flexible Multibody Dynamics
  publication-title: International Journal for Numerical Methods in Engineering
– ident: e_1_2_10_89_1
– ident: e_1_2_10_59_1
  doi: 10.1002/nme.7451
– ident: e_1_2_10_56_1
  doi: 10.1007/s42967‐025‐00476‐4
– ident: e_1_2_10_85_1
  doi: 10.1016/S0045-7825(02)00336-5
– ident: e_1_2_10_15_1
  doi: 10.1002/nme.7611
– ident: e_1_2_10_48_1
  doi: 10.1016/0045-7825(95)00963-9
– ident: e_1_2_10_62_1
  doi: 10.1016/0168-874X(95)00024-2
– ident: e_1_2_10_12_1
  doi: 10.1007/BF01833292
– ident: e_1_2_10_37_1
  doi: 10.1016/j.cma.2015.06.016
– ident: e_1_2_10_34_1
  doi: 10.1016/S0045-7825(02)00243-8
– ident: e_1_2_10_73_1
  doi: 10.1016/j.cma.2024.116970
– ident: e_1_2_10_78_1
  doi: 10.1016/j.cma.2023.116050
– ident: e_1_2_10_47_1
  doi: 10.1016/S0045-7825(96)01161-9
– ident: e_1_2_10_42_1
  doi: 10.1002/nme.1620381605
– ident: e_1_2_10_29_1
  doi: 10.1016/j.cma.2020.113625
– ident: e_1_2_10_63_1
  doi: 10.1016/j.cma.2004.10.008
– ident: e_1_2_10_7_1
  doi: 10.1002/nme.1415
– ident: e_1_2_10_14_1
  doi: 10.1007/s11431-012-5002-7
– ident: e_1_2_10_71_1
  doi: 10.1016/j.cma.2024.117258
– ident: e_1_2_10_82_1
  doi: 10.1002/(SICI)1097-0207(19980615)42:3<409::AID-NME363>3.0.CO;2-B
– ident: e_1_2_10_5_1
  doi: 10.1002/nme.1620371503
– ident: e_1_2_10_2_1
  doi: 10.1002/nme.5936
– ident: e_1_2_10_41_1
  doi: 10.1016/S0045-7825(99)00024-9
– ident: e_1_2_10_58_1
  doi: 10.2514/1.J063821
– ident: e_1_2_10_45_1
  doi: 10.1002/nme.463
– ident: e_1_2_10_40_1
  doi: 10.1016/S0045-7949(02)00034-2
– ident: e_1_2_10_50_1
  doi: 10.1016/0045-7825(92)90115-Z
– ident: e_1_2_10_70_1
  doi: 10.1002/nme.4668
– ident: e_1_2_10_69_1
  doi: 10.1016/j.cma.2014.05.005
– ident: e_1_2_10_86_1
  doi: 10.1002/cnm.1208
– ident: e_1_2_10_53_1
  doi: 10.2514/3.20255
– ident: e_1_2_10_64_1
  doi: 10.1016/j.cma.2009.05.011
– ident: e_1_2_10_44_1
  doi: 10.1016/S0045-7949(02)00053-6
– ident: e_1_2_10_8_1
  doi: 10.1002/nme.4978
– ident: e_1_2_10_55_1
  doi: 10.1007/s00466-011-0584-7
– ident: e_1_2_10_79_1
  doi: 10.1016/j.camwa.2024.09.025
– ident: e_1_2_10_25_1
  doi: 10.1016/j.cma.2022.114776
– ident: e_1_2_10_31_1
  doi: 10.1016/S0045-7825(98)00031-0
– ident: e_1_2_10_20_1
  doi: 10.1002/nme.4471
– ident: e_1_2_10_21_1
  doi: 10.1002/nme.2064
– ident: e_1_2_10_49_1
  doi: 10.1002/(SICI)1097-0207(19990620)45:5<569::AID-NME595>3.0.CO;2-A
– ident: e_1_2_10_36_1
  doi: 10.1016/0045-7825(96)01009-2
– ident: e_1_2_10_76_1
