Digital Transformation of Pyrometallurgical Technologies. State, Scientific Problems, and Prospects of Development
The article provides an overview and critical analysis of the digitalization of the leading Russian ferrous metallurgy enterprises in accordance with the Industry 4.0 development concept. This concept provides for the creation of digital twins of pyrometallurgical technologies and the widespread use...
Uloženo v:
| Vydáno v: | Steel in translation Ročník 51; číslo 8; s. 522 - 530 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Moscow
Pleiades Publishing
01.08.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0967-0912, 1935-0988 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The article provides an overview and critical analysis of the digitalization of the leading Russian ferrous metallurgy enterprises in accordance with the Industry 4.0 development concept. This concept provides for the creation of digital twins of pyrometallurgical technologies and the widespread use of machine (technical) vision and artificial intelligence. Examples of domestic industrial systems using machine (technical) vision, digital assistants (twins) of metallurgical facilities and their complexes in the production cycle are presented. Technical vision systems used to control the processes in the upper and lower zones of blast furnaces are considered with regard to blast-furnace production. A promising area is the integration of technical vision and decision support systems, including algorithms and software modules for implementing deterministic mathematical models of individual blast furnace smelting phenomena. These algorithms and modules are based on the basic physical concepts of blast-furnace smelting processes. One of the main directions of the digital transformation of pyrometallurgical technologies is the creation of intelligent control systems for the real-time management of industrial processes in individual units and their systems in metallurgy. The formulation and solution of tasks require not only studying the characteristics that describe the effect of changes in smelting conditions on the performance indicators of individual furnaces, but also a detailed analysis for mathematically describing external and internal constraints. The authors present examples of subsystems for controlling heat losses in a blast furnace, predicting the parameters of tuyere zones and controlling the distribution of air-blast parameters around the blast furnace perimeter, an automated system of analyzing and predicting production situations in the blast-furnace plant. These systems are based on modern principles and technologies of developing appropriate mathematical, algorithmic and software support. |
|---|---|
| AbstractList | The article provides an overview and critical analysis of the digitalization of the leading Russian ferrous metallurgy enterprises in accordance with the Industry 4.0 development concept. This concept provides for the creation of digital twins of pyrometallurgical technologies and the widespread use of machine (technical) vision and artificial intelligence. Examples of domestic industrial systems using machine (technical) vision, digital assistants (twins) of metallurgical facilities and their complexes in the production cycle are presented. Technical vision systems used to control the processes in the upper and lower zones of blast furnaces are considered with regard to blast-furnace production. A promising area is the integration of technical vision and decision support systems, including algorithms and software modules for implementing deterministic mathematical models of individual blast furnace smelting phenomena. These algorithms and modules are based on the basic physical concepts of blast-furnace smelting processes. One of the main directions of the digital transformation of pyrometallurgical technologies is the creation of intelligent control systems for the real-time management of industrial processes in individual units and their systems in metallurgy. The formulation and solution of tasks require not only studying the characteristics that describe the effect of changes in smelting conditions on the performance indicators of individual furnaces, but also a detailed analysis for mathematically describing external and internal constraints. The authors present examples of subsystems for controlling heat losses in a blast furnace, predicting the parameters of tuyere zones and controlling the distribution of air-blast parameters around the blast furnace perimeter, an automated system of analyzing and predicting production situations in the blast-furnace plant. These systems are based on modern principles and technologies of developing appropriate mathematical, algorithmic and software support. |
| Author | Rybolovlev, V. Yu Gurin, I. A. Schnaider, D. A. Spirin, N. A. Lavrov, V. V. Krasnobaev, A. V. |
| Author_xml | – sequence: 1 givenname: N. A. surname: Spirin fullname: Spirin, N. A. email: n.a.spirin@urfu.ru organization: Ural Federal University named after the first President of Russia B.N. Yeltsin – sequence: 2 givenname: V. V. surname: Lavrov fullname: Lavrov, V. V. email: v.v.lavrov@urfu.ru organization: PJSC Magnitogorsk Iron and Steel Works – sequence: 3 givenname: V. Yu surname: Rybolovlev fullname: Rybolovlev, V. Yu email: rybolovlev@mmk.ru organization: PJSC Magnitogorsk Iron and Steel Works – sequence: 4 givenname: D. A. surname: Schnaider fullname: Schnaider, D. A. email: Shnayder.DA@mmk.ru organization: PJSC Magnitogorsk Iron and Steel Works – sequence: 5 givenname: A. V. surname: Krasnobaev fullname: Krasnobaev, A. V. email: krasnobaev.av@mmk.ru organization: PJSC Magnitogorsk Iron and Steel Works – sequence: 6 givenname: I. A. surname: Gurin fullname: Gurin, I. A. email: Ivan.gurin@urfu.ru organization: Ural Federal University named after the first President of Russia B.N. Yeltsin |
| BookMark | eNp9kFtLw0AQhRepYFv9Ab4FfG3qXrJJ9lFab1Cw0PocNptJ3JLs1t1U6L93QwVB0adh5pxvZjgTNDLWAELXBM8Zwex2g0WaYUEoJTjHJGFnaEwE4zEWeT5C40GOB_0CTbzfYcxTyskYuaVudC_baOuk8bV1ney1NZGto_XR2Q6C1h5co9XgAfVmbGsbDX4ebXrZwyzaKA2m17VW0drZsoXOzyJpqqHze1C9H5Yt4QNau--C9RKd17L1cPVVp-j14X67eIpXL4_Pi7tVrCgjLKYpB8AVJKpmNWNCgsCJCCOeVaVSQqg8BaJKIcpKprzCCed5LoVIc0VrDmyKbk57986-H8D3xc4enAknC5rijNE8YSK4yMmlwrveQV3sne6kOxYEF0O0xa9oA5P9YFTIcMitd1K3_5L0RPpwxTTgvn_6G_oE8IaPTg |
| CitedBy_id | crossref_primary_10_1016_j_dche_2023_100085 crossref_primary_10_3390_met12101624 |
| Cites_doi | 10.1088/1757-899X/411/1/012072 10.32339/0135-5910-2019-11-1231-1236 10.33313/380/213 10.1109/TII.2012.2226897 10.1016/j.powtec.2018.04.062 10.1109/TIM.2011.2178675 10.1587/transinf.2017EDP7127 10.1007/s11015-018-0676-0 10.2355/isijinternational.ISIJINT-2017-344 10.1109/MITP.2016.15 10.3103/S0967091218100108 10.3390/s18113792 10.1007/s11015-017-0516-7 10.2355/isijinternational.42.44 10.33313/377/061 10.1007/s11015-018-0648-4 10.33313/377/050 10.1016/S0952-1976(00)00062-2 10.1109/IntelliSys.2017.8324364 10.3103/S0967091210010079 10.1016/S1006-706X(13)60108-9 10.1016/S1006-706X(16)30035-8 10.1016/C2017-0-00007-1 10.1080/25726641.2020.1733357 10.2355/isijinternational.50.914 10.33313/377/062 10.2355/isijinternational.46.1297 10.1016/j.conengprac.2018.10.009 10.33313/380/035 10.32339/0135-5910-2020-4-339-343 10.1109/ICIEAM.2016.7910936 10.1002/srin.201700071 10.1016/j.orp.2015.05.001 10.1007/s11015-020-00907-y 10.2355/isijinternational.44.573 |
| ContentType | Journal Article |
| Copyright | Allerton Press, Inc. 2021. ISSN 0967-0912, Steel in Translation, 2021, Vol. 51, No. 8, pp. 522–530. © Allerton Press, Inc., 2021. Russian Text © The Author(s), 2021, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, 2021, No. 8, pp. 588–598. |
| Copyright_xml | – notice: Allerton Press, Inc. 2021. ISSN 0967-0912, Steel in Translation, 2021, Vol. 51, No. 8, pp. 522–530. © Allerton Press, Inc., 2021. Russian Text © The Author(s), 2021, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, 2021, No. 8, pp. 588–598. |
| DBID | AAYXX CITATION 8BQ 8FD JG9 |
| DOI | 10.3103/S0967091221080143 |
| DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1935-0988 |
| EndPage | 530 |
| ExternalDocumentID | 10_3103_S0967091221080143 |
| GroupedDBID | -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5VS 6NX 8FE 8FG 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 D1I DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR I~X I~Z J-C JBSCW JZLTJ KB. KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P9N PDBOC PF0 PT4 Q2X QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCM SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XU3 YLTOR Z7R Z7S Z7Y Z7Z Z85 ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT PQGLB 8BQ 8FD JG9 |
| ID | FETCH-LOGICAL-c2313-265ee0de4cf3f339ae9049ee057dbcc99c86e1cb99bda65d045588a9968c2f5e3 |
| IEDL.DBID | RSV |
| ISSN | 0967-0912 |
| IngestDate | Thu Sep 25 00:39:31 EDT 2025 Tue Nov 18 21:01:41 EST 2025 Sat Nov 29 05:29:07 EST 2025 Fri Feb 21 02:47:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | software optimization pyrometallurgical technologies digital twins digital transformation intelligent control systems technological tasks machine vision algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2313-265ee0de4cf3f339ae9049ee057dbcc99c86e1cb99bda65d045588a9968c2f5e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2607328439 |
| PQPubID | 326300 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2607328439 crossref_primary_10_3103_S0967091221080143 crossref_citationtrail_10_3103_S0967091221080143 springer_journals_10_3103_S0967091221080143 |
| PublicationCentury | 2000 |
| PublicationDate | 20210800 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 8 year: 2021 text: 20210800 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: London |
| PublicationTitle | Steel in translation |
| PublicationTitleAbbrev | Steel Transl |
| PublicationYear | 2021 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | Zagainov, S.A., Onorin, O.P., Gileva, L.Yu., Volkov, D.N., and Tleugobulov, B.S., Development and implementation of mathematical and software support for flexible technological modes of blast furnace operation, Stal’, 2000, no. 9, pp. 12–15. Frenkel’, M.M., Fedulov, Yu.V., Belova, O.A., et al., Expert control system for blast furnace smelting, Stal’, 1992, no. 7, pp. 15–18. Spirin, N.A., Onorin, O.P., Istomin, A.S., Lavrov, V.V., and Gurin, I.A., Information modelling system for diagnostics of different types of blast-furnace smelting deviations from normal conditions, IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 411, no. 1, art. ID 012072. https://doi.org/10.1088/1757-899X/411/1/012072 HashimotoY.KitamuraY.OhashiT.SawaY.KanoM.Transient model-based operation guidance on blast furnaceControl Eng. Pract20198213014110.1016/j.conengprac.2018.10.009 BambauerF.WirtzS.SchererV.BartuschH.Transient DEM-CFD simulation of solid and fluid flow in a three dimensional blast furnace modelPowder Technol201833453641:CAS:528:DC%2BC1cXovVOltLc%3D10.1016/j.powtec.2018.04.062 Digital