Numerical Method for the Inverse Boundary-Value Problem of the Heat Equation

The article considers the inverse boundary-value problem of heat conduction which involves determining the time distribution of temperature on the boundary given the spatial distribution of the temperature at the final time instant. The problem is reduced to an integral equation of the first kind wi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational mathematics and modeling Ročník 28; číslo 2; s. 141 - 147
Hlavní autoři: Dmitriev, V. I., Stolyarov, L. V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2017
Springer Nature B.V
Témata:
ISSN:1046-283X, 1573-837X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The article considers the inverse boundary-value problem of heat conduction which involves determining the time distribution of temperature on the boundary given the spatial distribution of the temperature at the final time instant. The problem is reduced to an integral equation of the first kind with a symmetrical kernel. The integral equation is solved by a special iterative method. Test examples demonstrate convergence and stability of the proposed method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1046-283X
1573-837X
DOI:10.1007/s10598-017-9352-7