  doi: 10.1016/j.cma.2025.117893
– ident: e_1_2_10_28_1
  doi: 10.1007/s00466-019-01775-3
– ident: e_1_2_10_17_1
  doi: 10.1007/s00466-008-0289-8
– ident: e_1_2_10_38_1
  doi: 10.1115/1.3424303
– ident: e_1_2_10_60_1
  doi: 10.1090/S0025-5718-07-01998-9
– ident: e_1_2_10_88_1
  doi: 10.1016/j.tws.2017.05.001
– ident: e_1_2_10_26_1
  doi: 10.1016/j.cma.2021.113843
– ident: e_1_2_10_13_1
  doi: 10.1108/02644409810225715
– ident: e_1_2_10_30_1
  doi: 10.1016/j.compstruc.2015.12.007
– ident: e_1_2_10_67_1
  doi: 10.1016/j.compstruct.2021.115083
– ident: e_1_2_10_22_1
  doi: 10.1007/s00707-020-02884-4
– ident: e_1_2_10_51_1
  doi: 10.1002/nme.1620340108
– ident: e_1_2_10_27_1
  doi: 10.1007/s00466-020-01936-9
– ident: e_1_2_10_54_1
  doi: 10.1002/nme.5217
– ident: e_1_2_10_43_1
  doi: 10.1016/j.tws.2018.08.010
– ident: e_1_2_10_84_1
  doi: 10.2514/1.J053147
– ident: e_1_2_10_39_1
  doi: 10.1061/(ASCE)0733-9399(2005)131:1(12)
– ident: e_1_2_10_3_1
  doi: 10.1007/BF02736211
– ident: e_1_2_10_87_1
  doi: 10.1002/nme.95
– ident: e_1_2_10_61_1
  doi: 10.1002/nme.535
– volume: 6
  start-page: 767
  issue: 2
  year: 2010
  ident: e_1_2_10_23_1
  article-title: A Mixed Co‐Rotational 3D Beam Element Formulation for Arbitrarily Large Rotations
  publication-title: Advanced Steel Construction
– ident: e_1_2_10_74_1
  doi: 10.1051/m2an/2013138
– ident: e_1_2_10_6_1
  doi: 10.1016/S0045-7949(02)00483-2
– volume: 39
  start-page: 293
  issue: 3
  year: 2007
  ident: e_1_2_10_24_1
  article-title: A Co‐Rotational Formulation for 3D Beam Element Using Vectorial Rotational Variables
  publication-title: Computational Mechanics
– ident: e_1_2_10_9_1
  doi: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<101::AID-NME763>3.0.CO;2-C
– volume: 2
  start-page: 125
  year: 1995
  ident: e_1_2_10_10_1
  article-title: A Review of Shell Finite Elements and Corotational Theories
  publication-title: Computational Mechanics Advances
– ident: e_1_2_10_11_1
  doi: 10.1016/j.cma.2004.07.035
– ident: e_1_2_10_18_1
  doi: 10.1007/s00466-015-1138-1
– ident: e_1_2_10_75_1
  doi: 10.1016/j.jcp.2020.109235
SSID ssj0011503
Score 2.4728756
Snippet ABSTRACT This paper proposes a flexible multi‐body dynamics approach for elastic smooth and non‐smooth shells undergoing large deformations and large overall...
This paper proposes a flexible multi‐body dynamics approach for elastic smooth and non‐smooth shells undergoing large deformations and large overall motions....
SourceID crossref
wiley
SourceType Index Database
Publisher
Title A Quasi Energy and Momentum Conservative Algorithm Implemented With a Co‐Rotational Quadrilateral Shell Element Formulation Using Vectorial Rotational Variables
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.70128
Volume 126
WOSCitedRecordID wos001574604300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1B4QAHdsSuEeLAJZDYDYnFqYJWHGjFDrfIcRyo1AU1KWc-gW_g0_gSxk5alQMSElIOSWRblsZjv7E97wEccIo5khOjEcZD6VQFBSiGA9pRieaB58cUzFkS18ug1QqfnsTVFJyOcmEKfojxhpvxDDtfGweXcXY8QRra1UeBmV6nYYbRuK1WYOb8pnF_OT5EIKzDRzc8fBF6I2Ihlx2PK_9YjibhqV1fGov_6tkSLJSwEmvFOFiGKd1bgcUSYmLpwNkKzE_wD9JXc0zamq3CZw2vhzJrY93mA6LsJdg0BA35sItG2LPYv33TWOs89wft_KWLllzY8nom-Eh_UFLJr_ePm35e7jKaNpNBuyNNqnMHb83FU6wXlbBBiLnUD0N7eQEf7CkCOQVONPFAAb1J8crW4L5Rvzu7cEoJB0cRcAwdFaSe9lJdTYUSKlSS88CwVikRpKGvXTfWnKeCHk95kqCRoBqh9o3-R-ILj69Dpdfv6Q1AwZjLZBq4J4rRrKNj14uD2E0TESqhmdqE_ZElo9eCqSMqOJlZRBaJrEU24dBa7vcSUatZty9bfy-6DXPMyAIbZQl_Byr5YKh3YVa95e1ssFcOy2-_6-mM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qFdSDb_HtIB68xCbZxmTBS9EWxbb41ltINhst9CFN2rM_wd_gT_OXOLtJSz0IgpBDEnZDYHZ2v5nd-T6AQ0YxR3SiNMKYFxhlTgGK4oA2RCSZazkhBXOaxLXuNpve8zO_LsDpqBYm44cYJ9yUZ-j5Wjm4SkiXJlhDO_LYVfPrFEyXaRg5RZg-v6091Me7CAR22OiIh8M9a8QsZNqlcecf69EkPtULTG3xf7-2BAs5sMRKNhKWoSC7K7CYg0zMXThZgfkJBkJ6aoxpW5NV-KzgzSBIWljVFYEYdCNsKIqGdNBBJe2ZZXCHEivtl16_lb52UNMLa2bPCJ_oDQbU8uv947aX5nlG9c2o32oHqti5jXfq6ClWs05YI8ycK4ihPr6Aj3ofgdwCJz7xSCG9KvJK1uChVr0_uzByEQdDEHT0DOHGlrRiWY654MITAWOu4q0S3I09R5pmKBmLOV2WsAICR5x6eNJRCiCRwy22DsVurys3ALltm3YQu-aJsGnekaFphW5oxhH3BJe22ISDkSn9t4yrw89YmW2fLOJri2zCkTbd7y38ZqOqb7b-3nQfZi_uG3W_ftm82oY5W4kEK50JZweKaX8gd2FGDNNW0t_Lx-g3tBrtfA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCcGBHbEzQhy4hCZx08QSlwoagWgrdrhFieNApS6oSTnzCXwDn8aXMHbSqhyQkJBySCLbsjQe-43teQ_gkFHMEVeURhjzQqPMKUBRHNCGiCVzLSeiYE6TuNbdZtN7euJXE3AyzIXJ-SFGG27KM_R8rRxcvsZJaYw1tCOPXTW_TsJ02eEVcsvpsxv_vj46RSCww4ZXPBzuWUNmIdMujSr_WI_G8aleYPzF_3VtCRYKYInVfCQsw4TsrsBiATKxcOF0BebHGAjpqzGibU1X4bOK14MwbWFNZwRi2I2xoSgaskEHlbRnvoP7JrHafu71W9lLBzW9sGb2jPGR_mBIJb_eP256WbHPqNqM-612qJKd23irrp5iLa-EPmHmQkEM9fUFfNDnCOQWONbEA4X0KskrXYN7v3Z3em4UIg6GIOjoGcJNLGklspxwwYUnQsZcxVsluJt4jjTNSDKWcHosYYUEjjjV8KSjFEBih1tsHaa6va7cAOS2bdph4poVYdO8IyPTitzITGLuCS5tsQkHQ1MGrzlXR5CzMtsBWSTQFtmEI22630sEzUZNv2z9veg-zF6d-UH9onm5DXO20ghWMhPODkxl_YHchRnxlrXS_l4xRL8BW1Ps9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Quasi+Energy+and+Momentum+Conservative+Algorithm+Implemented+With+a+Co%E2%80%90Rotational+Quadrilateral+Shell+Element+Formulation+Using+Vectorial+Rotational+Variables&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Li%2C+Zhongxue&rft.au=Lin%2C+Xunda&rft.au=Vu%E2%80%90Quoc%2C+Loc&rft.au=Izzuddin%2C+Bassam+A.&rft.date=2025-09-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=126&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fnme.70128&rft.externalDBID=10.1002%252Fnme.70128&rft.externalDocID=NME70128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon