A Quasi Energy and Momentum Conservative Algorithm Implemented With a Co‐Rotational Quadrilateral Shell Element Formulation Using Vectorial Rotational Variables
ABSTRACT This paper proposes a flexible multi‐body dynamics approach for elastic smooth and non‐smooth shells undergoing large deformations and large overall motions. The formulation is based on a co‐rotational curved quadrilateral shell element employing vectorial rotational variables and a quasi e...
Uloženo v:
| Vydáno v: | International journal for numerical methods in engineering Ročník 126; číslo 17 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
John Wiley & Sons, Inc
15.09.2025
|
| ISSN: | 0029-5981, 1097-0207 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | ABSTRACT
This paper proposes a flexible multi‐body dynamics approach for elastic smooth and non‐smooth shells undergoing large deformations and large overall motions. The formulation is based on a co‐rotational curved quadrilateral shell element employing vectorial rotational variables and a quasi energy and momentum conservation algorithm. Hamilton's principle is adopted to derive the system's dynamic differential equations. When differentiating the kinetic energy functional with respect to time, the part involving the first‐order differentiation of vectorial rotational variables with respect to time is integrated into an equivalent load vector, yielding a symmetric equivalent mass matrix. Accelerations, velocities, displacements, body, and surface loads of the generalized midpoints are generated by convex functions. The Newmark scheme is applied to transform the dynamic differential equations of the system into a set of nonlinear equations. Instead of using strains and their first/second derivatives with respect to local nodal variables at the midpoint configuration, the formulation employs time‐averaged assumed strains (computed via the MITC method) and their corresponding derivatives evaluated at both ends of the time step for calculating the internal force vector and element tangent stiffness matrix in the local coordinate system. The transformation matrix from local to global coordinates, however, remains computed at the midpoint configuration. This approach ensures near‐exact conservation of total energy and exact conservation of linear and angular momenta once the external loads vanish, while also yielding symmetric tangent stiffness matrices in both local and global coordinate systems. Finally, four examples of three smooth shells and one non‐smooth shell problems subjected to impulse loads are solved to verify the proposed formulation for flexible multi‐body dynamics of shells. It is shown that the results exhibit excellent agreement with those from other references, demonstrating the reliability, accuracy, and long‐term stability of the proposed quasi energy and momentum conserving algorithm. |
|---|---|
| AbstractList | ABSTRACT
This paper proposes a flexible multi‐body dynamics approach for elastic smooth and non‐smooth shells undergoing large deformations and large overall motions. The formulation is based on a co‐rotational curved quadrilateral shell element employing vectorial rotational variables and a quasi energy and momentum conservation algorithm. Hamilton's principle is adopted to derive the system's dynamic differential equations. When differentiating the kinetic energy functional with respect to time, the part involving the first‐order differentiation of vectorial rotational variables with respect to time is integrated into an equivalent load vector, yielding a symmetric equivalent mass matrix. Accelerations, velocities, displacements, body, and surface loads of the generalized midpoints are generated by convex functions. The Newmark scheme is applied to transform the dynamic differential equations of the system into a set of nonlinear equations. Instead of using strains and their first/second derivatives with respect to local nodal variables at the midpoint configuration, the formulation employs time‐averaged assumed strains (computed via the MITC method) and their corresponding derivatives evaluated at both ends of the time step for calculating the internal force vector and element tangent stiffness matrix in the local coordinate system. The transformation matrix from local to global coordinates, however, remains computed at the midpoint configuration. This approach ensures near‐exact conservation of total energy and exact conservation of linear and angular momenta once the external loads vanish, while also yielding symmetric tangent stiffness matrices in both local and global coordinate systems. Finally, four examples of three smooth shells and one non‐smooth shell problems subjected to impulse loads are solved to verify the proposed formulation for flexible multi‐body dynamics of shells. It is shown that the results exhibit excellent agreement with those from other references, demonstrating the reliability, accuracy, and long‐term stability of the proposed quasi energy and momentum conserving algorithm. This paper proposes a flexible multi‐body dynamics approach for elastic smooth and non‐smooth shells undergoing large