Semantic Programming and Polynomially Computable Representations

In the present article, we consider the question on existence of polynomially computable representations for basic syntactic constructions of the first-order logic and for objects of semantic programming (such as -programs and -formulas). We prove that the sets of linear or tree-like derivations in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Siberian advances in mathematics Ročník 33; číslo 1; s. 66 - 85
Hlavní autor: Nechesov, A. V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.02.2023
Springer Nature B.V
Témata:
ISSN:1055-1344, 1934-8126
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the present article, we consider the question on existence of polynomially computable representations for basic syntactic constructions of the first-order logic and for objects of semantic programming (such as -programs and -formulas). We prove that the sets of linear or tree-like derivations in the first-order predicate calculus admits a polynomially computable representation. We also obtain a series of assertions that allow us to prove polynomial computability in a more efficient way. Among them, we mention the generalized PAG-theorem with polynomially computable initial data and an assertion on -iterative terms with weakened estimates. Our results may be useful for construction of logical programming languages, in smart contracts, as well as for developing fast algorithms for automatic proof verification.
AbstractList In the present article, we consider the question on existence of polynomially computable representations for basic syntactic constructions of the first-order logic and for objects of semantic programming (such as -programs and -formulas). We prove that the sets of linear or tree-like derivations in the first-order predicate calculus admits a polynomially computable representation. We also obtain a series of assertions that allow us to prove polynomial computability in a more efficient way. Among them, we mention the generalized PAG-theorem with polynomially computable initial data and an assertion on -iterative terms with weakened estimates. Our results may be useful for construction of logical programming languages, in smart contracts, as well as for developing fast algorithms for automatic proof verification.
In the present article, we consider the question on existence of polynomially computable representations for basic syntactic constructions of the first-order logic and for objects of semantic programming (such as -programs and -formulas). We prove that the sets of linear or tree-like derivations in the first-order predicate calculus admits a polynomially computable representation. We also obtain a series of assertions that allow us to prove polynomial computability in a more efficient way. Among them, we mention the generalized PAG-theorem with polynomially computable initial data and an assertion on -iterative terms with weakened estimates. Our results may be useful for construction of logical programming languages, in smart contracts, as well as for developing fast algorithms for automatic proof verification.
Author Nechesov, A. V.
Author_xml – sequence: 1
  givenname: A. V.
  surname: Nechesov
  fullname: Nechesov, A. V.
  email: nechesov@math.nsc.ru
  organization: Sobolev Institute of Mathematics
BookMark eNp9kE1LxDAQhoOs4O7qD_BW8FzN5KNpb8riFyy4uHouaZouWdqkJt1D_71ZKgiKnuYd3veZGWaBZtZZjdAl4GsAym62gDmPghGKAeMsO0FzKChLcyDZLOpop0f_DC1C2OPYFkLM0e1Wd9IORiUb73Zedp2xu0TaOtm4drSuM7Jtx2Tluv4wyKrVyavuvQ7aDnIwzoZzdNrINuiLr7pE7w_3b6undP3y-Ly6W6eKUMhSrplQuQIiaVUIqDHXKmeikRoDU4RAzSoumMI1haaWWZUrnkdDqQqyumB0ia6mub13HwcdhnLvDt7GlSUlXGBCsoLHlJhSyrsQvG5KZaZDBy9NWwIuj-8qf70rkvCD7L3ppB__ZcjEhJi1O-2_b_ob-gSSKHyR
CitedBy_id crossref_primary_10_3390_math12213429
Cites_doi 10.1007/s10469-017-9416-y
10.1134/S1055134422040058
10.1134/S1064562418050137
10.1090/trans2/142/10
10.1134/S0037446617050068
10.1134/S0037446618060058
10.1134/S1064562419020030
10.3390/math9172102
10.3390/math10010113
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2023
Pleiades Publishing, Ltd. 2023.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2023
– notice: Pleiades Publishing, Ltd. 2023.
