Dual tree complex wavelet transform based analysis of epileptiform discharges
Diagnosis of epileptic seizures entails visual inspection of complex seizure patterns which is a tedious task. Development of automated systems for analysing brain activity would significantly minimise the epilepsy treatment gap by providing assistance to neurophysiologists. Present research work is...
Gespeichert in:
| Veröffentlicht in: | International journal of information technology (Singapore. Online) Jg. 10; H. 4; S. 543 - 550 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Singapore
Springer Singapore
01.12.2018
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 2511-2104, 2511-2112 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Diagnosis of epileptic seizures entails visual inspection of complex seizure patterns which is a tedious task. Development of automated systems for analysing brain activity would significantly minimise the epilepsy treatment gap by providing assistance to neurophysiologists. Present research work is intended to provide insight to the epileptiform discharges during the seizures using dual tree complex wavelet transform. Algorithm is developed using publically available data from Bonn University. Statistical and nonlinear features, selected on the basis of Bhattacharyya distance, are extracted from EEG segments to demarcate the seizure and nonseizure EEG boundaries. Quadratic classification of EEG features followed by k-fold cross validation with varying train to test ratios is employed to develop a generalised robust model. Performance of classifier is accessed in terms of statistical parameters. |
|---|---|
| AbstractList | Diagnosis of epileptic seizures entails visual inspection of complex seizure patterns which is a tedious task. Development of automated systems for analysing brain activity would significantly minimise the epilepsy treatment gap by providing assistance to neurophysiologists. Present research work is intended to provide insight to the epileptiform discharges during the seizures using dual tree complex wavelet transform. Algorithm is developed using publically available data from Bonn University. Statistical and nonlinear features, selected on the basis of Bhattacharyya distance, are extracted from EEG segments to demarcate the seizure and nonseizure EEG boundaries. Quadratic classification of EEG features followed by k-fold cross validation with varying train to test ratios is employed to develop a generalised robust model. Performance of classifier is accessed in terms of statistical parameters. |
| Author | Khan, Ayesha Tooba Khan, Yusuf Uzzaman |
| Author_xml | – sequence: 1 givenname: Ayesha Tooba surname: Khan fullname: Khan, Ayesha Tooba email: er.khanatk@gmail.com organization: Department of Electrical Engineering, Aligarh Muslim University – sequence: 2 givenname: Yusuf Uzzaman surname: Khan fullname: Khan, Yusuf Uzzaman organization: Department of Electrical Engineering, Aligarh Muslim University |
| BookMark | eNp9kE1PwzAMQCM0JMbYD-BWiXMhTpomPaLxKQ1xgXOUpu4I6tqSdMD-PRlFICHBwbKV-DnOOySTtmuRkGOgp0CpPAsZKElTCipGVqRij0yZAEgZAJt81zQ7IPMQXEk5sJwLCVNyd7ExTTJ4xMR2677B9-TNvGKDQzw0bag7v05KE7BKTGuabXAh6eoEe9dgP7jP68oF-2T8CsMR2a9NE3D-lWfk8eryYXGTLu-vbxfny9QyDiJVklUQo1CW14xiiVKhkrkRNTc50kooUSlKS4qypFZkVhUlq5nkWQEgJJ-Rk3Fu77uXDYZBP3cbH_cLmsV_csXzjMUuGLus70LwWOveu7XxWw1U78TpUZyO4vROnBaRkb8Y6wYzuK6NOlzzL8lGMsRX2hX6n53-hj4ALxeDQg |
| CitedBy_id | crossref_primary_10_1007_s41870_020_00596_5 |
| Cites_doi | 10.1109/ICIEV.2014.6850758 10.1109/MSP.2005.1550194 10.1016/j.eswa.2010.06.065 10.1155/2010/853434 10.1007/s11760-014-0736-2 10.1109/MCSE.2016.82 10.1016/j.eswa.2016.02.040 10.3390/s17030481 10.1109/TITB.2011.2181403 10.1016/j.bspc.2017.07.022 10.1103/PhysRevE.64.061907 10.3389/fninf.2017.00052 10.1016/S1388-2457(03)00035-X 10.1109/INDICON.2015.7443482 10.1016/j.compbiomed.2017.07.010 |