deformations and large overall motions. The formulation is based on a co‐rotational curved quadrilateral shell element employing vectorial rotational variables and a quasi energy and momentum conservation algorithm. Hamilton's principle is adopted to derive the system's dynamic differential equations. When differentiating the kinetic energy functional with respect to time, the part involving the first‐order differentiation of vectorial rotational variables with respect to time is integrated into an equivalent load vector, yielding a symmetric equivalent mass matrix. Accelerations, velocities, displacements, body, and surface loads of the generalized midpoints are generated by convex functions. The Newmark scheme is applied to transform the dynamic differential equations of the system into a set of nonlinear equations. Instead of using strains and their first/second derivatives with respect to local nodal variables at the midpoint configuration, the formulation employs time‐averaged assumed strains (computed via the MITC method) and their corresponding derivatives evaluated at both ends of the time step for calculating the internal force vector and element tangent stiffness matrix in the local coordinate system. The transformation matrix from local to global coordinates, however, remains computed at the midpoint configuration. This approach ensures near‐exact conservation of total energy and exact conservation of linear and angular momenta once the external loads vanish, while also yielding symmetric tangent stiffness matrices in both local and global coordinate systems. Finally, four examples of three smooth shells and one non‐smooth shell problems subjected to impulse loads are solved to verify the proposed formulation for flexible multi‐body dynamics of shells. It is shown that the results exhibit excellent agreement with those from other references, demonstrating the reliability, accuracy, and long‐term stability of the proposed quasi energy and momentum conserving algorithm. |
| Author | Qian, Hongtao Lin, Xunda Izzuddin, Bassam A. Wei, Haoyan Xu, Jin Zhuo, Xin Li, Zhongxue Vu‐Quoc, Loc |
| Author_xml | – sequence: 1 givenname: Zhongxue orcidid: 0000-0001-8688-2099 surname: Li fullname: Li, Zhongxue email: lizx19993@zju.edu.cn organization: Zhejiang University – sequence: 2 givenname: Xunda surname: Lin fullname: Lin, Xunda organization: Zhejiang University – sequence: 3 givenname: Loc surname: Vu‐Quoc fullname: Vu‐Quoc, Loc organization: University of Illinois at Urbana‐Champaign – sequence: 4 givenname: Bassam A. orcidid: 0000-0001-5746-463X surname: Izzuddin fullname: Izzuddin, Bassam A. organization: Imperial College London – sequence: 5 givenname: Haoyan surname: Wei fullname: Wei, Haoyan organization: ANSYS Inc – sequence: 6 givenname: Jin surname: Xu fullname: Xu, Jin organization: Altair Engineering Inc – sequence: 7 givenname: Hongtao surname: Qian fullname: Qian, Hongtao organization: Zhejiang University – sequence: 8 givenname: Xin surname: Zhuo fullname: Zhuo, Xin organization: Zhejiang University |
| BookMark | eNp1kM1OAjEUhRuDiYAufINuXQy0U8dOl4SAkoDGH3A5KZ07MKbTknbAsPMRfAYfzSexMC7cmNzk5p77nbM4HdQy1gBCl5T0KCFx31TQ44TG6QlqUyJ4RGLCW6gdfiJKRErPUMf7N0IoTQhro68BftxKX-KRAbfaY2lyPLMVmHpb4aE1HtxO1uUO8ECvrCvrdYUn1UbDAYEcvwYFy0B-f3w-2Tqg1kh9yMxdqWUNLlzPa9AajxoTHltXbfWRxHNfmhVegKpDdiD_RCxkUJYa_Dk6LaT2cPG7u2g-Hr0M76Lpw-1kOJhGKmY0jRQvKNACrguhhEqVZIyHAqgSvEgTIGQJjBUiDFVUCn4jgiOFJOYpyxNBWRddNbnKWe8dFNnGlZV0-4yS7FBuFsrNjuUGtt-w76WG_f9gdj8bNY4fgk2B6Q |
| Cites_doi | 10.1007/BF00913408 10.1023/A:1021109015553 10.1016/0045-7825(88)90073-4 10.1002/nme.4681 10.1002/nme.1620380903 10.1002/nme.4975 10.1007/978-3-319-94911-6_4 10.1061/JMCEA3.0000098 10.1016/j.cma.2019.112701 10.1115/1.3423721 10.1007/s00466-023-02438-0 10.1002/nme.3084 10.1007/s11012-024-01799-x 10.1016/j.cja.2020.09.038 10.1002/nme.7605 10.1002/nme.7451 10.1007/s42967‐025‐00476‐4 10.1016/S0045-7825(02)00336-5 10.1002/nme.7611 10.1016/0045-7825(95)00963-9 10.1016/0168-874X(95)00024-2 10.1007/BF01833292 10.1016/j.cma.2015.06.016 10.1016/S0045-7825(02)00243-8 10.1016/j.cma.2024.116970 10.1016/j.cma.2023.116050 10.1016/S0045-7825(96)01161-9 10.1002/nme.1620381605 10.1016/j.cma.2020.113625 10.1016/j.cma.2004.10.008 10.1002/nme.1415 10.1007/s11431-012-5002-7 10.1016/j.cma.2024.117258 10.1002/(SICI)1097-0207(19980615)42:3<409::AID-NME363>3.0.CO;2-B 10.1002/nme.1620371503 10.1002/nme.5936 10.1016/S0045-7825(99)00024-9 10.2514/1.J063821 10.1002/nme.463 10.1016/S0045-7949(02)00034-2 10.1016/0045-7825(92)90115-Z 10.1002/nme.4668 10.1016/j.cma.2014.05.005 10.1002/cnm.1208 10.2514/3.20255 10.1016/j.cma.2009.05.011 10.1016/S0045-7949(02)00053-6 10.1002/nme.4978 10.1007/s00466-011-0584-7 10.1016/j.camwa.2024.09.025 10.1016/j.cma.2022.114776 10.1016/S0045-7825(98)00031-0 10.1002/nme.4471 10.1002/nme.2064 10.1002/(SICI)1097-0207(19990620)45:5<569::AID-NME595>3.0.CO;2-A 10.1016/0045-7825(96)01009-2 10.1016/j.cma.2025.117893 10.1007/s00466-019-01775-3 10.1007/s00466-008-0289-8 10.1115/1.3424303 10.1090/S0025-5718-07-01998-9 10.1016/j.tws.2017.05.001 10.1016/j.cma.2021.113843 10.1108/02644409810225715 10.1016/j.compstruc.2015.12.007 10.1016/j.compstruct.2021.115083 10.1007/s00707-020-02884-4 10.1002/nme.1620340108 10.1007/s00466-020-01936-9 10.1002/nme.5217 10.1016/j.tws.2018.08.010 10.2514/1.J053147 10.1061/(ASCE)0733-9399(2005)131:1(12) 10.1007/BF02736211 10.1002/nme.95 10.1002/nme.535 10.1051/m2an/2013138 10.1016/S0045-7949(02)00483-2 10.1002/(SICI)1097-0207(20000110/30)47:1/3<101::AID-NME763>3.0.CO;2-C 10.1016/j.cma.2004.07.035 10.1007/s00466-015-1138-1 10.1016/j.jcp.2020.109235 |
| ContentType | Journal Article |
| Copyright | 2025 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION |
| DOI | 10.1002/nme.70128 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Mathematics |
| EISSN | 1097-0207 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_nme_70128 NME70128 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 11672266 |
| GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX CITATION O8X |
| ID | FETCH-LOGICAL-c2318-c7f1e1fe4f9c9c8ca3370971c97f85e00be33f93f91c1a9769c7f8e52783d5913 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001574604300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-5981 |
| IngestDate | Sat Nov 29 07:01:51 EST 2025 Fri Sep 12 09:20:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2318-c7f1e1fe4f9c9c8ca3370971c97f85e00be33f93f91c1a9769c7f8e52783d5913 |
| Notes | Funding This work was supported by the National Natural Science Foundation of China (11672266). |
| ORCID | 0000-0001-8688-2099 0000-0001-5746-463X |
| PageCount | 32 |
| ParticipantIDs | crossref_primary_10_1002_nme_70128 wiley_primary_10_1002_nme_70128_NME70128 |
| PublicationCentury | 2000 |
| PublicationDate | 15 September 2025 2025-09-15 |
| PublicationDateYYYYMMDD | 2025-09-15 |
| PublicationDate_xml | – month: 09 year: 2025 text: 15 September 2025 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA |
| PublicationTitle | International journal for numerical methods in engineering |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2007; 39 2001; 50 2021; 67 2002; 191 2005; 131 2000; 47 2020; 360 1995; 38 2016; 108 2024; 426 2002; 54 2000; 7 2002; 55 2009; 198 1999; 45 2005; 64 2024; 74 2003; 192 2016; 105 2007; 72 2025 2024 2007; 76 2025; 439 2012; 55 1998; 42 1996; 34 2020; 407 2017; 118 2015; 295 1998; 15 2025; 126 2018; 132 2022; 284 2010; 26 2021; 34 2013; 95 1997; 143 1995; 21 2010; 199 2023; 411 1975; 42 2014; 282 1994; 37 2024; 431 2021; 232 1999; 178 1992; 43 1996; 136 1996; 9 2010; 6 2014; 99 2025; 63 1998; 164 2014; 98 1959; 85 2005; 194 2022; 393 1987; 10 2003; 81 2024; 126 1992; 100 2015; 53 2015; 55 2002; 8 2014; 48 2021; 381 2016; 165 2002; 80 2024; 125 1995; 2 2024; 59 1992; 34 2023; 61 1978; 45 2018; 116 2011; 86 1988; 66 2024; 174 2021; 375 2011; 48 2008; 42 2020; 65 2018; 2219 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 Stolarski H. (e_1_2_10_10_1) 1995; 2 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_78_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_80_1 e_1_2_10_82_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Li Z. X. (e_1_2_10_23_1) 2010; 6 Li Z. X. (e_1_2_10_24_1) 2007; 39 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_83_1 e_1_2_10_64_1 Guo Y. J. (e_1_2_10_66_1) 2023; 61 Betsch P. (e_1_2_10_81_1) 2009; 198 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 e_1_2_10_89_1 |
| References_xml | – volume: 38 start-page: 2727 issue: 16 year: 1995 end-page: 2751 article-title: Numerical‐Integration of Nonlinear Elastic Multibody Systems publication-title: International Journal for Numerical Methods in Engineering – volume: 26 start-page: 1188 issue: 9 year: 2010 end-page: 1202 article-title: Discrepancies of Energy Values in Dynamics of Three Intersecting Plates publication-title: International Journal for Numerical Methods in Biomedical Engineering – volume: 53 start-page: 663 issue: 3 year: 2015 end-page: 677 article-title: Corotational Nonlinear Dynamic Analysis of Thin‐Shell Structures With Finite Rotations publication-title: AIAA Journal – volume: 50 start-page: 1801 issue: 8 year: 2001 end-page: 1823 article-title: Energy and Momentum Conserving Elasto‐Dynamics of a Non‐Linear Brick‐Type Mixed Finite Shell Element publication-title: International Journal for Numerical Methods in Engineering – volume: 9 start-page: 37 issue: 1–2 year: 1996 end-page: 52 article-title: An Energy Conserving Co‐Rotational Procedure for Non‐Linear Dynamics With Finite Elements publication-title: Nonlinear Dynamics – volume: 232 start-page: 1515 issue: 4 year: 2021 end-page: 1542 article-title: A Co‐Rotational Triangular Finite Element for Large Deformation Analysis of Smooth, Folded and Multi‐Shells publication-title: Acta Mechanica – volume: 375 year: 2021 article-title: Energy‐Decaying and Momentum‐Conserving Schemes for Transient Simulations With Mixed Finite Elements publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 194 start-page: 4135 issue: 39–41 year: 2005 end-page: 4195 article-title: Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 165 start-page: 96 year: 2016 end-page: 106 article-title: A Quadrature Element Formulation of an Energy‐Momentum Conserving Algorithm for Dynamic Analysis of Geometrically Exact Beams