twin, Digital twin of organization. http:// www.tadviser.ru/index.php/Статья:Цифровой_двойник_ (Digital_Twin). Cited August 5, 2021. Spirin, N.A., Lavrov, V.V., Rybolovlev, V.Yu., Gileva, L.Yu., Krasnobaev, A.V., Shvydkii, V.S., Onorin, O.P., Shchipanov, K.A., and Burykin, A.A., Matematicheskoe modelirovanie metallurgicheskikh protsessov v ASU TP (Mathematical Modeling of Metallurgical Processes in APCS), Yekaterinburg: Ural. Fed. Univ., 2014. SpirinN.A.PolinovA.A.GurinI.A.BeginyukV.A.PishnograevS.N.IstominA.S.Information system for real-time prediction of the silicon content of iron in a blast furnaceMetallurgist2020638989051:CAS:528:DC%2BB3cXislelsLc%3D10.1007/s11015-020-00907-y SibagatullinS.K.KharchenkoA.S.DevyatchenkoL.D.Assessment of nonuniform batch distribution in blast furnaceSteel Transl20184862463010.3103/S0967091218100108 Spirin, N.A., Lavrov, V.V., Rybolovlev, V.Yu., Krasnobaev, A.V., Onorin, O.P., and Kosachenko, I.E., Model’nye sistemy podderzhki prinyatiya reshenii v ASU TP domennoi plavki (Model Decision Support Systems in APCS of Blast Furnace Smelting), Yekaterinburg: Ural. Fed. Univ., 2011. Bol’shakov, V.I., Tekhnologiya vysokoeffektivnoi energosberegayushchei domennoi plavki (Technology of High-Efficiency Energy-Saving Blast Furnace Smelting), Kiev: Naukova Dumka, 2007. Dobroskok, V.A., Kuznetsov, N.A., and Tumanov, A.I., Mathematical models of gas dynamics and reduction processes in a blast furnace, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1985, no. 3, pp. 145, 146. AbhaleP.B.ViswanathanN.N.SaxenH.Numerical modeling of blast furnace—Evolution and recent trendsMiner. Process. Extr. Metall20201291661831:CAS:528:DC%2BB3cXls1GhsLg%3D10.1080/25726641.2020.1733357 KuangS.LiZ.YuA.Review on modeling and simulation of blast furnaceSteel Res. Int20188917000711:CAS:528:DC%2BC2sXhtFamt7bF10.1002/srin.201700071 Dmitriev, A.N., Matematicheskoe modelirovanie domennogo protsessa (Mathematical Modeling of Blast Furnace Process), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2011. ZhuQ.LüC.-L.YinY.-X.ChenX.-Z.Burden distribution calculation of bell-less top of blast furnace based on multi-radar dataJ. Iron Steel Res. Int201320333710.1016/S1006-706X(13)60108-9 Alter, M.A., Optimization of parameters of blast furnace smelting under conditions of plant operation with limited supply of coke, natural gas or iron-bearing materials, Proc. AISTech 2020 of the Iron and Steel Technology Conf., Cleveland, OH, Warrendale, PA: Assoc. Iron Steel Technol., 2020, vol. 1, pp. 302–309. https://doi.org/10.33313/380/035 Solov’ev, V.I., Pavlova, E.A., and Krasnobaev, V.A., Intelligent automated control system for metallurgical units, Chern. Met., 2004, nos. 7–8, pp. 26–29. ChenJ.Predictive system for blast furnaces by integrating a neural network with qualitative analysisEng. Appl. Artif. Intell200114778510.1016/S0952-1976(00)00062-2 Spirin, N.A., Ovchinnikov, Yu.N., Shvydkii, V.S., and Yaroshenko, Yu.G., Teploobmen i povyshenie effektivnosti domennoi plavki (Heat Transfer and Improving the Efficiency of Blast-Furnace Smelting), Yekaterinburg: Ural. Gos. Tekh. Univ., 1995. Bettinger, D., Fritschek, H., Schaler, M., Kronberger, T., and Wollhofen, R., A holistic approach to ironmaking digitalization, Proc. AISTech 2019 of the Iron and Steel Technology Conf., Pittsburgh, PA, Warrendale, PA: Assoc. Iron Steel Technol., 2019, pp. 577–585. https://doi.org/10.33313/377/061 PavlovA.V.PolinovA.A.SpirinN.A.OnorinO.P.LavrovV.V.Use of model systems for solving new technological problems in blast-furnace productionMetallurgist2017614484541:CAS:528:DC%2BC2sXhslKgurzN10.1007/s11015-017-0516-7 Kitaev, B.I., Yaroshenko, Yu.G., Sukhanov, E.L., Ovchinnikov, Yu.N., and Shvydkii, V.S., Teplotekhnika domennogo protsessa (Heat Engineering of Blast Furnace), Moscow: Metallurgiya, 1978. PolinovA.A.PavlovA.V.OnorinO.P.SpirinN.A.GurinI.A.Blast distribution over the air tuyeres of a blast furnaceMetallurgist2018624184241:CAS:528:DC%2BC1cXhslKqtb7M10.1007/s11015-018-0676-0 The ChelPipe Group has introduced a new technology for testing pipes based on machine vision, Press Center of the ChelPipe Group. https://chelpipe.ru/press-center/gruppa-chtpz-vnedrila-novuyu-tekhnologiyu-ispytaniya-trub-na-osnove-mashinnogo-zreniya-/. Cited August 5, 2021. OnorinO.P.PolinovA.A.PavlovA.V.SpirinN.A.GurinI.A.About a possibility of using blast furnace heat balance to control heat lossesMetallurgist2018622182241:CAS:528:DC%2BC1cXhsFOlur3F10.1007/s11015-018-0648-4 WaissiG.R.DemirM.HumbleJ.E.LevB.Automation of strategy using IDEF0—A proof of conceptOper. Res. Persp2015210611310.1016/j.orp.2015.05.001 Kulakov, S.M. and Trofimov, V.B., Intellektual’nye sistemy upravleniya tekhnologicheskimi ob”ektami: teoriya i praktika (Intelligent Control Systems for Technological Objects: Theory and Practice), Novokuznetsk: Sib. Gos. Ind. Univ., 2009. Machine (technical) vision, Metallurgy, Mallenom Systems. https://www.mallenom.ru/resheniya/mashinnoe-zrenie/po-otroslyam/metallurgiia. Cited August 5, 2021. Murav’evaI.G.TogobitskayaD.N.NesterovA.S.IvanchaN.G.A new level of blast furnace smelting control in FMI developments, Chern. Metall., Byull. Nauchno-Tekh.Ekon. Inf2019751231123610.32339/0135-5910-2019-11-1231-1236 Chentsov, A.V., Chesnokov, Yu.A., and Shavrin, S.V., Balansovaya logiko-statisticheskaya model’ domennogo protsessa (Balance Logical- Statistical Model of Blast-Furnace Process), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2003. Tsymbal, V.P., Matematicheskoe modelirovanie slozhnykh sistem v metallurgii (Mathematical Modeling of Complex Systems in Metallurgy), Kemerovo: Kuzbassvuzizdat, 2006. Ramm, A.N., Sovremennyi domennyi protsess (Modern Blast Furnace Process), Moscow: Metallurgiya, 1980. Spirin, N.A., Ipatov, Yu.V., Lobanov, V.I., Krasnobaev, V.A., Lavrov, V.V., Rybolovlev, V.Yu., Shvydkii, V.S., Zagainov, S.A., and Onorin, O.P., Informatsionnye sistemy v metallurgii (Information Systems in Metallurgy), Yekaterinburg: Ural. Gos. Tekh. Univ.–Ural. Politekh. Inst., 2001. Fu, D., Chen, Y., Rahman, M.T., Zhou, C.Q., D’Alessio, J., and Ferron, K.J., Validation of the numerical model for blast furnace shaft process, Proc. AISTech 2012 of the Iron and Steel Technology Conf., Atlanta, GA, Warrendale, PA: Assoc. Iron Steel Technol., 2012, no. 92531, pp. 417–427. Kazarinov, L.S. and Barbasova, T.A., Elliptic component analysis, Proc. 2016 Int. Conf. on Industrial Engineering, Applications and Manufacturing (ICIEAM), Chelyabinsk, 2016, no. 7910936. https://doi.org/10.1109/ICIEAM.2016.7910936 SaxenH.GaoC.GaoZ.Data-driven time discrete models for dynamic prediction of the hot metal silicon content in the blast furnace—A reviewIEEE Trans. Ind. Inf201392213222510.1109/TII.2012.2226897 Control of position of hot-rolled coils on a conveyor, Mallenom Systems. https://www.mallenom.ru/vnedrenia/pmz/metallurgy2. Cited August 5, 2021. De CastroJ.A.NogamiH.YagiJ.-I.Three-dimensional multiphase mathematical modeling of the blast furnace based on the multifluid modelISIJ Int200242445210.2355/isijinternational.42.44 Zhang, Y., Sukhram, M., Cameron, I., Bolen, J., and Rozo, A., Industrial perspective of digital twin development and applications for iron and steel processes, Proc. AISTech 2020 of the Iron and Steel Technology Conf., Cleveland, OH, Warrendale, PA: Assoc. Iron Steel Technol., 2020, vol. 3, pp. 1975–1984. https://doi.org/10.33313/380/213 JimenezJ.MochonJ.De AyalaJ.S.ObesoF.Blast furnace hot metal temperature prediction through neural networks-based modelsISIJ Int2004445735801:CAS:528:DC%2BD2cXis1KntL0%3D10.2355/isijinternational.44.573 KamoK.HamamotoK.MaedaT.NarazakiH.YakeyaM.TanakaY.Method for predicting gas channeling in blast furnaceRes. Dev. Kobe Steel Eng. Rep201868711 Severstal is mastering manufacture of video inspection systems for rolled surfaces, Metal supply and sales. https://www.metalinfo.ru/ru/news/118725. Cited August 5, 2021. Andronov, V.N., Ekstraktsiya chernykh metallov iz prirodnogo i tekhnogennogo syr’ya. Domennyi protsess (Extraction of Ferrous Metals from Natural and Technogenic Raw Materials. Blast Furnace Process), Donetsk: Nord-Press, 2009. PeaceyJ.G.DavenportW.G.The Iron Blast Furnace: Theory and Practice2013AmsterdamElsevier Tovarovskii, I.G., Domennaya plavka (Blast Furnace Smelting), Dnepropetrovsk: Porogi, 2009. PanD.JiangZ.ChenZ.GuiW.XieY.YangC.Temperature measurement method for blast furnace molten iron based on infrared thermography and temperature reduction modelSensors20181837921:CAS:528:DC%2BC1MXhtFWhurzP10.3390/s18113792 UedaS.NatsuiS.NogamiH.YagiJ.-I.AriyamaT.Recent progress and future perspective on mathematical modeling of blast furnaceISIJ Int2010509149231:CAS:528:DC%2BC3cXhtVWlsb7L10.2355/isijinternational.50.914 DmitrievA.N.ZolotykhM.O.Vit’kinaG.Yu.Improvement of sintering and blast-furnace production using digital technologies within the framework of Industry 4.0, Chern. Metall., Byull. Nauchno-Tekh.Ekon. Inf2020633934510.32339/ K. Kamo (1381_CR58) 2018; 68 B. Chen (1381_CR69) 2016; 18 Y. Hashimoto (1381_CR42) 2019; 82 A.V. Pavlov (1381_CR40) 2017; 61 H. Saxen (1381_CR43) 2013; 9 S. Ueda (1381_CR35) 2010; 50 J. Jimenez (1381_CR50) 2004; 44 J. Chen (1381_CR49) 2001; 14 1381_CR2 A.N. Dmitriev (1381_CR4) 2020; 6 1381_CR1 P.B. Abhale (1381_CR19) 2020; 129 1381_CR47 1381_CR48 R. Usamentiaga (1381_CR13) 2012; 61 1381_CR45 1381_CR46 G. Stockman (1381_CR5) 2001 E.N. Ishmet’ev (1381_CR17) 2010; 40 1381_CR16 N.A. Spirin (1381_CR18) 1998; 28 1381_CR10 1381_CR54 1381_CR11 1381_CR55 1381_CR52 1381_CR53 1381_CR56 J.A. De Castro (1381_CR22) 2002; 42 1381_CR57 A.A. Polinov (1381_CR60) 2018; 62 F. Pettersson (1381_CR62) 2006; 46 L. Shi (1381_CR14) 2016; 23 I.G. Murav’eva (1381_CR41) 2019; 75 D. Pan (1381_CR12) 2018; 18 1381_CR29 1381_CR27 1381_CR28 O.P. Onorin (1381_CR59) 2018; 62 S. Kuang (1381_CR61) 2018; 89 1381_CR21 1381_CR65 1381_CR66 1381_CR63 Q. Zhu (1381_CR15) 2013; 20 1381_CR64 1381_CR25 1381_CR26 1381_CR68 1381_CR8 1381_CR7 1381_CR9 J.G. Peacey (1381_CR23) 2013 1381_CR3 S.K. Sibagatullin (1381_CR51) 2018; 48 1381_CR6 F. Bambauer (1381_CR20) 2018; 334 J. Phan (1381_CR70) 2010 N.A. Spirin (1381_CR44) 2020; 63 1381_CR38 1381_CR39 M. Baniasadi (1381_CR24) 2018; 58 1381_CR32 1381_CR33 1381_CR30 1381_CR31 1381_CR36 G.R. Waissi (1381_CR67) 2015; 2 1381_CR37 1381_CR34 |