| ContentType | Journal Article |
| Copyright | Bharati Vidyapeeth's Institute of Computer Applications and Management 2018 Copyright Springer Nature B.V. 2018 |
| Copyright_xml | – notice: Bharati Vidyapeeth's Institute of Computer Applications and Management 2018 – notice: Copyright Springer Nature B.V. 2018 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s41870-018-0149-5 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2511-2112 |
| EndPage | 550 |
| ExternalDocumentID | 10_1007_s41870_018_0149_5 |
| GroupedDBID | -EM 0R~ 406 AACDK AAHNG AAIAL AAJBT AANZL AASML AATNV AATVU AAUYE ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFQWF AGDGC AGMZJ AGQEE AGRTI AHSBF AIAKS AIGIU AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FIGPU FINBP FNLPD FSGXE GGCAI GJIRD IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW Z7Z Z81 Z83 Z88 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ABUWG ACSTC AEZWR AFDZB AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ K7- PHGZM PHGZT PQGLB 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2315-872d172d98c3f20ebe78e876a5f3a6e0d585d800b0e7b0c54c89b2f2734911573 |
| IEDL.DBID | RSV |
| ISSN | 2511-2104 |
| IngestDate | Wed Sep 17 23:58:57 EDT 2025 Sat Nov 29 03:11:44 EST 2025 Tue Nov 18 21:43:05 EST 2025 Fri Feb 21 02:32:43 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Dual tree complex wavelet transform Seizure detection EEG K-fold cross validation Classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2315-872d172d98c3f20ebe78e876a5f3a6e0d585d800b0e7b0c54c89b2f2734911573 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2210383642 |
| PQPubID | 2034493 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2210383642 crossref_primary_10_1007_s41870_018_0149_5 crossref_citationtrail_10_1007_s41870_018_0149_5 springer_journals_10_1007_s41870_018_0149_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20181200 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: 20181200 |
| PublicationDecade | 2010 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Heidelberg |
| PublicationSubtitle | An Official Journal of Bharati Vidyapeeth's Institute of Computer Applications and Management |
| PublicationTitle | International journal of information technology (Singapore. Online) |
| PublicationTitleAbbrev | Int. j. inf. tecnol |
| PublicationYear | 2018 |
| Publisher | Springer Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V |
| References | Farooq O, Khan YU (2010) Automatic seizure detection using higher order moments. In: International conference on recent trends in information, telecommunication and computing WHO (2010) Epilepsy in the WHO Eastern Mediterranean Region: bridging the gap. Regional Office for the Eastern Mediterranean. http://apps.who.int/iris/handle/10665/119905. Accessed 12 Feb 2017 WHO (2017). Epilepsy fact sheet. http://www.who.int/mediacentre/factsheets/fs999/en/. Accessed 28 Feb 2017 SubasiAGursoyMIEEG signal classification using PCA, ICA, LDA and support vector machinesExpert Syst Appl201037128659866610.1016/j.eswa.2010.06.065 SelesnickIWBaraniukRGKingsburyNGThe dual tree complex wavelet transformIEEE Signal Process Mag20052212315110.1109/MSP.2005.1550194 Khan AT, Husain I, Khan YU (2015) Seizure onset patterns in EEG and their detection using statistical measures. In: 12th IEEE India international conference (INDICON) on electronics, energy, environment, communication, computer, control BajajVPachoriRBClassification of seizure and nonseizure EEG signals using empirical mode decompositionIEEE Trans Inf Technol Biomed2012161135114110.1109/TITB.2011.2181403 LeeJParkJYangSKimHChoiYSKimHJLeeHWLeeBUEarly seizure detection by applying frequency-based