publication-title: Computers & Structures – volume: 100 start-page: 63 issue: 1 year: 1992 end-page: 116 article-title: Exact Energy‐Momentum Conserving Algorithms and Symplectic Schemes for Nonlinear Dynamics publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 80 start-page: 871 issue: 9–10 year: 2002 end-page: 889 article-title: Time Integrators for Shells in Multibody Dynamics publication-title: Computers & Structures – year: 2024 – volume: 45 start-page: 569 issue: 5 year: 1999 end-page: 599 article-title: Energy‐Conserving and Decaying Algorithms in Non‐Linear Structural Dynamics publication-title: International Journal for Numerical Methods in Engineering – volume: 199 start-page: 276 issue: 5–8 year: 2010 end-page: 289 article-title: Isogeometric Shell Analysis: The Reissner‐ Mindlin Shell publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 295 start-page: 39 year: 2015 end-page: 55 article-title: Conservative Fourth‐Order Time Integration of Non‐Linear Dynamic Systems publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 178 start-page: 343 issue: 3–4 year: 1999 end-page: 366 article-title: Generalized Energy‐Momentum Method for Non‐Linear Adaptive Shell Dynamics publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 8 start-page: 459 issue: 4 year: 2002 end-page: 489 article-title: On the Modeling of Shells in Multibody Dynamics publication-title: Multibody System Dynamics – volume: 38 start-page: 1431 issue: 9 year: 1995 end-page: 1473 article-title: Nonlinear Dynamics of 3‐Dimensional Rods ‐ Exact Energy and Momentum Conserving Algorithms publication-title: International Journal for Numerical Methods in Engineering – volume: 284 year: 2022 article-title: Static and Dynamic NURBS‐Based Isogeometric Analysis of Composite Plates Under Hygrothermal Environment publication-title: Composite Structures – volume: 125 issue: 12 year: 2024 article-title: An Efficient Shear and Bending‐Locking‐Free Quadrilateral Plate Element Using a Modified Hellinger‐Reissner Functional and the Bergan Free Formulation publication-title: International Journal for Numerical Methods in Engineering – volume: 282 start-page: 132 year: 2014 end-page: 160 article-title: On the Virtual Element Method for Three‐Dimensional Linear Elasticity Problems on Arbitrary Polyhedral Meshes publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 116 start-page: 570 issue: 8 year: 2018 end-page: 600 article-title: A 9‐Node Co‐Rotational Curved Quadrilateral Shell Element for Smooth, Folded and Multi‐Shell Structures publication-title: International Journal for Numerical Methods in Engineering – volume: 55 start-page: 837 issue: 5 year: 2015 end-page: 859 article-title: A 6‐Node Co‐Rotational Triangular Elasto‐Plastic Shell Element publication-title: Computational Mechanics – volume: 67 start-page: 341 issue: 1 year: 2021 end-page: 364 article-title: An Energy‐Momentum Conserving Scheme for Geometrically Exact Shells With Drilling DOFs publication-title: Computational Mechanics – volume: 66 start-page: 125 year: 1988 end-page: 161 article-title: On the Dynamics in Space of Rods Undergoing Large Motions ‐ A Geometrically Exact Approach publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 118 start-page: 56 year: 2017 end-page: 72 article-title: On the Nonlinear Dynamics of Shell Structures: Combining a Mixed Finite Element Formulation and a Robust Integration Scheme publication-title: Thin‐Walled Structures – volume: 407 year: 2020 article-title: Virtual Element Method for the Numerical Simulation of Long‐Term Dynamics of Transitional Environments publication-title: Journal of Computational Physics – volume: 59 start-page: 1351 issue: 8 year: 2024 end-page: 1368 article-title: A Geometrically Nonlinear Hellinger‐Reissner Shell Element for the Postbuckling Analysis of Variable Stiffness Composite Laminate Structures publication-title: Meccanica – volume: 2219 start-page: 237 year: 2018 end-page: 315 – volume: 81 start-page: 477 year: 2003 end-page: 489 article-title: Towards Improving the MITC9 Shell Element publication-title: Computers & Structures – volume: 55 start-page: 3311 issue: 12 year: 2012 end-page: 3321 article-title: Energy Conserving and Decaying Algorithms for Corotational Finite Element Nonlinear Dynamic Responses of Thin Shells publication-title: Science China Technological Sciences – volume: 6 start-page: 767 issue: 2 year: 2010 end-page: 787 article-title: A Mixed Co‐Rotational 3D Beam Element Formulation for Arbitrarily Large Rotations publication-title: Advanced Steel Construction – volume: 2 start-page: 125 year: 1995 end-page: 212 article-title: A Review of Shell Finite Elements and Corotational Theories publication-title: Computational Mechanics Advances – volume: 42 start-page: 873 issue: 6 year: 2008 end-page: 884 article-title: A 9‐Node Co‐Rotational Quadrilateral Shell Element publication-title: Computational Mechanics – volume: 191 start-page: 3099 issue: 27–28 year: 2002 end-page: 3121 article-title: An Energy Decaying Scheme for Nonlinear Dynamics of Shells publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 15 start-page: 552 issue: 5 year: 1998 end-page: 576 