| References_xml | – reference: ShiL.WenY.-B.ZhaoG.-S.YuT.Recognition of blast furnace gas flow center distribution based on infrared image processingJ. Iron Steel Res. Int20162320320910.1016/S1006-706X(16)30035-8 – reference: Kurunov, I.F. and Yashchenko, S.B., Methodology for calculating the technical and economic indicators of blast-furnace smelting, Nauchn. Tr. Mosk. Inst. Stali Splavov, 1983, no. 152, pp. 57–64. – reference: Spirin, N.A., Ovchinnikov, Yu.N., Shvydkii, V.S., and Yaroshenko, Yu.G., Teploobmen i povyshenie effektivnosti domennoi plavki (Heat Transfer and Improving the Efficiency of Blast-Furnace Smelting), Yekaterinburg: Ural. Gos. Tekh. Univ., 1995. – reference: Cameron, I., Sukhram, M., Lefebvre, K., and Davenport, W., Blast Furnace Ironmaking: Analysis, Control and Optimization, Amsterdam: Elsevier, 2019, 1st ed. https://doi.org/10.1016/C2017-0-00007-1 – reference: SpirinN.A.PolinovA.A.GurinI.A.BeginyukV.A.PishnograevS.N.IstominA.S.Information system for real-time prediction of the silicon content of iron in a blast furnaceMetallurgist2020638989051:CAS:528:DC%2BB3cXislelsLc%3D10.1007/s11015-020-00907-y – reference: BaniasadiM.PetersB.Preliminary investigation on the capability of extended discrete element method for treating the dripping zone of a blast furnaceISIJ Int20185825341:CAS:528:DC%2BC1cXptFaqsbY%3D10.2355/isijinternational.ISIJINT-2017-344 – reference: Zhang, Y., Sukhram, M., Cameron, I., Bolen, J., and Rozo, A., Industrial perspective of digital twin development and applications for iron and steel processes, Proc. AISTech 2020 of the Iron and Steel Technology Conf., Cleveland, OH, Warrendale, PA: Assoc. Iron Steel Technol., 2020, vol. 3, pp. 1975–1984. https://doi.org/10.33313/380/213 – reference: PanD.JiangZ.ChenZ.GuiW.XieY.YangC.Temperature measurement method for blast furnace molten iron based on infrared thermography and temperature reduction modelSensors20181837921:CAS:528:DC%2BC1MXhtFWhurzP10.3390/s18113792 – reference: Alter, M.A., Optimization of parameters of blast furnace smelting under conditions of plant operation with limited supply of coke, natural gas or iron-bearing materials, Proc. AISTech 2020 of the Iron and Steel Technology Conf., Cleveland, OH, Warrendale, PA: Assoc. Iron Steel Technol., 2020, vol. 1, pp. 302–309. https://doi.org/10.33313/380/035 – reference: PetterssonF.SaxenH.Model for economic optimization of iron production in the blast furnaceISIJ Int200646129713051:CAS:528:DC%2BD28XhtV2hsbnL10.2355/isijinternational.46.1297 – reference: Spirin, N.A., Ipatov, Yu.V., Lobanov, V.I., Krasnobaev, V.A., Lavrov, V.V., Rybolovlev, V.Yu., Shvydkii, V.S., Zagainov, S.A., and Onorin, O.P., Informatsionnye sistemy v metallurgii (Information Systems in Metallurgy), Yekaterinburg: Ural. Gos. Tekh. Univ.–Ural. Politekh. Inst., 2001. – reference: OnorinO.P.PolinovA.A.PavlovA.V.SpirinN.A.GurinI.A.About a possibility of using blast furnace heat balance to control heat lossesMetallurgist2018622182241:CAS:528:DC%2BC1cXhsFOlur3F10.1007/s11015-018-0648-4 – reference: Chentsov, A.V., Chesnokov, Yu.A., and Shavrin, S.V., Balansovaya logiko-statisticheskaya model’ domennogo protsessa (Balance Logical- Statistical Model of Blast-Furnace Process), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2003. – reference: Forum “Information Technologies in Metallurgy and Metalworking,” ITMETALL Forum. https:// итметалл.рф/. Cited January 10, 2021. – reference: UedaS.NatsuiS.NogamiH.YagiJ.-I.AriyamaT.Recent progress and future perspective on mathematical modeling of blast furnaceISIJ Int2010509149231:CAS:528:DC%2BC3cXhtVWlsb7L10.2355/isijinternational.50.914 – reference: JimenezJ.MochonJ.De AyalaJ.S.ObesoF.Blast furnace hot metal temperature prediction through neural networks-based modelsISIJ Int2004445735801:CAS:528:DC%2BD2cXis1KntL0%3D10.2355/isijinternational.44.573 – reference: Gordon, Y., Izumskiy, N., Matveienko, G., Chaika, O., Lebid, V., and Vyshinskya, O., Diagnostics, optimization and mathematical models of coke-sinter-hot metal production process, Proc. AISTech 2019 of the Iron and Steel Technology Conf., Pittsburgh, PA, 2019, pp. 479–484. https://doi.org/10.33313/377/050 – reference: Digital twin. Gartner glossary. https://www.gartner.com/en/information-technology/glossary/digital-twin. Cited August 5, 2021. – reference: Ramm, A.N., Sovremennyi domennyi protsess (Modern Blast Furnace Process), Moscow: Metallurgiya, 1980. – reference: Andronov, V.N., Ekstraktsiya chernykh metallov iz prirodnogo i tekhnogennogo syr’ya. Domennyi protsess (Extraction of Ferrous Metals from Natural and Technogenic Raw Materials. Blast Furnace Process), Donetsk: Nord-Press, 2009. – reference: Emel’yanov, S.V., Korovin, S.K., Myshlyaev, L.P., Rykov, A.S., and Evtushenko, V.F., Teoriya i praktika prognozirovaniya v sistemakh upravleniya (Theory and Practice of Prediction in Control Systems), Moscow: Rossiiskie Universitety, 2008. – reference: SpirinN.A.ShvydkiiV.S.OvchinnikovYu.N.LavrovV.V.GusevA.A.Mathematical modeling of heat transfer in blast furnace racewaySteel Transl19982858 – reference: PolinovA.A.PavlovA.V.OnorinO.P.SpirinN.A.GurinI.A.Blast distribution over the air tuyeres of a blast furnaceMetallurgist2018624184241:CAS:528:DC%2BC1cXhslKqtb7M10.1007/s11015-018-0676-0 – reference: Ishmet’evE.N.SalikhovZ.G.ShchetininA.P.BudadinZ.G.Automatic diagnostics of the state of hazardous zones in pyrometallurgical systemsSteel Transl201040273010.3103/S0967091210010079 – reference: Digital twin, Digital twin of organization. http:// www.tadviser.ru/index.php/Статья:Цифровой_двойник_ (Digital_Twin). Cited August 5, 2021. – reference: Bol’shakov, V.I., Tekhnologiya vysokoeffektivnoi energosberegayushchei domennoi plavki (Technology of High-Efficiency Energy-Saving Blast Furnace Smelting), Kiev: Naukova Dumka, 2007. – reference: StockmanG.ShapiroL.G.Computer Vision2001Upper Saddle River, NJPrentice Hall – reference: AbhaleP.B.ViswanathanN.N.SaxenH.Numerical modeling of blast furnace—Evolution and recent trendsMiner. Process. Extr. Metall20201291661831:CAS:528:DC%2BB3cXls1GhsLg%3D10.1080/25726641.2020.1733357 – reference: WaissiG.R.DemirM.HumbleJ.E.LevB.Automation of strategy using IDEF0—A proof of conceptOper. Res. Persp2015210611310.1016/j.orp.2015.05.001 – reference: HashimotoY.KitamuraY.OhashiT.SawaY.KanoM.Transient model-based operation guidance on blast furnaceControl Eng. Pract20198213014110.1016/j.conengprac.2018.10.009 – reference: Spirin, N.A., Lavrov, V.V., Rybolovlev, V.Yu., Gileva, L.Yu., Krasnobaev, A.V., Shvydkii, V.S., Onorin, O.P., Shchipanov, K.A., and Burykin, A.A., Matematicheskoe modelirovanie metallurgicheskikh protsessov v ASU TP (Mathematical Modeling of Metallurgical Processes in APCS), Yekaterinburg: Ural. Fed. Univ., 2014. – reference: Frenkel’, M.M., Fedulov, Yu.V., Belova, O.A., et al., Expert control system for blast furnace smelting, Stal’, 1992, no. 7, pp. 15–18. – reference: Dobroskok, V.A., Kuznetsov, N.A., and Tumanov, A.I., Mathematical models of gas dynamics and reduction processes in a blast furnace, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1985, no. 3, pp. 145, 146. – reference: ZhuQ.LüC.-L.YinY.-X.ChenX.-Z.Burden distribution calculation of bell-less top of blast furnace based on multi-radar dataJ. Iron Steel Res. Int201320333710.1016/S1006-706X(13)60108-9 – reference: Control of position of hot-rolled coils on a conveyor, Mallenom Systems. https://www.mallenom.ru/vnedrenia/pmz/metallurgy2. Cited August 5, 2021. – reference: Murav’evaI.G.TogobitskayaD.N.NesterovA.S.IvanchaN.G.A new level of blast furnace smelting control in FMI developments, Chern. Metall., Byull. Nauchno-Tekh.Ekon. Inf2019751231123610.32339/0135-5910-2019-11-1231-1236 – reference: Ge, A.X., A neural network approach to the modeling of blast furnace, MSc Thesis, Cambridge, MA: Mass. Inst. Technol., 1999. – reference: Kitaev, B.I., Yaroshenko, Yu.G., Sukhanov, E.L., Ovchinnikov, Yu.N., and Shvydkii, V.S., Teplotekhnika domennogo protsessa (Heat Engineering of Blast Furnace), Moscow: Metallurgiya, 1978. – reference: ChenJ.Predictive system for blast furnaces by integrating a neural network with qualitative analysisEng. Appl. Artif. Intell200114778510.1016/S0952-1976(00)00062-2 – reference: The ChelPipe Group has introduced a new technology for testing pipes based on machine vision, Press Center of the ChelPipe Group. https://chelpipe.ru/press-center/gruppa-chtpz-vnedrila-novuyu-tekhnologiyu-ispytaniya-trub-na-osnove-mashinnogo-zreniya-/. Cited August 5, 2021. – reference: Tsymbal, V.P., Matematicheskoe modelirovanie slozhnykh sistem v metallurgii (Mathematical Modeling of Complex Systems in Metallurgy), Kemerovo: Kuzbassvuzizdat, 2006. – reference: Spirin, N.A., Onorin, O.P., Istomin, A.S., Lavrov, V.V., and Gurin, I.A., Information modelling system for diagnostics of different types of blast-furnace smelting deviations from normal conditions, IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 411, no. 1, art. ID 012072. https://doi.org/10.1088/1757-899X/411/1/012072 – reference: Xie, H., Wang, J., Wang, G., and Sun, X.-D., Application of big data in optimization of blast furnace operation, Proc. AISTech 2019 of the Iron and Steel Technology Conf., Pittsburgh, PA, Warrendale, PA: Assoc. Iron Steel Technol., 2019, pp. 587–591. https://doi.org/10.33313/377/062 – reference: Bettinger, D., Fritschek, H., Schaler, M., Kronberger, T., and Wollhofen, R., A holistic approach to ironmaking digitalization, Proc. AISTech 2019 of the Iron and Steel Technology Conf., Pittsburgh, PA, Warrendale, PA: Assoc. Iron Steel Technol., 2019, pp. 577–585. https://doi.org/10.33313/377/061 – reference: KamoK.HamamotoK.MaedaT.NarazakiH.YakeyaM.TanakaY.Method for predicting gas channeling in blast furnaceRes. Dev. Kobe Steel Eng. Rep201868711 – reference: Kulakov, S.M. and Trofimov, V.B., Intellektual’nye sistemy upravleniya tekhnologicheskimi ob”ektami: teoriya i praktika (Intelligent Control Systems for Technological Objects: Theory and Practice), Novokuznetsk: Sib. Gos. Ind. Univ., 2009. – reference: Dmitriev, A.N., Matematicheskoe modelirovanie domennogo protsessa (Mathematical Modeling of Blast Furnace Process), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2011. – reference: Hou, C., Wang, J., and Chen, C., Using hierarchical scenarios to predict the reliability of component-based software, IEICE Trans. Inf. Syst., 2018, vol. E101D, no. 2, pp. 405–414. https://doi.org/10.1587/transinf.2017EDP7127 – reference: UsamentiagaR.MolledaJ.GarciaD.GrandaJ.C.RenduelesJ.L.Temperature measurement of molten pig iron with slag characterization and detection using infrared computer visionIEEE Trans. Instrum. Meas2012611149115910.1109/TIM.2011.2178675 – reference: PavlovA.V.PolinovA.A.SpirinN.A.OnorinO.P.LavrovV.V.Use of model systems for solving new technological problems in blast-furnace productionMetallurgist2017614484541:CAS:528:DC%2BC2sXhslKgurzN10.1007/s11015-017-0516-7 – reference: Kazarinov, L.S. and Barbasova, T.A., Elliptic component analysis, Proc. 2016 Int. Conf. on Industrial Engineering, Applications and Manufacturing (ICIEAM), Chelyabinsk, 2016, no. 7910936. https://doi.org/10.1109/ICIEAM.2016.7910936 – reference: PeaceyJ.G.DavenportW.G.The Iron Blast Furnace: Theory and Practice2013AmsterdamElsevier – reference: Babarykin, N.N., Teoriya i tekhnologiya domennogo protsessa (Theory and Technology of Blast Furnace Process), Magnitogorsk: Magnitogorsk. Gos. Tekh. Univ., 2009. – reference: Shnayder, D.A., Kazarinov, L.S., Barbasova, T.A., and Lipatnikov, A.V., Data mining and model-predictive approach for blast furnace thermal control, Proc. 2017 Intelligent Systems Conf. (IntelliSys), Red Hook, NY: Curran Assoc., 2017, pp. 653–660. https://doi.org/10.1109/IntelliSys.2017.8324364 – reference: TV-MMK, Leader of digitalization, air: 17-12-2020, YouTube. https://www.youtube.com/watch?v=7opclYs93dA. Cited August 5, 2021. – reference: SibagatullinS.K.KharchenkoA.S.DevyatchenkoL.D.Assessment of nonuniform batch distribution in blast furnaceSteel Transl20184862463010.3103/S0967091218100108 – reference: SaxenH.GaoC.GaoZ.Data-driven time discrete models for dynamic prediction of the hot metal silicon content in the blast furnace—A reviewIEEE Trans. Ind. Inf201392213222510.1109/TII.2012.2226897 – reference: KuangS.LiZ.YuA.Review on modeling and simulation of blast furnaceSteel Res. Int20188917000711:CAS:528:DC%2BC2sXhtFamt7bF10.1002/srin.201700071 – reference: Tovarovskii, I.G., Domennaya plavka (Blast Furnace Smelting), Dnepropetrovsk: Porogi, 2009. – reference: De CastroJ.A.NogamiH.YagiJ.-I.Three-dimensional multiphase mathematical modeling of the blast furnace based on the multifluid modelISIJ Int200242445210.2355/isijinternational.42.44 – reference: Spirin, N.A., Lavrov, V.V., Rybolovlev, V.Yu., Krasnobaev, A.V., Onorin, O.P., and Kosachenko, I.E., Model’nye sistemy podderzhki prinyatiya reshenii v ASU TP domennoi plavki (Model Decision Support Systems in APCS of Blast Furnace Smelting), Yekaterinburg: Ural. Fed. Univ., 2011. – reference: Machine (technical) vision, Metallurgy, Mallenom Systems. https://www.mallenom.ru/resheniya/mashinnoe-zrenie/po-otroslyam/metallurgiia. Cited August 5, 2021. – reference: Severstal is mastering manufacture of video inspection systems for rolled surfaces, Metal supply and sales. https://www.metalinfo.ru/ru/news/118725. Cited August 5, 2021. – reference: PhanJ.MATLAB—C# for Engineers2010 – reference: BambauerF.WirtzS.SchererV.BartuschH.Transient DEM-CFD simulation of solid and fluid flow in a three dimensional blast furnace modelPowder Technol201833453641:CAS:528:DC%2BC1cXovVOltLc%3D10.1016/j.powtec.2018.04.062 – reference: DmitrievA.N.ZolotykhM.O.Vit’kinaG.Yu.Improvement of sintering and blast-furnace production using digital technologies within the framework of Industry 4.0, Chern. Metall., Byull. Nauchno-Tekh.Ekon. Inf2020633934510.32339/0135-5910-2020-4-339-343 – reference: Zagainov, S.A., Onorin, O.P., Gileva, L.Yu., Volkov, D.N., and Tleugobulov, B.S., Development and implementation of mathematical and software support for flexible technological modes of blast furnace operation, Stal’, 2000, no. 9, pp. 12–15. – reference: Fu, D., Chen, Y., Rahman, M.T., Zhou, C.Q., D’Alessio, J., and Ferron, K.J., Validation of the numerical model for blast furnace shaft process, Proc. AISTech 2012 of the Iron and Steel Technology Conf., Atlanta, GA, Warrendale, PA: Assoc. Iron Steel Technol., 2012, no. 92531, pp. 417–427. – reference: Solov’ev, V.I., Pavlova, E.A., and Krasnobaev, V.A., Intelligent automated control system for metallurgical units, Chern. Met., 2004, nos. 7–8, pp. 26–29. – reference: ChenB.HsuH.-P.HuangY.-L.Bringing desktop applications to the webIT Prof201618344010.1109/MITP.2016.15 – ident: 1381_CR47 doi: 10.1088/1757-899X/411/1/012072 – volume: 68 start-page: 7 year: 2018 ident: 1381_CR58 publication-title: Res. Dev. Kobe Steel Eng. Rep – volume: 75 start-page: 1231 year: 2019 ident: 1381_CR41 publication-title: Ekon. Inf doi: 10.32339/0135-5910-2019-11-1231-1236 – ident: 1381_CR10 – ident: 1381_CR27 – ident: 1381_CR52 – ident: 1381_CR33 – ident: 1381_CR54 doi: 10.33313/380/213 – ident: 1381_CR3 – volume: 9 start-page: 2213 year: 2013 ident: 1381_CR43 publication-title: IEEE Trans. Ind. Inf doi: 10.1109/TII.2012.2226897 – ident: 1381_CR7 – ident: 1381_CR66 – volume: 334 start-page: 53 year: 2018 ident: 1381_CR20 publication-title: Powder Technol doi: 10.1016/j.powtec.2018.04.062 – volume: 61 start-page: 1149 year: 2012 ident: 1381_CR13 publication-title: IEEE Trans. Instrum. Meas doi: 10.1109/TIM.2011.2178675 – ident: 1381_CR36 – ident: 1381_CR68 doi: 10.1587/transinf.2017EDP7127 – volume: 62 start-page: 418 year: 2018 ident: 1381_CR60 publication-title: Metallurgist doi: 10.1007/s11015-018-0676-0 – volume: 58 start-page: 25 year: 2018 ident: 1381_CR24 publication-title: ISIJ Int doi: 10.2355/isijinternational.ISIJINT-2017-344 – volume-title: Computer Vision year: 2001 ident: 1381_CR5 – volume: 18 start-page: 34 year: 2016 ident: 1381_CR69 publication-title: IT Prof doi: 10.1109/MITP.2016.15 – volume: 48 start-page: 624 year: 2018 ident: 1381_CR51 publication-title: Steel Transl doi: 10.3103/S0967091218100108 – ident: 1381_CR34 – ident: 1381_CR30 – ident: 1381_CR26 – volume: 18 start-page: 3792 year: 2018 ident: 1381_CR12 publication-title: Sensors doi: 10.3390/s18113792 – volume: 61 start-page: 448 year: 2017 ident: 1381_CR40 publication-title: Metallurgist doi: 10.1007/s11015-017-0516-7 – ident: 1381_CR8 – volume: 42 start-page: 44 year: 2002 ident: 1381_CR22 publication-title: ISIJ Int doi: 10.2355/isijinternational.42.44 – ident: 1381_CR16 – ident: 1381_CR64 doi: 10.33313/377/061 – volume: 62 start-page: 218 year: 2018 ident: 1381_CR59 publication-title: Metallurgist doi: 10.1007/s11015-018-0648-4 – ident: 1381_CR63 doi: 10.33313/377/050 – ident: 1381_CR37 – volume: 14 start-page: 77 year: 2001 ident: 1381_CR49 publication-title: Eng. Appl. Artif. Intell doi: 10.1016/S0952-1976(00)00062-2 – ident: 1381_CR57 doi: 10.1109/IntelliSys.2017.8324364 – ident: 1381_CR9 – volume: 40 start-page: 27 year: 2010 ident: 1381_CR17 publication-title: Steel Transl doi: 10.3103/S0967091210010079 – ident: 1381_CR29 – volume: 20 start-page: 33 year: 2013 ident: 1381_CR15 publication-title: J. Iron Steel Res. Int doi: 10.1016/S1006-706X(13)60108-9 – volume-title: MATLAB—C# for Engineers year: 2010 ident: 1381_CR70 – volume: 23 start-page: 203 year: 2016 ident: 1381_CR14 publication-title: J. Iron Steel Res. Int doi: 10.1016/S1006-706X(16)30035-8 – ident: 1381_CR31 – ident: 1381_CR55 doi: 10.1016/C2017-0-00007-1 – ident: 1381_CR25 – volume: 129 start-page: 166 year: 2020 ident: 1381_CR19 publication-title: Miner. Process. Extr. Metall doi: 10.1080/25726641.2020.1733357 – ident: 1381_CR48 – volume: 50 start-page: 914 year: 2010 ident: 1381_CR35 publication-title: ISIJ Int doi: 10.2355/isijinternational.50.914 – ident: 1381_CR1 – ident: 1381_CR53 doi: 10.33313/377/062 – ident: 1381_CR45 – volume: 46 start-page: 1297 year: 2006 ident: 1381_CR62 publication-title: ISIJ Int doi: 10.2355/isijinternational.46.1297 – volume: 82 start-page: 130 year: 2019 ident: 1381_CR42 publication-title: Control Eng. Pract doi: 10.1016/j.conengprac.2018.10.009 – ident: 1381_CR38 – volume: 28 start-page: 5 year: 1998 ident: 1381_CR18 publication-title: Steel Transl – ident: 1381_CR65 doi: 10.33313/380/035 – volume: 6 start-page: 339 year: 2020 ident: 1381_CR4 publication-title: Ekon. Inf doi: 10.32339/0135-5910-2020-4-339-343 – ident: 1381_CR56 doi: 10.1109/ICIEAM.2016.7910936 – ident: 1381_CR32 – ident: 1381_CR28 – ident: 1381_CR11 – volume-title: The Iron Blast Furnace: Theory and Practice year: 2013 ident: 1381_CR23 – volume: 89 start-page: 1700071 year: 2018 ident: 1381_CR61 publication-title: Steel Res. Int doi: 10.1002/srin.201700071 – ident: 1381_CR2 – ident: 1381_CR6 – volume: 2 start-page: 106 year: 2015 ident: 1381_CR67 publication-title: Oper. Res. Persp doi: 10.1016/j.orp.2015.05.001 – ident: 1381_CR46 – ident: 1381_CR21 – ident: 1381_CR39 – volume: 63 start-page: 898 year: 2020 ident: 1381_CR44 publication-title: Metallurgist doi: 10.1007/s11015-020-00907-y – volume: 44 start-page: 573 year: 2004 ident: 1381_CR50 publication-title: ISIJ Int doi: 10.2355/isijinternational.44.573 |
| SSID | ssj0056251 |
| Score | 2.181894 |
| Snippet | The article provides an overview and critical analysis of the digitalization of the leading Russian ferrous metallurgy enterprises in accordance with the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 522 |
| SubjectTerms | Algorithms Artificial intelligence Blast furnace practice Blast furnaces Chemistry and Materials Science Control systems Decision support systems Digitization Industrial applications Industrial development Materials Science Metallurgical analysis Metallurgy Modules Parameters Smelting Software Subsystems Systems (metallurgical) Tuyeres Vision systems |
| Title | Digital Transformation of Pyrometallurgical Technologies. State, Scientific Problems, and Prospects of Development |
| URI | https://link.springer.com/article/10.3103/S0967091221080143 https://www.proquest.com/docview/2607328439 |
| Volume | 51 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1935-0988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056251 issn: 0967-0912 databaseCode: RSV dateStart: 20070101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADb8RgoBw4wSq6Zm3TIwImDmia2Jh2q9o0QZOmDrUbEv8eO2u38ZTg2MaNqiT29zlxbIDzGH0SRzckqrjtWs3IQ53TXFIxM23zpvA8k6y6_-C322IwCDrFPe68jHYvjySNpTZ-pc2vuki2fUQ3x6GwOIT5VVhDtBOkjY_dfml-idCbMnkobZH47Cjz-y4-gtGCYX46FDVY09r-11_uwFZBLdn1bC3swopK92BzKeHgPmS3w2eqEsJ6S3x1nLKxZp03SlyAbaNpZqwhm--6kzPNDCutM2MLTHwR68xq0eR1FqUJPZlbmzl1thSKdABPrbvezb1VVF2wJHI9bjmeq5SdqKbUXHNOybvRi8BXrp_EUgaBFJ5qyDgI4iTy3AQ5oStEhH6TkI52FT-ESjpO1REwoT3ONRllH21D7EYRgiFSJsRE2oy2q2CXwx_KIiU5VcYYheia0HCGX4azChfzT15m-Th-E66VcxoWqpmH6MBRgiIkYlW4LOdw0fxjZ8d_kj6BDYeiX0yoYA0qk2yqTmFdvk6GeXZmVuw7uMLhMQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD3-J0ah58Uotd089HUcfEOYabY2-lTRsZjE7WTfC_9y5tt_kJ-tjmGsolufv9kssdwGmInMSQVYFLXLc0M7BxzUkuqJiZ1Lnp2rZKVt1tOM2m2-t5rfwed1pEuxdHkspSK16p88s2gm0HvZthUFgcuvlFWDLRYVEc32O7W5hfAvSqTB5KaySeHWV-38VHZzRDmJ8ORZWvqW386y83YT2HluwqmwtbsBAn27A2l3BwB0Y3_WeqEsI6c3h1mLChZK03SlyAbYPJSFlDNt11JzLNFCq9YMoWqPgi1spq0aQXLEgielK3NlPqbC4UaReeared67qWV13QBGI9rhm2Fcd6FJtCcsk5Je9GFoGvLCcKhfA84dpxVYSeF0aBbUWICS3XDZA3ucKQVsz3oJQMk3gfmCttziUZZQdtQ2gFATpDhEzoE2kzWi-DXqjfF3lKcqqMMfCRmpA6_S_qLMPZ9JOXLB_Hb8KVYkz9fGmmPhI4SlCEQKwM58UYzpp_7OzgT9InsFLvPDT8xl3z_hBWDYqEUWGDFSiNR5P4CJbF67ifjo7V7H0HT1TkFQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBt1itugdPamiabV5HsRbFUgKtpbeQbLJSKGlpWsF_78wmaesTxGOymyXsY-b7dme_AbgMkZMYsiZwieumVg8sXHOSC0pmJnVedyxLiVX3Wna77fT7rpfnOU2LaPfiSDK700AqTcm0Oo5kVXFMnVc7CLxt9HSGQSFy6PJXYa1OOYOIrnd6hSkmcK9S5mFtjapnx5rfN_HRMS3Q5qcDUuV3mjv__uNd2M4hJ7vN5sgerMTJPmwtCREewKQxeKHsIay7hGNHCRtJ5r2RoAGWDWcTZSXZfDeeSDZTaPWGKRuh4o6Yl-WoSW9YkET0pG5zptTYUojSITw377t3D1qejUETiAG5ZlhmHOtRXBeSS85J1BvZBb4y7SgUwnWFY8U1EbpuGAWWGSFWNB0nQD7lCEOaMT-CUjJK4mNgjrQ4l2SsbbQZoRkE6CQRSqGvpE1qvQx6MRS-yKXKKWPG0EfKQt3pf-nOMlzNPxlnOh2_Va4U4-vnSzb1kdiRcBECtDJcF-O5KP6xsZM_1b6ADa_R9FuP7adT2DQoQEZFE1agNJ3M4jNYF6_TQTo5VxP5HW037Pk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+Transformation+of+Pyrometallurgical+Technologies.+State%2C+Scientific+Problems%2C+and+Prospects+of+Development&rft.jtitle=Steel+in+translation&rft.au=Spirin%2C+N+A&rft.au=Lavrov%2C+V+V&rft.au=Yu%2C+Rybolovlev+V&rft.au=Schnaider%2C+D+A&rft.date=2021-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0967-0912&rft.eissn=1935-0988&rft.volume=51&rft.issue=8&rft.spage=522&rft.epage=530&rft_id=info:doi/10.3103%2FS0967091221080143&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0912&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0912&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0912&client=summon |