algorithm derived from the principal component analysisFront Neuroinform2017111210.3389/fninf.2017.00052 DasABBhuiyanMIHAlamSSClassification of EEG signals using normal inverse Gaussian parameters in the dual-tree complex wavelet transform domain for seizure detectionSIViP201610225926610.1007/s11760-014-0736-2 ZahraAKanwalNUR RehmanNEhsanSMcDonald-MaierKDSeizure detection from EEG signals using multivariate empirical mode decompositionComput Biol Med20178813214110.1016/j.compbiomed.2017.07.010 KhanYUGotmanJWavelet based automatic seizure detection in intracerebral electroencephalogramClin Neurophysiol200311489890810.1016/S1388-2457(03)00035-X LiangSFWangHCChangWLCombination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detectionEURASIP J Adv Signal Process20102010185343410.1155/2010/853434 SwamiPA novel robust diagnostic model to detect seizures in electroencephalographyExpert Syst Appl20165611613010.1016/j.eswa.2016.02.040 AndrzejakRGLehnertzKMormannFRiekeCDavidPElgerCEIndications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain statePhys Rev E20016406190710.1103/PhysRevE.64.061907 AlickovicEKevricJSubasiAPerformance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and predictionBiomed Signal Process Control2018399410210.1016/j.bspc.2017.07.022 Rafi N, Khan YU, Farooq O (2014) Epileptic seizure detection: reformation of the traditional method on scalp recorded electroencephalogram. In: International conference on emerging trends in electrical engineering JooHSHanSHLeeJJangDPKangJKWooJSpectral analysis of acceleration data for detection of generalized tonic–clonic seizuresSensors20171748149210.3390/s17030481 Das AB, Bhuiyan MIH, Alam SS (2014) A statistical method for automatic detection of seizure and epilepsy in the dual tree complex wavelet transform domain. In: 3rd International conference on informatics, electronics & vision SareenSSoodSKGuptaSKA cloud-based seizure alert system for epileptic patients that uses higher-order statisticsComput Sci Eng20165566710.1109/MCSE.2016.82 RG Andrzejak (149_CR14) 2001; 64 149_CR5 149_CR7 YU Khan (149_CR17) 2003; 114 149_CR18 149_CR1 149_CR2 IW Selesnick (149_CR16) 2005; 22 E Alickovic (149_CR3) 2018; 39 SF Liang (149_CR10) 2010; 2010 S Sareen (149_CR8) 2016; 5 J Lee (149_CR13) 2017; 11 A Zahra (149_CR4) 2017; 88 P Swami (149_CR19) 2016; 56 AB Das (149_CR6) 2016; 10 HS Joo (149_CR11) 2017; 17 A Subasi (149_CR12) 2010; 37 V Bajaj (149_CR15) 2012; 16 149_CR9 |
| References_xml | – reference: BajajVPachoriRBClassification of seizure and nonseizure EEG signals using empirical mode decompositionIEEE Trans Inf Technol Biomed2012161135114110.1109/TITB.2011.2181403 – reference: ZahraAKanwalNUR RehmanNEhsanSMcDonald-MaierKDSeizure detection from EEG signals using multivariate empirical mode decompositionComput Biol Med20178813214110.1016/j.compbiomed.2017.07.010 – reference: LiangSFWangHCChangWLCombination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detectionEURASIP J Adv Signal Process20102010185343410.1155/2010/853434 – reference: SubasiAGursoyMIEEG signal classification using PCA, ICA, LDA and support vector machinesExpert Syst Appl201037128659866610.1016/j.eswa.2010.06.065 – reference: KhanYUGotmanJWavelet based automatic seizure detection in intracerebral electroencephalogramClin Neurophysiol200311489890810.1016/S1388-2457(03)00035-X – reference: Rafi N, Khan YU, Farooq O (2014) Epileptic seizure detection: reformation of the traditional method on scalp recorded electroencephalogram. In: International conference on emerging trends in electrical engineering – reference: SareenSSoodSKGuptaSKA cloud-based seizure alert system for epileptic patients that uses higher-order statisticsComput Sci Eng20165566710.1109/MCSE.2016.82 – reference: SelesnickIWBaraniukRGKingsburyNGThe dual tree complex wavelet transformIEEE Signal Process Mag20052212315110.1109/MSP.2005.1550194 – reference: WHO (2010) Epilepsy in the WHO Eastern Mediterranean Region: bridging the gap. Regional Office for the Eastern Mediterranean. http://apps.who.int/iris/handle/10665/119905. Accessed 12 Feb 2017 – reference: DasABBhuiyanMIHAlamSSClassification of EEG signals using normal inverse Gaussian parameters in the dual-tree complex wavelet transform domain for seizure detectionSIViP201610225926610.1007/s11760-014-0736-2 – reference: JooHSHanSHLeeJJangDPKangJKWooJSpectral analysis of acceleration data for detection of generalized tonic–clonic seizuresSensors20171748149210.3390/s17030481 – reference: Farooq O, Khan YU (2010) Automatic seizure detection using higher order moments. In: International conference on recent trends in information, telecommunication and computing – reference: AlickovicEKevricJSubasiAPerformance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and predictionBiomed Signal Process Control2018399410210.1016/j.bspc.2017.07.022 – reference: SwamiPA novel robust diagnostic model to detect seizures in electroencephalographyExpert Syst Appl20165611613010.1016/j.eswa.2016.02.040 – reference: Das AB, Bhuiyan MIH, Alam SS (2014) A statistical method for automatic detection of seizure and epilepsy in the dual tree complex wavelet transform domain. In: 3rd International conference on informatics, electronics & vision – reference: AndrzejakRGLehnertzKMormannFRiekeCDavidPElgerCEIndications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain statePhys Rev E20016406190710.1103/PhysRevE.64.061907 – reference: WHO (2017). Epilepsy fact sheet. http://www.who.int/mediacentre/factsheets/fs999/en/. Accessed 28 Feb 2017 – reference: Khan AT, Husain I, Khan YU (2015) Seizure onset patterns in EEG and their detection using statistical measures. In: 12th IEEE India international conference (INDICON) on electronics, energy, environment, communication, computer, control – reference: LeeJParkJYangSKimHChoiYSKimHJLeeHWLeeBUEarly seizure detection by applying frequency-based algorithm derived from the principal component analysisFront Neuroinform2017111210.3389/fninf.2017.00052 – ident: 149_CR1 – ident: 149_CR7 doi: 10.1109/ICIEV.2014.6850758 – volume: 22 start-page: 123 year: 2005 ident: 149_CR16 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2005.1550194 – volume: 37 start-page: 8659 issue: 12 year: 2010 ident: 149_CR12 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.06.065 – ident: 149_CR2 – ident: 149_CR5 – volume: 2010 start-page: 853434 issue: 1 year: 2010 ident: 149_CR10 publication-title: EURASIP J Adv Signal Process doi: 10.1155/2010/853434 – volume: 10 start-page: 259 issue: 2 year: 2016 ident: 149_CR6 publication-title: SIViP doi: 10.1007/s11760-014-0736-2 – volume: 5 start-page: 56 year: 2016 ident: 149_CR8 publication-title: Comput Sci Eng doi: 10.1109/MCSE.2016.82 – volume: 56 start-page: 116 year: 2016 ident: 149_CR19 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.02.040 – volume: 17 start-page: 481 year: 2017 ident: 149_CR11 publication-title: Sensors doi: 10.3390/s17030481 – volume: 16 start-page: 1135 year: 2012 ident: 149_CR15 publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/TITB.2011.2181403 – volume: 39 start-page: 94 year: 2018 ident: 149_CR3 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2017.07.022 – volume: 64 start-page: 061907 year: 2001 ident: 149_CR14 publication-title: Phys Rev E doi: 10.1103/PhysRevE.64.061907 – ident: 149_CR9 – volume: 11 start-page: 1 year: 2017 ident: 149_CR13 publication-title: Front Neuroinform doi: 10.3389/fninf.2017.00052 – volume: 114 start-page: 898 year: 2003 ident: 149_CR17 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(03)00035-X – ident: 149_CR18 doi: 10.1109/INDICON.2015.7443482 – volume: 88 start-page: 132 year: 2017 ident: 149_CR4 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.07.010 |