article-title: An Energy‐Conserving Co‐Rotational Procedure for the Dynamics of Shell Structures publication-title: Engineering Computations – volume: 64 start-page: 1350 year: 2005 end-page: 1374 article-title: An Enhanced Co‐Rotational Approach for Large Displacement Analysis of Plates publication-title: International Journal for Numerical Methods in Engineering – volume: 43 start-page: 757 issue: 5 year: 1992 end-page: 792 article-title: The Discrete Energy‐Momentum Method. Conserving Algorithms for Nonlinear Elastodynamics publication-title: Zeitschrift für Angewandte Mathematik und Physik – volume: 48 start-page: 1227 issue: 4 year: 2014 end-page: 1240 article-title: Basic Principles of Mixed Virtual Element Methods publication-title: ESAIM. Mathematical Modelling and Numerical Analysis – volume: 10 start-page: 549 year: 1987 end-page: 558 article-title: Dynamics of Earth‐Orbiting Flexible Satellites With Multibody Components publication-title: Journal of Guidance, Control, and Dynamics – volume: 105 start-page: 286 year: 2016 end-page: 320 article-title: Bisector and Zero‐Macrospin Co‐Rotational Systems for Shell Elements publication-title: International Journal for Numerical Methods in Engineering – volume: 54 start-page: 1043 issue: 7 year: 2002 end-page: 1086 article-title: Numerical Integration of the Stiff Dynamics of Geometrically Exact Shells: An Energy‐Dissipative Momentum‐Conserving Scheme publication-title: International Journal for Numerical Methods in Engineering – volume: 55 start-page: 853 issue: 7 year: 2002 end-page: 878 article-title: An Eight‐Node Hybrid‐Stress Solid‐Shell Element for Geometric Non‐Linear Analysis of Elastic Shells publication-title: International Journal for Numerical Methods in Engineering – volume: 74 start-page: 393 issue: 2 year: 2024 end-page: 415 article-title: A Hu‐Washizu Variational Approach to Self‐Stabilized Quadrilateral Virtual Elements: 2D Linear Elastodynamics publication-title: Computational Mechanics – volume: 174 start-page: 431 year: 2024 end-page: 448 article-title: Mixed Virtual Element Methods for the Poro‐Elastodynamics Model on Polygonal Grids publication-title: Computers & Mathematics With Applications – volume: 80 start-page: 677 issue: 7–8 year: 2002 end-page: 689 article-title: An Energy Conserving Non‐Linear Dynamic Finite Element Formulation for Flexible Composite Laminates publication-title: Computers & Structures – volume: 99 start-page: 547 issue: 8 year: 2014 end-page: 565 article-title: A Time‐Marching Collocation Method Based on Quintic Hermite Polynomials and Adjustable Acceleration and Jerk Constraints publication-title: International Journal for Numerical Methods in Engineering – volume: 42 start-page: 865 issue: 4 year: 1975 end-page: 869 article-title: On the Unconditional Stability of an Implicit Algorithm for Nonlinear Structural Dynamics publication-title: Journal of Applied Mechanics – volume: 194 start-page: 2285 year: 2005 end-page: 2335 article-title: A Unified Formulation of Small‐Strain Corotational Finite Elements: I. Theory publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 34 start-page: 197 issue: 3–4 year: 1996 end-page: 222 article-title: On the Stability of Symplectic and Energy‐Momentum Algorithms for Non‐Linear Hamiltonian Systems With Symmetry publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 360 year: 2020 article-title: A High‐Precision Co‐Rotational Formulation of 3D Beam Elements for Dynamic Analysis of Flexible Multibody Systems publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 45 start-page: 366 issue: 2 year: 1978 end-page: 370 article-title: Finite‐Element Methods for Non‐Linear Elastodynamics Which Conserve Energy publication-title: Journal of Applied Mechanics – volume: 126 issue: 1 year: 2024 article-title: Arbitrary Order Virtual Element Methods for High‐Order Phase‐Field Modeling of Dynamic Fracture publication-title: International Journal for Numerical Methods in Engineering – volume: 192 start-page: 1017 issue: 9–10 year: 2003 end-page: 1059 article-title: Optimal Solid Shells for Non‐Linear Analyses of Multilayer Composites. II. Dynamics publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 381 year: 2021 article-title: Symplectic Hamiltonian Finite Element Methods for Linear Elastodynamics publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 164 start-page: 307 issue: 3–4 year: 1998 end-page: 331 article-title: Integrating Finite Rotations publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 72 start-page: 1029 issue: 9 year: 2007 end-page: 1062 article-title: An Efficient Co‐Rotational Formulation for Curved Triangular Shell Element publication-title: International Journal for Numerical Methods in Engineering – volume: 105 start-page: 483 issue: 7 year: 2016 end-page: 513 article-title: Degenerated Shell Element With Composite Implicit Time Integration Scheme for Geometric Nonlinear Analysis publication-title: International Journal for Numerical Methods in Engineering – year: 2025 article-title: On the Superconvergence of a Conforming Mixed Finite Element for Linear Elasticity on Uniform n‐Square Grids publication-title: Communications