DBID AAYXX
CITATION
7XB
8FE
8FG
ABJCF
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1134/S1055134423010066
DatabaseName CrossRef
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Databases
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
Engineering Database
ProQuest Central Student
Technology Collection
ProQuest Central Basic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1934-8126
EndPage 85
ExternalDocumentID 10_1134_S1055134423010066
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5VS
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CS3
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9R
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XU3
YLTOR
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
7XB
8FE
8FG
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2316-5e47c8c12a3b971d05ec847fae014c221d4b574c0d31fda6b8c584c2ccb16d943
IEDL.DBID RSV
ISSN 1055-1344
IngestDate Tue Oct 07 06:09:57 EDT 2025
Sat Nov 29 01:34:16 EST 2025
Tue Nov 18 22:48:35 EST 2025
Fri Feb 21 02:43:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords semantic programming
Gandy theorem
smart contracts
proof verification
GNF-systems
iterative terms
polynomial computability
PAG-theorem
artificial intelligence
proof theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2316-5e47c8c12a3b971d05ec847fae014c221d4b574c0d31fda6b8c584c2ccb16d943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3257022695
PQPubID 2044168
PageCount 20
ParticipantIDs proquest_journals_3257022695
crossref_citationtrail_10_1134_S1055134423010066
crossref_primary_10_1134_S1055134423010066
springer_journals_10_1134_S1055134423010066
PublicationCentury 2000
PublicationDate 20230200
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 2
  year: 2023
  text: 20230200
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Siberian advances in mathematics
PublicationTitleAbbrev Sib. Adv. Math
PublicationYear 2023
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References CR4
Goncharov, Ospichev, Ponomaryov, Sviridenko (CR9) 2020; 17
Alaev, Selivanov (CR2) 2018; 98
CR8
CR7
Ershov (CR3) 1996
Goncharov (CR6) 2017; 58
Goncharov, Sviridenko (CR11) 2018; 59
Alaev (CR1) 2017; 55
Ershov, Palyutin (CR5) 1987
Nechesov (CR13) 2022; 32
Goncharov, Sviridenko (CR10) 1989; 142
Ospichev, Ponomaryov (CR14) 2018; 15
Goncharov, Sviridenko (CR12) 2019; 99
S.S. Goncharov (5063_CR11) 2018; 59
A.V. Nechesov (5063_CR13) 2022; 32
5063_CR7
5063_CR8
S.S. Goncharov (5063_CR9) 2020; 17
S.S. Goncharov (5063_CR10) 1989; 142
P.E. Alaev (5063_CR1) 2017; 55
S.S. Goncharov (5063_CR6) 2017; 58
Yu.L. Ershov (5063_CR3) 1996
S.S. Goncharov (5063_CR12) 2019; 99
5063_CR4
S.S. Ospichev (5063_CR14) 2018; 15
Yu.L. Ershov (5063_CR5) 1987
P.E. Alaev (5063_CR2) 2018; 98
References_xml – volume: 55
  start-page: 421
  year: 2017
  ident: CR1
  article-title: Structures computable in polynomial time. I
  publication-title: Algebra and Logic
  doi: 10.1007/s10469-017-9416-y
– volume: 15
  start-page: 987
  year: 2018
  ident: CR14
  article-title: On the complexity of formulas in semantic programming
  publication-title: Siberian Electron. Math. Rep.
– volume: 32
  start-page: 299
  year: 2022
  ident: CR13
  article-title: Some questions on polynomially computable representations for generating grammars and Backus–Naur forms
  publication-title: Siberian Adv. Math.
  doi: 10.1134/S1055134422040058
– volume: 98
  start-page: 341
  year: 2018
  ident: CR2
  article-title: Polynomial computability of fields of algebraic numbers
  publication-title: Dokl. Math.
  doi: 10.1134/S1064562418050137
– year: 1987
  ident: CR5
  publication-title: Mathematical Logic
– volume: 142
  start-page: 101
  year: 1989
  ident: CR10
  article-title: -programming
  publication-title: Transl. Amer. Math. Soc., Ser. II
  doi: 10.1090/trans2/142/10
– ident: CR4
– volume: 58
  start-page: 794
  year: 2017
  ident: CR6
  article-title: Conditional terms in semantic programming
  publication-title: Siberian Math. J.
  doi: 10.1134/S0037446617050068
– ident: CR7
– ident: CR8
– volume: 17
  start-page: 380
  year: 2020
  ident: CR9
  article-title: The expressiveness of looping terms in the semantic programming
  publication-title: Siberian Electron. Math. Rep.
– volume: 59
  start-page: 1014
  year: 2018
  ident: CR11
  article-title: Recursive terms in semantic programming
  publication-title: Siberian Math. J.
  doi: 10.1134/S0037446618060058
– year: 1996
  ident: CR3
  publication-title: Definability and Computability
– volume: 99
  start-page: 121
  year: 2019
  ident: CR12
  article-title: The logic language of polynomial computability
  publication-title: Dokl. Math.
  doi: 10.1134/S1064562419020030
– volume: 17
  start-page: 380
  year: 2020
  ident: 5063_CR9
  publication-title: Siberian Electron. Math. Rep.
– volume-title: Mathematical Logic
  year: 1987
  ident: 5063_CR5
– volume: 15
  start-page: 987
  year: 2018
  ident: 5063_CR14
  publication-title: Siberian Electron. Math. Rep.
– ident: 5063_CR7
  doi: 10.3390/math9172102
– ident: 5063_CR8
  doi: 10.3390/math10010113
– volume: 58
  start-page: 794
  year: 2017
  ident: 5063_CR6
  publication-title: Siberian Math. J.
  doi: 10.1134/S0037446617050068
– volume: 32
  start-page: 299
  year: 2022
  ident: 5063_CR13
  publication-title: Siberian Adv. Math.
  doi: 10.1134/S1055134422040058
– volume-title: Definability and Computability
  year: 1996
  ident: 5063_CR3
– volume: 59
  start-page: 1014
  year: 2018
  ident: 5063_CR11
  publication-title: Siberian Math. J.
  doi: 10.1134/S0037446618060058
– volume: 142
  start-page: 101
  year: 1989
  ident: 5063_CR10
  publication-title: Transl. Amer. Math. Soc., Ser. II
  doi: 10.1090/trans2/142/10
– volume: 98
  start-page: 341
  year: 2018
  ident: 5063_CR2
  publication-title: Dokl. Math.
  doi: 10.1134/S1064562418050137
– volume: 99
  start-page: 121
  year: 2019
  ident: 5063_CR12
  publication-title: Dokl. Math.
  doi: 10.1134/S1064562419020030
– volume: 55
  start-page: 421
  year: 2017
  ident: 5063_CR1
  publication-title: Algebra and Logic
  doi: 10.1007/s10469-017-9416-y
– ident: 5063_CR4
SSID ssj0055977
Score 2.2256894
Snippet In the present article, we consider the question on existence of polynomially computable representations for basic syntactic constructions of the first-order...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 66
SubjectTerms Algorithms
Calculus
Language
Mathematics
Mathematics and Statistics
Polynomials
Predicate calculus
Programming languages
Representations
Semantics
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86PejBb3E6pQdPSljTNv04qYjDgxvFKexW0pcGhNrNdQr7731p0w0VvXgLaRvCS_re7-W9vB8h5wF6JiAVUPTaFPWCLKXCsTkFlzmKCUfYqiri-hAMBuFoFMXmwK00aZWNTqwUtRyDPiPvuppuDbFCxK8mb1SzRunoqqHQWCVriGyYTunqO3GjiavaalW0k3PKXM8zUU1sdoe6U_chBGfa7n61S0uw-S0-Wpmd3vZ_J7xDtgzgtG7qHbJLVrJij2z2F9Vay31yPcRmgW0rrrO1XnEqliikFY_zub63LPJ8btUEEPqqlfVY5c-aa0tFeUCee3dPt_fUMCtQQDznU555AYTAHOGmUcCkzTNAM6VEhh4TOA6TXsoDD2zpMiWFn4aAQAUcgJT5MvLcQ9IqxkV2RCyJewClKDVyQ6WL1o6LLHQBja9QvlJtYjdyTcCUHdfsF3lSuR-ul_xYija5WHwyqWtu_PVypxF_Yn6_MlnKvk0umwVcPv51sOO_BzshG5ptvk7a7pDWbPqenZJ1-Ji9lNOzau99ArK93Ug
  priority: 102
  providerName: ProQuest
Title Semantic Programming and Polynomially Computable Representations
URI https://link.springer.com/article/10.1134/S1055134423010066
https://www.proquest.com/docview/3257022695
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1934-8126
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0055977
  issn: 1055-1344
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1934-8126
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0055977
  issn: 1055-1344
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1934-8126
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0055977
  issn: 1055-1344
  databaseCode: M2P
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1934-8126
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055977
  issn: 1055-1344
  databaseCode: RSV
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH5o60EP7mK1lhw8KcFkkslyc6HFgy2hVektTGYBIabSVKH_3jdZWlxBL2EgL0MybzLfe7zlAzj10TPhQnETvTZlur5MTEYsanLHJspmhFmqaOJ65w8GwXgcRlUdd15nu9chyeKkLnlH3IuRpnLEAeI_-hCIlKvQRLQLNF_DcPRYH79FQ7UixEmpqcWrUOa3U3wEo6WF-SkoWmBNb-tfb7kNm5VpaVyVe2EHVmS2Cxv9RV_WfA8uRzjMcGxEZV7WM85tsEwY0SSd6wpllqZzo6R60EVVxrDIlK0KlLJ8Hx563fubW7PiUDA5Wm6eSaXr84DbhDlJ6NvCopIjICkm0TfihNjCTajvcks4thLMSwKOJgknnCe2J0LXOYBGNsnkIRgCtY3fJbSNhscr4hplMnA4wixTnlItsOrFjHnVYFzzXKRx4Wg4bvxlcVpwtnjkpeyu8Ztwu9ZQXP1oeexoFj40IUPagvNaI8vbP0529CfpY1jXNPNltnYbGrPpqzyBNf42e8qnHWhedwfRsAOrfRLpqz_qFHvyHeKZ1Vk
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB6laaXCodAWRGigPsCFaoV3vY6TQ9VWLVEQIYoglbiZ9eyuhBQcwAGUP9Xf2Fk_EhUENw69rdb2SOsZz3zjeQHsROSZoLbIyGuzTEYmYUr4IcOAC8uVUL7Nm7j2o8GgfXbWGdbgT1UL49IqK52YK2o9QfePfD9w49YIK3TCb1fXzE2NctHVaoRGIRZHZnZPLlv29fAX8XdXiO7B6GePlVMFGBKWabHQyAjbyIUKkk7EtR8aJBVtlSFvAYXgWiZhJNHXAbdatZI2kpFGgZjwlu7IgOi-gtfSdRZzqYJiWGn-vJdbHl0NQ8YDKcsoKi33T92m2yPIz52d_9cOLsDtg3hsbua6K__bC1qFdyWg9n4UX8B7qJn0Aywfz7vRZh_h-yktU1p7wyIb7ZKO7qlUe8PJeObqstV4PPOKAReulMw7yfODy7KsNFuD3y9yhHWop5PUbICnScaJa9ohUzIqZM1DZdoBErhQtmVtA_yKjzGWbdXddI9xnLtXgYwfsb4Be_NHroqeIs_d3KzYHZfqJYsXvG7Al0pgFpefJLb5PLHP8LY3Ou7H_cPB0SdYEoTnigT1JtSnN7dmC97g3fQiu9nO5d6D85eWo7_sXjoP
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBt1itmoMnZWkem9dNUYtiLcWq9BY2u1kQYlqaKvTfO5tsWnyCeBvIZpPsTna-YR4fwLGPngkXkhP02iShfhITZpsu4Y5lS4vZzJRFE9e23-kE_X7Y1TyneZXtXoUky5oG1aUpGzeHQmoOEtrsKVpHFBALoD-BVnMeFqjKo1fueu-pOoqL5mpFuNN1iRquw5rfTvHRMM3Q5qcAaWF3Wmv_fuN1WNWQ0zgvdWQD5pJsE1bupv1a8y0466GYoWx0y3ytF3yOwTJhdAfpRFUuszSdGCUFhCq2Mu6LDFpduJTl2_DYunq4uCaaW4FwRHQecRPq84BbNnPi0LeE6SYcDZVkCfpM3LYtQWPXp9wUjiUF8-KAI1ThNuex5YmQOjtQywZZsguGQC3A7xIKu-Gxi_bOZUngcDS_THpS1sGsFjbiuvG44r9Io8IBcWj0ZXHqcDK9ZVh23fhtcKParUj_gHnkKHY-hJahW4fTandml3-cbO9Po49gqXvZito3ndt9WFZM9GVCdwNq49FrcgCL_G38nI8OC7V8B7vg3Z8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+Programming+and+Polynomially+Computable+Representations&rft.jtitle=Siberian+advances+in+mathematics&rft.au=Nechesov%2C+A.+V.&rft.date=2023-02-01&rft.pub=Pleiades+Publishing&rft.issn=1055-1344&rft.eissn=1934-8126&rft.volume=33&rft.issue=1&rft.spage=66&rft.epage=85&rft_id=info:doi/10.1134%2FS1055134423010066&rft.externalDocID=10_1134_S1055134423010066
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-1344&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-1344&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-1344&client=summon