Numerical Method for the Inverse Boundary-Value Problem of the Heat Equation
The article considers the inverse boundary-value problem of heat conduction which involves determining the time distribution of temperature on the boundary given the spatial distribution of the temperature at the final time instant. The problem is reduced to an integral equation of the first kind wi...
Gespeichert in:
| Veröffentlicht in: | Computational mathematics and modeling Jg. 28; H. 2; S. 141 - 147 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.04.2017
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1046-283X, 1573-837X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The article considers the inverse boundary-value problem of heat conduction which involves determining the time distribution of temperature on the boundary given the spatial distribution of the temperature at the final time instant. The problem is reduced to an integral equation of the first kind with a symmetrical kernel. The integral equation is solved by a special iterative method. Test examples demonstrate convergence and stability of the proposed method. |
|---|---|
| AbstractList | The article considers the inverse boundary-value problem of heat conduction which involves determining the time distribution of temperature on the boundary given the spatial distribution of the temperature at the final time instant. The problem is reduced to an integral equation of the first kind with a symmetrical kernel. The integral equation is solved by a special iterative method. Test examples demonstrate convergence and stability of the proposed method. |
| Author | Stolyarov, L. V. Dmitriev, V. I. |
| Author_xml | – sequence: 1 givenname: V. I. surname: Dmitriev fullname: Dmitriev, V. I. email: dmitriev@cs.msu.ru organization: Faculty of Computational Mathematics and Cybernetics, Moscow State University – sequence: 2 givenname: L. V. surname: Stolyarov fullname: Stolyarov, L. V. organization: Faculty of Computational Mathematics and Cybernetics, Moscow State University |
| BookMark | eNp9kMtOwzAQRS0EEm3hA9hZYm3wo4mdJVSFViqPBaDuLNuxaao0bu0Eib_HbVggJFjNLO6ZuTpDcNz4xgJwQfAVwZhfR4KzQiBMOCpYRhE_AgOScYYE48vjtONxjqhgy1MwjHGNMRaU4QFYPHYbGyqjavhg25UvofMBtisL582HDdHCW981pQqf6E3VnYXPwevabqB3h9TMqhZOd51qK9-cgROn6mjPv-cIvN5NXyYztHi6n09uFshQlgo6Z4gjmrnSmYxqQSjVTo95gYUyJhcZZmXujGWYlFqVSmUu06muzbHVRjE2Apf93W3wu87GVq59F5r0UhIhyLigOeMpxfuUCT7GYJ00VXvo2QZV1ZJguVcne3UyqZN7dXJPkl_kNlSb5OBfhvZMTNnm3YYfnf6EvgArDoNg |
| CitedBy_id | crossref_primary_10_1088_1742_6596_1715_1_012032 crossref_primary_10_3390_a16010033 |
| Cites_doi | 10.1016/0041-5553(74)90133-5 10.1007/s10598-012-9117-2 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2017 Copyright Springer Science & Business Media 2017 |
| Copyright_xml | – notice: Springer Science+Business Media New York 2017 – notice: Copyright Springer Science & Business Media 2017 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10598-017-9352-7 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1573-837X |
| EndPage | 147 |
| ExternalDocumentID | 10_1007_s10598_017_9352_7 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29F 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z83 Z8W ZMTXR ZWQNP ~EX AAPKM AAYXX ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ K7- M2P M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c2317-ffc1f1b3fdfc52b8122bfb47908acc68503d6fce301dbadaa5f5b823e60ebca33 |
| IEDL.DBID | RSV |
| ISSN | 1046-283X |
| IngestDate | Wed Sep 17 13:41:19 EDT 2025 Tue Nov 18 22:02:20 EST 2025 Sat Nov 29 04:11:53 EST 2025 Fri Feb 21 02:36:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | boundary-value problem for the heat equation method for solving inverse problems inverse problems |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2317-ffc1f1b3fdfc52b8122bfb47908acc68503d6fce301dbadaa5f5b823e60ebca33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1881492637 |
| PQPubID | 2043702 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_1881492637 crossref_citationtrail_10_1007_s10598_017_9352_7 crossref_primary_10_1007_s10598_017_9352_7 springer_journals_10_1007_s10598_017_9352_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20170400 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 4 year: 2017 text: 20170400 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Computational mathematics and modeling |
| PublicationTitleAbbrev | Comput Math Model |
| PublicationYear | 2017 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | CR2 CR4 CR3 Tikhonov (CR1) 1935; 5 CR5 9352_CR5 9352_CR3 9352_CR4 9352_CR2 AN Tikhonov (9352_CR1) 1935; 5 |
| References_xml | – ident: CR3 – ident: CR4 – ident: CR2 – volume: 5 start-page: 294 year: 1935 end-page: 300 ident: CR1 article-title: Uniqueness theorem for the heat equation publication-title: Dokl. Akad. Nauk – ident: CR5 – ident: 9352_CR3 doi: 10.1016/0041-5553(74)90133-5 – ident: 9352_CR5 doi: 10.1007/s10598-012-9117-2 – ident: 9352_CR4 – volume: 5 start-page: 294 year: 1935 ident: 9352_CR1 publication-title: Dokl. Akad. Nauk – ident: 9352_CR2 |
| SSID | ssj0008230 |
| Score | 2.0062797 |
| Snippet | The article considers the inverse boundary-value problem of heat conduction which involves determining the time distribution of temperature on the boundary... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 141 |
| SubjectTerms | Applications of Mathematics Boundary value problems Computational Mathematics and Numerical Analysis Conduction heating Conductive heat transfer I. Inverse Problems Integral equations Iterative methods Mathematical analysis Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Numerical methods Optimization Spatial distribution Thermodynamics |
| Title | Numerical Method for the Inverse Boundary-Value Problem of the Heat Equation |
| URI | https://link.springer.com/article/10.1007/s10598-017-9352-7 https://www.proquest.com/docview/1881492637 |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1573-837X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008230 issn: 1046-283X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCD1apYrZKDJyWwj2Z3c1Rp6cGWglp6W_IEobS62wr-e5PsbltFBT1nNoSZZGaWmfk-gEsZEy6lDjGVguA25RwzFmpMqYhZoo3PpMKRTcSDQTIe02E5x51X3e5VSdJ56rVhN2LHwYxXpSZrwPEmbBELNmN_0R9GS_drK0cFBEGETewcV6XM77b4HIxWGeaXoqiLNd36v065D3tlaoluirtwABtq2oB6RduAylfcgN3-Eqo1P4T7waIo2kxQ37FJI5PGIiOALARHlit065iXsnc8YpOFQsOCggbNtJPqGWeOOq8FYvgRPHU7j3c9XFIsYGESuxhrLXzt81BLLUjATbQPuObtmHoJEyJKiBfKSAtl3IDkTDJGNOFGwyrybBdVGB5DbTqbqhNASigpPMmoRZyhirCEaZPeeDKWOmqLoAlepetUlPjjlgZjkq6Qk63uUqO71OoujZtwtfzkpQDf-E24VRkwLd9hnvpJ4ltIxNAsX1cGW1v-abPTP0mfwU5gLe4aelpQm2cLdQ7b4m3-nGcX7np-AE4M4Cw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CurBalWsVs3BkxLY926OKi0V21Kwlt6WPEEore62gv_eZB9tFRX0nNkQZpKZWWbm-wAuRegzIZSLieA-9ghjmFJXYUJ4SCOlfSbhGdlE2OtFoxHpF3PcadntXpYkM0-9Muzmm3Ew7VWJzhpwuA4bnmHZMb_oj8OF-zWVoxyCIMA6do7KUuZ3W3wORssM80tRNIs1req_TrkHu0VqiW7yu7APa3JSg2pJ24CKV1yDne4CqjU9gE5vnhdtxqibsUkjncYiLYAMBEeSSnSbMS8l73hIx3OJ-jkFDZqqTKqtnTlqvuaI4Yfw1GoO7tq4oFjAXCd2IVaK28pmrhKK-w7T0d5hinkhsSLKeRD5lisCxaV2A4JRQamvfKY1LAPLdFG57hFUJtOJPAYkuRTcEpQYxBkifRpRpdMbS4RCBR536mCVuo55gT9uaDDG8RI52egu1rqLje7isA5Xi09ecvCN34QbpQHj4h2msR1FtoFEdPXydWmwleWfNjv5k_QFbLUH3U7cue89nMK2Y6yfNfc0oDJL5vIMNvnb7DlNzrOr-gHYueMQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4oGqMHUdSIovbgSdOwsOyjRx8QjLAhPgi3TZ-JCQHcBRP_ve0-AI2aGM-dbZppO_02M_N9AOfCc5gQysZEcAc3CGOYUlthQrhHfaVjJuGJ2IQXBP5gQHqZzmmcV7vnKcm0p8GwNI2m1YlQ1aXGN8e0hukISzSCwN4qrDX0j4yp6Xp47M9DsckipXQELtbv6CBPa343xeeHaYE2vyRIk3enVfz3indgO4Oc6Co9I7uwIkclKOZyDii73SXY6s4pXOM96ASzNJkzRN1EZRppeIu0ATLUHFEs0XWiyBS94z4dziTqpdI0aKwSq7YO8qj5mjKJ78Nzq_l008aZ9ALmGvB5WCleUzVmK6G4U2caBdSZYg2PWD7l3PUdyxau4lKHB8GooNRRDtPelq5lqqts-wAKo_FIHgKSXApuCUoMEw2RDvWp0rDHEp5QboPXy2Dlfg95xktu5DGG4YJR2fgu1L4Lje9CrwwX808mKSnHb8aVfDPD7H7GYc33a4Yq0dbDl_nmLQ3_NNnRn6zPYKN32wo7d8H9MWzWzeYnNT8VKEyjmTyBdf42fYmj0-TUfgB2huv0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Method+for+the+Inverse+Boundary-Value+Problem+of+the+Heat+Equation&rft.jtitle=Computational+mathematics+and+modeling&rft.au=Dmitriev%2C+V.+I.&rft.au=Stolyarov%2C+L.+V.&rft.date=2017-04-01&rft.issn=1046-283X&rft.eissn=1573-837X&rft.volume=28&rft.issue=2&rft.spage=141&rft.epage=147&rft_id=info:doi/10.1007%2Fs10598-017-9352-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10598_017_9352_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-283X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-283X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-283X&client=summon |