on Applied Mathematics and Computation – volume: 63 start-page: 274 issue: 1 year: 2025 end-page: 291 article-title: Modeling Challenges and Limitation Principles of Reissner's Mixed Approaches to Laminates publication-title: AIAA Journal – volume: 136 start-page: 293 issue: 3–4 year: 1996 end-page: 315 article-title: Constraint Energy Momentum Algorithm and Its Application to Non‐Linear Dynamics of Shells publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 76 start-page: 1699 issue: 260 year: 2007 end-page: 1723 article-title: Mixed Finite Element Methods for Linear Elasticity With Weakly Imposed Symmetry publication-title: Mathematics of Computation – volume: 34 start-page: 266 issue: 1 year: 2021 end-page: 280 article-title: Dynamic Analysis of the Composite Laminated Repaired Perforated Plates by Using Multi‐Patch IGA Method publication-title: Chinese Journal of Aeronautics – volume: 42 start-page: 409 year: 1998 end-page: 442 article-title: On Non‐Linear Dynamics of Shells: Implementation of Energy‐Momentum Conserving Algorithm for a Finite Rotation Shell Model publication-title: International Journal for Numerical Methods in Engineering – volume: 132 start-page: 682 year: 2018 end-page: 699 article-title: Simulation of Shell Buckling by Implicit Dynamics and Numerically Dissipative Schemes publication-title: Thin‐Walled Structures – volume: 411 year: 2023 article-title: Virtual Element Method for Phase Field Modeling of Dynamic Fracture publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 426 year: 2024 article-title: A Hybrid Virtual Element Formulation for 2D Elasticity Problems publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 39 start-page: 293 issue: 3 year: 2007 end-page: 308 article-title: A Co‐Rotational Formulation for 3D Beam Element Using Vectorial Rotational Variables publication-title: Computational Mechanics – volume: 431 year: 2024 article-title: High‐Order 3D Virtual Element Method for Linear and Nonlinear Elasticity publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 21 start-page: 5 issue: 1–2 year: 1995 end-page: 20 article-title: State‐Of‐The‐Art Development of Hybrid Mixed Finite‐Element Method publication-title: Finite Elements in Analysis and Design – volume: 143 start-page: 393 issue: 3–4 year: 1997 end-page: 415 article-title: Energy Preserving/Decaying Schemes for Non‐Linear Beam Dynamics Using the Helicoidal Approximation publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 108 start-page: 423 issue: 5 year: 2016 end-page: 455 article-title: An Energy‐Momentum Consistent Method for Transient Simulations With Mixed Finite Elements Developed in the Framework of Geometrically Exact Shells publication-title: International Journal for Numerical Methods in Engineering – volume: 439 year: 2025 article-title: Explicit Dual‐Mesh Virtual Element Method for 2D Nonlinear Dynamic Problems publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 131 start-page: 12 issue: 1 year: 2005 end-page: 22 article-title: Energy‐Momentum Conserving Algorithm for Nonlinear Dynamics of Laminated Shells Based on a Third‐Order Shear Deformation Theory publication-title: Journal of Engineering Mechanics – volume: 48 start-page: 195 issue: 2 year: 2011 end-page: 211 article-title: An Exact Conserving Algorithm for Nonlinear Dynamics With Rotational DOFs and General Hyperelasticity. Part 2: Shells publication-title: Computational Mechanics – volume: 198 start-page: 1609 year: 2009 end-page: 1630 article-title: On the Use of Geometrically Exact Shells in a Conserving Framework for Flexible Multibody Dynamics publication-title: International Journal for Numerical Methods in Engineering – volume: 98 start-page: 625 issue: 9 year: 2014 end-page: 662 article-title: Dimensional Reduction of Nonlinear Finite Element Dynamic Models With Finite Rotations and Energy‐Based Mesh Sampling and Weighting for Computational Efficiency publication-title: International Journal for Numerical Methods in Engineering – volume: 61 start-page: 5620 issue: 12 year: 2023 end-page: 5634 article-title: Isogeometric Dynamic Buckling Analysis of Trimmed and Multipatch Thin‐Shell Structures publication-title: AIAA Journal – volume: 393 year: 2022 article-title: Unconditional Stability in Large Deformation Dynamic Analysis of Elastic Structures With Arbitrary Nonlinear Strain Measure and Multi‐Body Coupling publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 34 start-page: 117 issue: 1 year: 1992 end-page: 164 article-title: On a Stress Resultant Geometrically Exact Shell‐Model. Part VI: Conserving Algorithms for Nonlinear Dynamics publication-title: International Journal for Numerical Methods in Engineering – volume: 95 start-page: 181 issue: 3 year: 2013 end-page: 211 article-title: A 4‐Node Co‐Rotational Quadrilateral Elasto‐Plastic Shell Element Using Vectorial Rotational Variables publication-title: International Journal for Numerical Methods in Engineering – volume: 47 start-page: 101 year: 2000 end-page: 127 article-title: A Survey of Recent Shell Finite Elements publication-title: International Journal for Numerical Methods in Engineering – volume: 85 start-page: 