| SSID | ssib031263571 ssj0002710285 |
| Score | 2.0634208 |
| Snippet | Diagnosis of epileptic seizures entails visual inspection of complex seizure patterns which is a tedious task. Development of automated systems for analysing... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 543 |
| SubjectTerms | Algorithms Brain Computer Communication Networks Computer Science Computer Systems Organization and Communication Networks Convulsions & seizures Discharge Epilepsy Feature extraction Information Systems and Communication Service Management of Computing and Information Systems Original Research Seizures Software Engineering/Programming and Operating Systems Wavelet analysis Wavelet transforms |
| Title | Dual tree complex wavelet transform based analysis of epileptiform discharges |
| URI | https://link.springer.com/article/10.1007/s41870-018-0149-5 https://www.proquest.com/docview/2210383642 |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2511-2112 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002710285 issn: 2511-2104 databaseCode: RSV dateStart: 20170301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADgwFiMFAOnECVkjZd2yPiIS5MiJd2q7oklUBom9YN-PnYWbIBAiS4Ng9VdmJ_lp3PAIfo9WQmjAjiRGCAIrkKirbhgdQ8UangWprCNptIOp20282u3Tvuyle7-5SktdSzx25SpNQkRVDxlcyCeBGW0Nul1K_h5vbBH6JIEL2KwzhPNrNGPpRKGQlNBxjiSJ_d_G7Xz_5pDjq_5Emt-7mo_-vH12HNoU12Mj0eG7Bg-g2o-04OzF3sBqx-oCXchKuzCS6idDWzFefmjb0W1KBijB8dzmXk_jQrHKcJG5TMDNHCoAWyw_Tal0iYTLUF9xfnd6eXgWu7ECgEezHax1AjrNFZqqIy5KjlJDVoNIu4jEiPGiMMjTizx03S4yqWKs16YUk8ORlR90TbUOsP-maH6qZ0Ysp2hBizpMixh-hMGgQdYaGyWIomcC_sXDlOcmqN8ZzP2JSt8HIUXk7Cy-MmHM2WDKeEHL9NbnkN5u5uVnkYEil8hIFXE469xubDP262-6fZe7ASkspt5UsLauPRxOzDsnoZP1ajA3tk3wFQm-Cm |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBalWsVs3BkxLIY9MkR1FLxbaIVuktJLsbUKQtTav-fGe2u62KCnrNPggzuzPfMLPfAByj12OxK107CF0MUJjD7bQuHZsJJ-SR6wgmU9VsIux0ol4vvtHvuAtT7W5SkspSzx67MTeiJikuFV-x2A4WYYmhwyLC_Nu7B3OIfJfoVTTGeVKZNfKhVMpIaNrGEIeZ7OZ3u372T3PQ-SVPqtxPo_yvH9-AdY02rbPp8diEBdmvQNl0crD0xa7A2gdawi1oX0xwEaWrLVVxLt-s15QaVIzxo8a5Frk_YaWa08Qa5JYcooVBC6SG6bUvkTDJYhvuG5fd86at2y7YHMFegPbREwhrRBxxP_cc1HIYSTSaaZD7pEeBEYZAnJk5MswcHjAexZmXE09OTNQ9_g6U-oO-3KW6KRHKvO4jxswpcswQnTGJoMNLeRwwtwqOEXbCNSc5tcZ4TmZsykp4CQovIeElQRVOZkuGU0KO3ybXjAYTfTeLxPOIFN7HwKsKp0Zj8-EfN9v70-wjWGl2262kddW53odVj9SvqmBqUBqPJvIAlvnL-LEYHarj-w7giOOK |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBalWsVt2DJyWYx6ZJjmItiloKPuhtSXc3oEhamlT9-c6km1ZFBfGafUBmdme-YWa_AThEr8cjRzuWHzgYoHBbWnFT2xZXdiBDx1Zcx0WziaDTCXu9qGv6nGZltXuZkpy8aSCWpjQ_GarkZPrwjTshNUxxqBCLR5Y_Dwuc6ugpXL99KA-U5xDVisE7T0WWjfwplTUSsrYw3OFlpvO7XT_7qhkA_ZIzLVxRu_rvn1iDVYNC2enk2KzDnE5rUC07PDBz4Wuw8oGucANuWmNcRGlsVlSi6zf2GlPjihw_GvzLyC0qFhuuEzZImB6i5UHLVAzTK2AiZ9LZJty3z-_OLizTjsGSCAJ9tJuuQrijolB6iWuj9oNQozGN_cQj_SqMPBTiz76tg74tfS7DqO8mxJ8TEaWPtwWVdJDqbaqnUoFOmh5iz4Qiyj6iNq4RjLixjHzu1MEuBS-k4SqnlhnPYsqyXAhPoPAECU_4dTiaLhlOiDp-m9wotSnMnc2E6xJZvIcBWR2OS-3Nhn_cbOdPsw9gqdtqi-vLztUuLLuk_aI4pgGVfDTWe7AoX_LHbLRfnOR36q7sbg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+tree+complex+wavelet+transform+based+analysis+of+epileptiform+discharges&rft.jtitle=International+journal+of+information+technology+%28Singapore.+Online%29&rft.au=Khan%2C+Ayesha+Tooba&rft.au=Khan%2C+Yusuf+Uzzaman&rft.date=2018-12-01&rft.issn=2511-2104&rft.eissn=2511-2112&rft.volume=10&rft.issue=4&rft.spage=543&rft.epage=550&rft_id=info:doi/10.1007%2Fs41870-018-0149-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41870_018_0149_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-2104&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-2104&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-2104&client=summon |