67 issue: 3 year: 1959 end-page: 94 article-title: A Method of Computation for Structural Dynamics publication-title: Journal of the Engineering Mechanics Division, ASCE – volume: 7 start-page: 299 issue: 3 year: 2000 end-page: 332 article-title: Time Integration in the Context of Energy Control and Locking Free Finite Elements publication-title: Archives of Computational Methods in Engineering – volume: 65 start-page: 405 year: 2020 end-page: 427 article-title: A New Conservative/Dissipative Time Integration Scheme for Nonlinear Mechanical Systems publication-title: Computational Mechanics – volume: 126 issue: 1 year: 2025 article-title: An Energy‐Conserving Time Integration Scheme for Nonlinear Dynamics Analysis of Geometrically Exact 3D Euler‐Bernoulli Beams publication-title: International Journal for Numerical Methods in Engineering – volume: 37 start-page: 2527 issue: 15 year: 1994 end-page: 2549 article-title: A New Energy and Momentum Conserving Algorithm for the Non‐Linear Dynamics of Shells publication-title: International Journal for Numerical Methods in Engineering – volume: 86 start-page: 975 issue: 8 year: 2011 end-page: 999 article-title: A Stabilized Co‐Rotational Curved Quadrilateral Composite Shell Element publication-title: International Journal for Numerical Methods in Engineering – ident: e_1_2_10_4_1 doi: 10.1007/BF00913408 – ident: e_1_2_10_46_1 doi: 10.1023/A:1021109015553 – ident: e_1_2_10_52_1 doi: 10.1016/0045-7825(88)90073-4 – volume: 61 start-page: 5620 issue: 12 year: 2023 ident: e_1_2_10_66_1 article-title: Isogeometric Dynamic Buckling Analysis of Trimmed and Multipatch Thin‐Shell Structures publication-title: AIAA Journal – ident: e_1_2_10_33_1 doi: 10.1002/nme.4681 – ident: e_1_2_10_32_1 doi: 10.1002/nme.1620380903 – ident: e_1_2_10_83_1 doi: 10.1002/nme.4975 – ident: e_1_2_10_65_1 doi: 10.1007/978-3-319-94911-6_4 – ident: e_1_2_10_80_1 doi: 10.1061/JMCEA3.0000098 – ident: e_1_2_10_16_1 doi: 10.1016/j.cma.2019.112701 – ident: e_1_2_10_35_1 doi: 10.1115/1.3423721 – ident: e_1_2_10_72_1 doi: 10.1007/s00466-023-02438-0 – ident: e_1_2_10_19_1 doi: 10.1002/nme.3084 – ident: e_1_2_10_57_1 doi: 10.1007/s11012-024-01799-x – ident: e_1_2_10_68_1 doi: 10.1016/j.cja.2020.09.038 – ident: e_1_2_10_77_1 doi: 10.1002/nme.7605 – volume: 198 start-page: 1609 year: 2009 ident: e_1_2_10_81_1 article-title: On the Use of Geometrically Exact Shells in a Conserving Framework for Flexible Multibody Dynamics publication-title: International Journal for Numerical Methods in Engineering – ident: e_1_2_10_89_1 – ident: e_1_2_10_59_1 doi: 10.1002/nme.7451 – ident: e_1_2_10_56_1 doi: 10.1007/s42967‐025‐00476‐4 – ident: e_1_2_10_85_1 doi: 10.1016/S0045-7825(02)00336-5 – ident: e_1_2_10_15_1 doi: 10.1002/nme.7611 – ident: e_1_2_10_48_1 doi: 10.1016/0045-7825(95)00963-9 – ident: e_1_2_10_62_1 doi: 10.1016/0168-874X(95)00024-2 – ident: e_1_2_10_12_1 doi: 10.1007/BF01833292 – ident: e_1_2_10_37_1 doi: 10.1016/j.cma.2015.06.016 – ident: e_1_2_10_34_1 doi: 10.1016/S0045-7825(02)00243-8 – ident: e_1_2_10_73_1 doi: 10.1016/j.cma.2024.116970 – ident: e_1_2_10_78_1 doi: 10.1016/j.cma.2023.116050 – ident: e_1_2_10_47_1 doi: 10.1016/S0045-7825(96)01161-9 – ident: e_1_2_10_42_1 doi: 10.1002/nme.1620381605 – ident: e_1_2_10_29_1 doi: 10.1016/j.cma.2020.113625 – ident: e_1_2_10_63_1 doi: 10.1016/j.cma.2004.10.008 – ident: e_1_2_10_7_1 doi: 10.1002/nme.1415 – ident: e_1_2_10_14_1 doi: 10.1007/s11431-012-5002-7 – ident: e_1_2_10_71_1 doi: 10.1016/j.cma.2024.117258 – ident: e_1_2_10_82_1 doi: 10.1002/(SICI)1097-0207(19980615)42:3<409::AID-NME363>3.0.CO;2-B – ident: e_1_2_10_5_1 doi: 10.1002/nme.1620371503 – ident: e_1_2_10_2_1 doi: 10.1002/nme.5936 – ident: e_1_2_10_41_1 doi: 10.1016/S0045-7825(99)00024-9 – ident: e_1_2_10_58_1 doi: 10.2514/1.J063821 – ident: e_1_2_10_45_1 doi: 10.1002/nme.463 – ident: e_1_2_10_40_1 doi: 10.1016/S0045-7949(02)00034-2 – ident: e_1_2_10_50_1 doi: 10.1016/0045-7825(92)90115-Z – ident: e_1_2_10_70_1 doi: 10.1002/nme.4668 – ident: e_1_2_10_69_1 doi: 10.1016/j.cma.2014.05.005 – ident: e_1_2_10_86_1 doi: 10.1002/cnm.1208 – ident: e_1_2_10_53_1 doi: 10.2514/3.20255 – ident: e_1_2_10_64_1 doi: 10.1016/j.cma.2009.05.011 – ident: e_1_2_10_44_1 doi: 10.1016/S0045-7949(02)00053-6 – ident: e_1_2_10_8_1 doi: 10.1002/nme.4978 – ident: e_1_2_10_55_1 doi: 10.1007/s00466-011-0584-7 – ident: e_1_2_10_79_1 doi: 10.1016/j.camwa.2024.09.025 – ident: e_1_2_10_25_1 doi: 10.1016/j.cma.2022.114776 – ident: e_1_2_10_31_1 doi: 10.1016/S0045-7825(98)00031-0 – ident: e_1_2_10_20_1 doi: 10.1002/nme.4471 – ident: e_1_2_10_21_1 doi: 10.1002/nme.2064 – ident: e_1_2_10_49_1 doi: 10.1002/(SICI)1097-0207(19990620)45:5<569::AID-NME595>3.0.CO;2-A – ident: e_1_2_10_36_1 doi: 10.1016/0045-7825(96)01009-2 – ident: e_1_2_10_76_1 doi: 10.1016/j.cma.2025.117893 – ident: e_1_2_10_28_1 doi: 10.1007/s00466-019-01775-3 – ident: e_1_2_10_17_1 doi: 10.1007/s00466-008-0289-8 – ident: e_1_2_10_38_1 doi: 10.1115/1.3424303 – ident: e_1_2_10_60_1 doi: 10.1090/S0025-5718-07-01998-9 – ident: e_1_2_10_88_1 doi: 10.1016/j.tws.2017.05.001 – ident: e_1_2_10_26_1 doi: 10.1016/j.cma.2021.113843 – ident: e_1_2_10_13_1 doi: 10.1108/02644409810225715 – ident: e_1_2_10_30_1 doi: 10.1016/j.compstruc.2015.12.007 – ident: e_1_2_10_67_1 doi: 10.1016/j.compstruct.2021.115083 – ident: e_1_2_10_22_1 doi: 10.1007/s00707-020-02884-4 – ident: e_1_2_10_51_1 doi: 10.1002/nme.1620340108 – ident: e_1_2_10_27_1 doi: 10.1007/s00466-020-01936-9 – ident: e_1_2_10_54_1 doi: 10.1002/nme.5217 – ident: e_1_2_10_43_1 doi: 10.1016/j.tws.2018.08.010 – ident: e_1_2_10_84_1 doi: 10.2514/1.J053147 – ident: e_1_2_10_39_1 doi: 10.1061/(ASCE)0733-9399(2005)131:1(12) – ident: e_1_2_10_3_1 doi: 10.1007/BF02736211 – ident: e_1_2_10_87_1 doi: 10.1002/nme.95 – ident: e_1_2_10_61_1 doi: 10.1002/nme.535 – volume: 6 start-page: 767 issue: 2 year: 2010 ident: e_1_2_10_23_1 article-title: A Mixed Co‐Rotational 3D Beam Element Formulation for Arbitrarily Large Rotations publication-title: Advanced Steel Construction – ident: e_1_2_10_74_1 doi: 10.1051/m2an/2013138 – ident: e_1_2_10_6_1 doi: 10.1016/S0045-7949(02)00483-2 – volume: 39 start-page: 293 issue: 3 year: 2007 ident: e_1_2_10_24_1 article-title: A Co‐Rotational Formulation for 3D Beam Element Using Vectorial Rotational Variables publication-title: Computational Mechanics – ident: e_1_2_10_9_1 doi: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<101::AID-NME763>3.0.CO;2-C – volume: 2 start-page: 125 year: 1995 ident: e_1_2_10_10_1 article-title: A Review of Shell Finite Elements and Corotational Theories publication-title: Computational Mechanics Advances – ident: e_1_2_10_11_1 doi: 10.1016/j.cma.2004.07.035 – ident: e_1_2_10_18_1 doi: 10.1007/s00466-015-1138-1 – ident: e_1_2_10_75_1 doi: 10.1016/j.jcp.2020.109235 |
| SSID | ssj0011503 |
| Score | 2.4728756 |
| Snippet | ABSTRACT
This paper proposes a flexible multi‐body dynamics approach for elastic smooth and non‐smooth shells undergoing large deformations and large overall... This paper proposes a flexible multi‐body dynamics approach for elastic smooth and non‐smooth shells undergoing large deformations and large overall motions.... |
| SourceID | crossref wiley |
| SourceType | Index Database Publisher |
| Title | A Quasi Energy and Momentum Conservative Algorithm Implemented With a Co‐Rotational Quadrilateral Shell Element Formulation Using Vectorial Rotational Variables |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.70128 |
| Volume | 126 |
| WOSCitedRecordID | wos001574604300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1097-0207 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011503 issn: 0029-5981 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1B4QAHdsSuEeLAJZDYDYnFqYJWHGjFDrfIcRyo1AU1KWc-gW_g0_gSxk5alQMSElIOSWRblsZjv7E97wEccIo5khOjEcZD6VQFBSiGA9pRieaB58cUzFkS18ug1QqfnsTVFJyOcmEKfojxhpvxDDtfGweXcXY8QRra1UeBmV6nYYbRuK1WYOb8pnF_OT5EIKzDRzc8fBF6I2Ihlx2PK_9YjibhqV1fGov_6tkSLJSwEmvFOFiGKd1bgcUSYmLpwNkKzE_wD9JXc0zamq3CZw2vhzJrY93mA6LsJdg0BA35sItG2LPYv33TWOs89wft_KWLllzY8nom-Eh_UFLJr_ePm35e7jKaNpNBuyNNqnMHb83FU6wXlbBBiLnUD0N7eQEf7CkCOQVONPFAAb1J8crW4L5Rvzu7cEoJB0cRcAwdFaSe9lJdTYUSKlSS88CwVikRpKGvXTfWnKeCHk95kqCRoBqh9o3-R-ILj69Dpdfv6Q1AwZjLZBq4J4rRrKNj14uD2E0TESqhmdqE_ZElo9eCqSMqOJlZRBaJrEU24dBa7vcSUatZty9bfy-6DXPMyAIbZQl_Byr5YKh3YVa95e1ssFcOy2-_6-mM |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qFdSDb_HtIB68xCbZxmTBS9EWxbb41ltINhst9CFN2rM_wd_gT_OXOLtJSz0IgpBDEnZDYHZ2v5nd-T6AQ0YxR3SiNMKYFxhlTgGK4oA2RCSZazkhBXOaxLXuNpve8zO_LsDpqBYm44cYJ9yUZ-j5Wjm4SkiXJlhDO_LYVfPrFEyXaRg5RZg-v6091Me7CAR22OiIh8M9a8QsZNqlcecf69EkPtULTG3xf7-2BAs5sMRKNhKWoSC7K7CYg0zMXThZgfkJBkJ6aoxpW5NV-KzgzSBIWljVFYEYdCNsKIqGdNBBJe2ZZXCHEivtl16_lb52UNMLa2bPCJ_oDQbU8uv947aX5nlG9c2o32oHqti5jXfq6ClWs05YI8ycK4ihPr6Aj3ofgdwCJz7xSCG9KvJK1uChVr0_uzByEQdDEHT0DOHGlrRiWY654MITAWOu4q0S3I09R5pmKBmLOV2WsAICR5x6eNJRCiCRwy22DsVurys3ALltm3YQu-aJsGnekaFphW5oxhH3BJe22ISDkSn9t4yrw89YmW2fLOJri2zCkTbd7y38ZqOqb7b-3nQfZi_uG3W_ftm82oY5W4kEK50JZweKaX8gd2FGDNNW0t_Lx-g3tBrtfA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCcGBHbEzQhy4hCZx08QSlwoagWgrdrhFieNApS6oSTnzCXwDn8aXMHbSqhyQkJBySCLbsjQe-43teQ_gkFHMEVeURhjzQqPMKUBRHNCGiCVzLSeiYE6TuNbdZtN7euJXE3AyzIXJ-SFGG27KM_R8rRxcvsZJaYw1tCOPXTW_TsJ02eEVcsvpsxv_vj46RSCww4ZXPBzuWUNmIdMujSr_WI_G8aleYPzF_3VtCRYKYInVfCQsw4TsrsBiATKxcOF0BebHGAjpqzGibU1X4bOK14MwbWFNZwRi2I2xoSgaskEHlbRnvoP7JrHafu71W9lLBzW9sGb2jPGR_mBIJb_eP256WbHPqNqM-612qJKd23irrp5iLa-EPmHmQkEM9fUFfNDnCOQWONbEA4X0KskrXYN7v3Z3em4UIg6GIOjoGcJNLGklspxwwYUnQsZcxVsluJt4jjTNSDKWcHosYYUEjjjV8KSjFEBih1tsHaa6va7cAOS2bdph4poVYdO8IyPTitzITGLuCS5tsQkHQ1MGrzlXR5CzMtsBWSTQFtmEI22630sEzUZNv2z9veg-zF6d-UH9onm5DXO20ghWMhPODkxl_YHchRnxlrXS_l4xRL8BW1Ps9w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Quasi+Energy+and+Momentum+Conservative+Algorithm+Implemented+With+a+Co%E2%80%90Rotational+Quadrilateral+Shell+Element+Formulation+Using+Vectorial+Rotational+Variables&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Li%2C+Zhongxue&rft.au=Lin%2C+Xunda&rft.au=Vu%E2%80%90Quoc%2C+Loc&rft.au=Izzuddin%2C+Bassam+A.&rft.date=2025-09-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=126&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fnme.70128&rft.externalDBID=10.1002%252Fnme.70128&rft.externalDocID=NME70128 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |