Deep Learning-based Integrated Framework for stock price movement prediction

Stock market prediction is a very important problem in the economics field. With the development of machine learning, more and more algorithms are applied in the stock market to predict the stock price movement. However, stock market prediction is regarded as a challenging task for the noise and vol...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied soft computing Ročník 133; s. 109921
Hlavní autori: Zhao, Yanli, Yang, Guang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.01.2023
Predmet:
ISSN:1568-4946, 1872-9681
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Stock market prediction is a very important problem in the economics field. With the development of machine learning, more and more algorithms are applied in the stock market to predict the stock price movement. However, stock market prediction is regarded as a challenging task for the noise and volatility of stock market data. Therefore, in this paper, a novel hybrid model SA-DLSTM is proposed to predict stock market and simulation trading by combine a emotion enhanced convolutional neural network (ECNN), the denoising autoencoder (DAE) models, and long short-term memory model (LSTM). Firstly, user-generated comments on Internet were used as a complement to stock market data, and ECNN was applied to extract the sentiment representation. Secondly, we extract the key features of stock market data by DAE, which can improve the prediction accuracy. Thirdly, we take the timeliness of emotion on stock market into consideration and construct more reliable and realistic sentiment indexes. Finally, the key features of stock data and sentiment indexes are fed into LSTM to make stock market prediction. Experiment results show that the prediction accuracy of SA-DLSTM are superior to other compared models. Meanwhile, SA-DLSTM has a good performance both in return and risk. It can help investors make wise decisions. •The combination of public opinions and sentiments, SA-DLSTM can provide robust and accurate predictions for the stock market trends.•SA-DLSTM can calculate the sentiment indexes in which they are with different emotion strength, and use an exponential time function to calculate the timeliness of emotion.•SA-DLSTM can extract different features from multivariate financial time series, and integrate features for further classification.
AbstractList Stock market prediction is a very important problem in the economics field. With the development of machine learning, more and more algorithms are applied in the stock market to predict the stock price movement. However, stock market prediction is regarded as a challenging task for the noise and volatility of stock market data. Therefore, in this paper, a novel hybrid model SA-DLSTM is proposed to predict stock market and simulation trading by combine a emotion enhanced convolutional neural network (ECNN), the denoising autoencoder (DAE) models, and long short-term memory model (LSTM). Firstly, user-generated comments on Internet were used as a complement to stock market data, and ECNN was applied to extract the sentiment representation. Secondly, we extract the key features of stock market data by DAE, which can improve the prediction accuracy. Thirdly, we take the timeliness of emotion on stock market into consideration and construct more reliable and realistic sentiment indexes. Finally, the key features of stock data and sentiment indexes are fed into LSTM to make stock market prediction. Experiment results show that the prediction accuracy of SA-DLSTM are superior to other compared models. Meanwhile, SA-DLSTM has a good performance both in return and risk. It can help investors make wise decisions. •The combination of public opinions and sentiments, SA-DLSTM can provide robust and accurate predictions for the stock market trends.•SA-DLSTM can calculate the sentiment indexes in which they are with different emotion strength, and use an exponential time function to calculate the timeliness of emotion.•SA-DLSTM can extract different features from multivariate financial time series, and integrate features for further classification.
ArticleNumber 109921
Author Yang, Guang
Zhao, Yanli
Author_xml – sequence: 1
  givenname: Yanli
  surname: Zhao
  fullname: Zhao, Yanli
  email: hbnancy0626@163.com
  organization: School of Business Administration, Wuhan Business University, Wuhan, China
– sequence: 2
  givenname: Guang
  orcidid: 0000-0002-2161-6301
  surname: Yang
  fullname: Yang, Guang
  email: yangchgang@zuel.edu.cn
  organization: School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, China
BookMark eNp9kMtKAzEUhoNUsK2-gKt5gak5mVsCbqRaLQy40XXIZM6UtJ2kJKHi25uhrly4Ohf4Duf_FmRmnUVC7oGugEL9sF-p4PSKUcbSQggGV2QOvGG5qDnMUl_VPC9FWd-QRQh7miDB-Jy0z4inrEXlrbG7vFMB-2xrI-68iqndeDXil_OHbHA-C9HpQ3byRmM2ujOOaGMasTc6GmdvyfWgjgHvfuuSfG5ePtZvefv-ul0_tblmBY35gKihLBpomqFkFaiKib4fGs2xqOqu7BQDDkXRM1qXZYei4CCgUqrqKwVMF0vCL3e1dyF4HKQ2UU0fRK_MUQKVkxW5l5MVOVmRFysJZX_QlGZU_vt_6PECYQp1Nuhl0AatTrk96ih7Z_7DfwCuh33p
CitedBy_id crossref_primary_10_1007_s10462_024_10784_5
crossref_primary_10_1016_j_eswa_2025_127937
crossref_primary_10_1007_s13735_023_00308_2
crossref_primary_10_4236_jmf_2024_143016
crossref_primary_10_3390_appliedmath5030076
crossref_primary_10_1186_s40537_024_01016_2
crossref_primary_10_1007_s11042_023_17184_x
crossref_primary_10_1371_journal_pone_0320089
crossref_primary_10_1016_j_asoc_2025_113228
crossref_primary_10_1007_s41060_024_00692_w
crossref_primary_10_1142_S0218488525500229
crossref_primary_10_1007_s10489_024_05271_x
crossref_primary_10_1007_s00500_023_07915_5
crossref_primary_10_1016_j_neucom_2024_128389
crossref_primary_10_3390_electronics14051036
crossref_primary_10_1016_j_asoc_2025_112978
crossref_primary_10_3390_electronics12183960
crossref_primary_10_1016_j_asoc_2025_113229
crossref_primary_10_1016_j_eswa_2024_125590
crossref_primary_10_1016_j_asoc_2024_111329
crossref_primary_10_1109_ACCESS_2025_3589063
crossref_primary_10_1186_s40854_024_00731_2
crossref_primary_10_1016_j_frl_2025_107305
crossref_primary_10_1016_j_cie_2023_109450
crossref_primary_10_1007_s10614_024_10711_4
crossref_primary_10_1016_j_suscom_2025_101125
crossref_primary_10_1016_j_eswa_2025_127907
crossref_primary_10_1109_ACCESS_2025_3596524
crossref_primary_10_1016_j_engappai_2025_110353
crossref_primary_10_1007_s10614_025_10929_w
crossref_primary_10_1016_j_aej_2025_08_024
crossref_primary_10_3390_jtaer20030185
crossref_primary_10_1016_j_najef_2024_102147
crossref_primary_10_7717_peerj_cs_2312
crossref_primary_10_1016_j_knosys_2024_112733
crossref_primary_10_1007_s13369_025_10090_4
crossref_primary_10_1016_j_neucom_2024_127583
crossref_primary_10_1016_j_asoc_2025_113519
crossref_primary_10_1016_j_eswa_2024_125780
crossref_primary_10_1007_s10614_025_11101_0
crossref_primary_10_1016_j_engappai_2024_108687
crossref_primary_10_3390_app13127104
crossref_primary_10_1007_s42979_024_03222_4
crossref_primary_10_1109_ACCESS_2024_3354702
crossref_primary_10_2139_ssrn_5380505
crossref_primary_10_3390_econometrics12020016
crossref_primary_10_1016_j_asoc_2024_111469
crossref_primary_10_1016_j_jrras_2024_101172
crossref_primary_10_7717_peerj_cs_1852
crossref_primary_10_1016_j_asoc_2024_112635
crossref_primary_10_3390_electronics13214225
crossref_primary_10_1016_j_asoc_2024_111629
crossref_primary_10_3390_electronics13173396
crossref_primary_10_1016_j_physa_2025_130533
crossref_primary_10_1016_j_dajour_2023_100212
crossref_primary_10_1016_j_inffus_2023_102049
crossref_primary_10_1080_09540091_2023_2286188
crossref_primary_10_1080_03081079_2023_2294132
crossref_primary_10_1016_j_asoc_2025_113581
crossref_primary_10_1016_j_asoc_2025_112771
crossref_primary_10_1016_j_asoc_2024_112388
crossref_primary_10_1016_j_ins_2024_121561
crossref_primary_10_7717_peerj_cs_3107
crossref_primary_10_1007_s12652_025_04976_2
crossref_primary_10_1007_s41870_024_02220_2
crossref_primary_10_1016_j_eswa_2025_127243
crossref_primary_10_1109_ACCESS_2024_3476159
Cites_doi 10.1162/neco.1997.9.8.1735
10.1016/j.physa.2021.126810
10.1016/j.eneco.2017.10.035
10.1016/j.knosys.2015.04.017
10.1016/j.ijforecast.2014.12.007
10.1016/j.procs.2020.03.049
10.1016/j.future.2021.07.017
10.1016/j.jebo.2014.06.004
10.1016/j.najef.2016.06.001
10.1016/j.eswa.2018.07.019
10.2308/accr-51865
10.1086/296344
10.1111/joes.12102
10.1016/j.knosys.2018.10.034
10.1016/j.knosys.2017.05.003
10.1016/j.asoc.2021.108084
10.1016/j.eswa.2018.06.016
10.1016/j.future.2020.10.009
10.1016/j.engappai.2016.01.012
10.1016/j.jfineco.2014.08.007
10.1016/j.ins.2014.03.096
10.1109/JSYST.2018.2794462
10.1109/TSMC.2013.2295353
10.1016/j.dss.2016.02.013
10.1016/j.engappai.2019.07.002
10.1111/j.1540-6261.2007.01232.x
10.1016/j.dss.2013.09.013
10.1016/j.knosys.2018.01.016
10.1109/I2CT.2017.8226316
10.1016/j.neucom.2016.11.095
10.1016/j.jempfin.2008.03.002
10.1109/TASLP.2018.2885775
10.1016/j.dss.2012.12.022
10.1016/j.eswa.2020.113704
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2022.109921
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2022_109921
S156849462200970X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c230t-feec1437177f4251a529ddf7c8e356b4ba218133d20644be9381915aa5d5a12c3
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000903889100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:01:06 EST 2025
Tue Nov 18 22:28:44 EST 2025
Fri Feb 23 02:37:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Long short-term memory
Sentiment analysis
Denoising autoencoder
Stock market prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c230t-feec1437177f4251a529ddf7c8e356b4ba218133d20644be9381915aa5d5a12c3
ORCID 0000-0002-2161-6301
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2022_109921
crossref_primary_10_1016_j_asoc_2022_109921
elsevier_sciencedirect_doi_10_1016_j_asoc_2022_109921
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mng, Mehralizadeh (b42) 2016; 11
Zhou, Lu, Fujita (b1) 2015; 85
Yang, He, Chen (b17) 2019; 27
Ledoit, Wolf (b47) 2008; 15
Jiawei, Zhaopeng, Weibing, Taiyu, Jiangtao (b12) 2020; 91
Qadan, Nama (b26) 2018; 69
Siganos, Vagenasnanos, Verwijmeren (b25) 2014; 107
Yu-Chen, Wen-Chen (b36) 2021; 112
Yang (b8) 2021; 125
Long, Lu, C (b33) 2019; 164
Derakhshan, Beigy (b32) 2019; 85
Gillam, Guerard, Cahan (b30) 2015; 31
Baek, Kim (b37) 2018; 113
Zhou, Si, Fujita (b2) 2017; 128
Wu, Zheng, Olson (b22) 2014; 44
Geva, Zahavi (b3) 2014; 57
Wei, Haoyu, Kumar, Lifen (b11) 2021; 100
Tumarkin, From, Whitelaw (b20) 2002
Bileki Guilherme, Flávio, Silva Luiz Henrique, Vanderlei (b13) 2022; 116
Barberis, Greenwood, Jin, Shleifer (b39) 2015; 115
Yang, Zhou (b27) 2016; 38
Chakole, Kolhe, Mahapurush, Yadav, Kurhekar (b34) 2020
M, M, M (b28) 2016; 30
Vincent, Larochelle, Bengio, Manzagol (b40) 2008
Li, Wang, Li, Liu, Gong, Chen (b4) 2014; 278
Zhang, Lou (b10) 2021; 115
Shangkun, Chongyi, Yingke, Yu, Zonghua, Tianxiang (b14) 2022
Tetlock (b29) 2007; 62
Ruan, Durresi, Alfantoukh (b7) 2018; 145
Weng, Lu, Wang, Megahed, Martinez (b24) 2018; 112
Nuno, Paulo, Nelson (b21) 2016; 85
Rui, Liu, Whinston (b31) 2013; 55
Chen, Roll, Ross (b5) 1986
Lee, Kim (b38) 2020
Bartov, Faurel, Mohanram (b18) 2018; 93
Shynkevich, McGinnity, Coleman, Belatreche, Li (b9) 2017; 264
Hasan, Fong (b19) 2018
Nonita Sharma, Akanksha Juneja, Combining of random forest estimates using LSboost for stock market index prediction, in: 2017 2nd International Conference for Convergence in Technology, I2CT, 2017, pp. 1199–1202.
Ren, Wu, Liu (b23) 2019; 13
Moghar, Hamiche (b44) 2020; 170
L, S (b43) 2013
P. L, D. M, Stock market prediction with deep learning: A character-based neural language model for event-based trading, in: Proceedings of Australasian Language Technology Association Workshop, 2017, pp. 6–15.
Perikos, Hatzilygeroudis (b16) 2016; 51
Hochreiter, Schmidhuber (b41) 1997; 9
Rai, Mahata, Nurujjaman, Majhi, Debnath (b6) 2022; 592
Li, Xu, Geng, Hong (b46) 2022; 114
Shiller (b15) 2015
Wei (10.1016/j.asoc.2022.109921_b11) 2021; 100
Barberis (10.1016/j.asoc.2022.109921_b39) 2015; 115
Shiller (10.1016/j.asoc.2022.109921_b15) 2015
Qadan (10.1016/j.asoc.2022.109921_b26) 2018; 69
Jiawei (10.1016/j.asoc.2022.109921_b12) 2020; 91
Vincent (10.1016/j.asoc.2022.109921_b40) 2008
Derakhshan (10.1016/j.asoc.2022.109921_b32) 2019; 85
Mng (10.1016/j.asoc.2022.109921_b42) 2016; 11
Zhang (10.1016/j.asoc.2022.109921_b10) 2021; 115
Tumarkin (10.1016/j.asoc.2022.109921_b20) 2002
Siganos (10.1016/j.asoc.2022.109921_b25) 2014; 107
Gillam (10.1016/j.asoc.2022.109921_b30) 2015; 31
Zhou (10.1016/j.asoc.2022.109921_b2) 2017; 128
Li (10.1016/j.asoc.2022.109921_b4) 2014; 278
Ruan (10.1016/j.asoc.2022.109921_b7) 2018; 145
L (10.1016/j.asoc.2022.109921_b43) 2013
Zhou (10.1016/j.asoc.2022.109921_b1) 2015; 85
Ledoit (10.1016/j.asoc.2022.109921_b47) 2008; 15
Shynkevich (10.1016/j.asoc.2022.109921_b9) 2017; 264
Chen (10.1016/j.asoc.2022.109921_b5) 1986
Geva (10.1016/j.asoc.2022.109921_b3) 2014; 57
M (10.1016/j.asoc.2022.109921_b28) 2016; 30
10.1016/j.asoc.2022.109921_b35
Yang (10.1016/j.asoc.2022.109921_b8) 2021; 125
Shangkun (10.1016/j.asoc.2022.109921_b14) 2022
Hasan (10.1016/j.asoc.2022.109921_b19) 2018
Rai (10.1016/j.asoc.2022.109921_b6) 2022; 592
Hochreiter (10.1016/j.asoc.2022.109921_b41) 1997; 9
Li (10.1016/j.asoc.2022.109921_b46) 2022; 114
Rui (10.1016/j.asoc.2022.109921_b31) 2013; 55
Yu-Chen (10.1016/j.asoc.2022.109921_b36) 2021; 112
Lee (10.1016/j.asoc.2022.109921_b38) 2020
Tetlock (10.1016/j.asoc.2022.109921_b29) 2007; 62
Chakole (10.1016/j.asoc.2022.109921_b34) 2020
Baek (10.1016/j.asoc.2022.109921_b37) 2018; 113
Ren (10.1016/j.asoc.2022.109921_b23) 2019; 13
Moghar (10.1016/j.asoc.2022.109921_b44) 2020; 170
Yang (10.1016/j.asoc.2022.109921_b27) 2016; 38
Bileki Guilherme (10.1016/j.asoc.2022.109921_b13) 2022; 116
Perikos (10.1016/j.asoc.2022.109921_b16) 2016; 51
Yang (10.1016/j.asoc.2022.109921_b17) 2019; 27
Wu (10.1016/j.asoc.2022.109921_b22) 2014; 44
Bartov (10.1016/j.asoc.2022.109921_b18) 2018; 93
Weng (10.1016/j.asoc.2022.109921_b24) 2018; 112
Nuno (10.1016/j.asoc.2022.109921_b21) 2016; 85
Long (10.1016/j.asoc.2022.109921_b33) 2019; 164
10.1016/j.asoc.2022.109921_b45
References_xml – volume: 112
  start-page: 258
  year: 2018
  end-page: 273
  ident: b24
  article-title: Predicting short-term stock prices using ensemble methods and online data sources
  publication-title: Expert Syst. Appl.
– volume: 128
  start-page: 93
  year: 2017
  end-page: 101
  ident: b2
  article-title: Predicting the listing statuses of Chinese-listed companies using decision trees combined with an improved filter feature selection method
  publication-title: Knowl.-Based Syst.
– volume: 100
  year: 2021
  ident: b11
  article-title: Mean–variance portfolio optimization using machine learning-based stock price prediction
  publication-title: Appl. Soft Comput.
– start-page: 0023
  year: 2018
  end-page: 0029
  ident: b19
  article-title: Sentiment analysis based fuzzy decision platform for the Saudi Stock Market
  publication-title: 2018 IEEE International Conference on Electro/Information Technology
– volume: 278
  start-page: 826
  year: 2014
  end-page: 840
  ident: b4
  article-title: The effect of news and public mood on stock movements
  publication-title: Inform. Sci.
– volume: 85
  start-page: 52
  year: 2015
  end-page: 61
  ident: b1
  article-title: The performance of corporate financial distress prediction models with features selection guided by domain knowledge and data mining approaches
  publication-title: Knowl.-Based Syst.
– year: 2015
  ident: b15
  article-title: Irrational Exuberance: Revised and Expanded
– volume: 44
  start-page: 1077
  year: 2014
  end-page: 1087
  ident: b22
  article-title: A decision support approach for online stock forum sentiment analysis
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 170
  start-page: 1168
  year: 2020
  end-page: 1173
  ident: b44
  article-title: Stock market prediction using LSTM recurrent neural network
  publication-title: Procedia Comput. Sci.
– volume: 164
  start-page: 163
  year: 2019
  end-page: 173
  ident: b33
  article-title: Deep learning-based feature engineering for stock price movement prediction
  publication-title: Knowl.-Based Syst.
– volume: 112
  year: 2021
  ident: b36
  article-title: Constructing a stock-price forecast CNN model with gold and crude oil indicators
  publication-title: Appl. Soft Comput.
– volume: 15
  start-page: 850
  year: 2008
  end-page: 859
  ident: b47
  article-title: Robust performance hypothesis testing with the Sharpe ratio
  publication-title: J. Empir. Financ.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b41
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 93
  start-page: 25
  year: 2018
  end-page: 57
  ident: b18
  article-title: Can twitter help predict firm-level earnings and stock returns?
  publication-title: Account. Rev.
– volume: 85
  start-page: 569
  year: 2019
  end-page: 578
  ident: b32
  article-title: Sentiment analysis on stock social media for stock price movement prediction
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 229
  year: 2013
  end-page: 247
  ident: b43
  publication-title: Neural Networks and Wavelet de-Noising for Stock Trading and Prediction
– volume: 38
  start-page: 39
  year: 2016
  end-page: 53
  ident: b27
  article-title: Individual stock crowded trades, individual stock investor sentiment and excess returns
  publication-title: North Am. J. Econ. Finance
– volume: 116
  year: 2022
  ident: b13
  article-title: Order book mid-price movement inference by CatBoost classifier from convolutional feature maps
  publication-title: Appl. Soft Comput.
– year: 2022
  ident: b14
  article-title: Dynamic forecasting of the Shanghai Stock Exchange index movement using multiple types of investor sentiment
  publication-title: Appl. Soft Comput.
– reference: Nonita Sharma, Akanksha Juneja, Combining of random forest estimates using LSboost for stock market index prediction, in: 2017 2nd International Conference for Convergence in Technology, I2CT, 2017, pp. 1199–1202.
– volume: 592
  year: 2022
  ident: b6
  article-title: A sentiment-based modeling and analysis of stock price during the COVID-19: U- and Swoosh-shaped recovery
  publication-title: Physica A
– start-page: 383
  year: 1986
  end-page: 403
  ident: b5
  article-title: Economic forces and the stock market
  publication-title: J. Bus.
– year: 2002
  ident: b20
  article-title: Internet message board activity and market efficiency: A case study of the internet service sector using Ragingbull. com
  publication-title: Financial Markets Institutions and Instruments
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: b40
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 69
  start-page: 42
  year: 2018
  end-page: 58
  ident: b26
  article-title: Investor sentiment and the price of oil
  publication-title: Energy Econ.
– volume: 264
  start-page: 71
  year: 2017
  end-page: 88
  ident: b9
  article-title: Forecasting price movements using technical indicators: Investigating the impact of varying input window length
  publication-title: Neurocomputing
– volume: 51
  start-page: 191
  year: 2016
  end-page: 201
  ident: b16
  article-title: Recognizing emotions in text using ensemble of classifiers
  publication-title: Eng. Appl. Artif. Intell.
– volume: 57
  start-page: 212
  year: 2014
  end-page: 223
  ident: b3
  article-title: Empirical evaluation of an automated intraday stock recommendation system incorporating both market data and textual news
  publication-title: Decis. Support Syst.
– volume: 107
  start-page: 730
  year: 2014
  end-page: 743
  ident: b25
  article-title: Facebook’s daily sentiment and international stock markets
  publication-title: J. Econ. Behav. Organ.
– volume: 30
  start-page: 356
  year: 2016
  end-page: 369
  ident: b28
  article-title: Walking down wall street with a tablet: A survey of stock market predictions using the web
  publication-title: J. Econ. Surv.
– year: 2020
  ident: b34
  article-title: A q-learning agent for automated trading in equity stock markets
  publication-title: Expert Syst. Appl.
– volume: 114
  year: 2022
  ident: b46
  article-title: A hybrid approach for forecasting ship motion using CNN-GRU-AM and GCWOA
  publication-title: Appl. Soft Comput.
– volume: 125
  start-page: 812
  year: 2021
  end-page: 819
  ident: b8
  article-title: A novel study on deep learning framework to predict and analyze the financial time series information
  publication-title: Future Gener. Comput. Syst.
– volume: 145
  start-page: 207
  year: 2018
  end-page: 218
  ident: b7
  article-title: Using Twitter trust network for stock market analysis
  publication-title: Knowl.-Based Syst.
– volume: 91
  year: 2020
  ident: b12
  article-title: An integrated framework of deep learning and knowledge graph for prediction of stock price trend: An application in Chinese stock exchange market
  publication-title: Appl. Soft Comput.
– volume: 85
  start-page: 62
  year: 2016
  end-page: 73
  ident: b21
  article-title: Stock market sentiment lexicon acquisition using microblogging data and statistical measures
  publication-title: Decis. Support Syst.
– volume: 11
  year: 2016
  ident: b42
  article-title: Forecasting east asian indices futures via a novel hybrid of wavelet-PCA denoising and artificial neural network models
  publication-title: PLoS One
– volume: 27
  start-page: 531
  year: 2019
  end-page: 543
  ident: b17
  article-title: Emotion-semantic-enhanced neural network
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– reference: P. L, D. M, Stock market prediction with deep learning: A character-based neural language model for event-based trading, in: Proceedings of Australasian Language Technology Association Workshop, 2017, pp. 6–15.
– volume: 113
  start-page: 457
  year: 2018
  end-page: 480
  ident: b37
  article-title: Modaugnet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module
  publication-title: Expert Syst. Appl.
– volume: 62
  start-page: 1139
  year: 2007
  end-page: 1168
  ident: b29
  article-title: Giving content to investor sentiment: The role of media in the stock market
  publication-title: J. Finance
– volume: 31
  start-page: 575
  year: 2015
  end-page: 581
  ident: b30
  article-title: News volume information: Beyond earnings forecasting in a global stock selection model
  publication-title: Int. J. Forecast.
– volume: 13
  start-page: 760
  year: 2019
  end-page: 770
  ident: b23
  article-title: Forecasting stock market movement direction using sentiment analysis and support vector machine
  publication-title: IEEE Syst. J.
– volume: 115
  start-page: 1
  year: 2015
  end-page: 24
  ident: b39
  article-title: X-CAPM: An extrapolative capital asset pricing model
  publication-title: J. Financ. Econ.
– year: 2020
  ident: b38
  article-title: Stock market forecasting with super-high dimensional time-series data using convLSTM, trend sampling, and specialized data augmentation
  publication-title: Exp. Syst. Appl.
– volume: 55
  start-page: 863
  year: 2013
  end-page: 870
  ident: b31
  article-title: Whose and what chatter matters? the effect of tweets on movie sales
  publication-title: Decis. Support Syst.
– volume: 115
  start-page: 872
  year: 2021
  end-page: 879
  ident: b10
  article-title: The application research of neural network and BP algorithm in stock price pattern classification and prediction
  publication-title: Future Gener. Comput. Syst.
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.asoc.2022.109921_b41
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 592
  year: 2022
  ident: 10.1016/j.asoc.2022.109921_b6
  article-title: A sentiment-based modeling and analysis of stock price during the COVID-19: U- and Swoosh-shaped recovery
  publication-title: Physica A
  doi: 10.1016/j.physa.2021.126810
– volume: 69
  start-page: 42
  year: 2018
  ident: 10.1016/j.asoc.2022.109921_b26
  article-title: Investor sentiment and the price of oil
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2017.10.035
– volume: 85
  start-page: 52
  year: 2015
  ident: 10.1016/j.asoc.2022.109921_b1
  article-title: The performance of corporate financial distress prediction models with features selection guided by domain knowledge and data mining approaches
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.04.017
– volume: 31
  start-page: 575
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2022.109921_b30
  article-title: News volume information: Beyond earnings forecasting in a global stock selection model
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2014.12.007
– volume: 170
  start-page: 1168
  year: 2020
  ident: 10.1016/j.asoc.2022.109921_b44
  article-title: Stock market prediction using LSTM recurrent neural network
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.049
– volume: 125
  start-page: 812
  year: 2021
  ident: 10.1016/j.asoc.2022.109921_b8
  article-title: A novel study on deep learning framework to predict and analyze the financial time series information
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.07.017
– volume: 107
  start-page: 730
  year: 2014
  ident: 10.1016/j.asoc.2022.109921_b25
  article-title: Facebook’s daily sentiment and international stock markets
  publication-title: J. Econ. Behav. Organ.
  doi: 10.1016/j.jebo.2014.06.004
– volume: 38
  start-page: 39
  year: 2016
  ident: 10.1016/j.asoc.2022.109921_b27
  article-title: Individual stock crowded trades, individual stock investor sentiment and excess returns
  publication-title: North Am. J. Econ. Finance
  doi: 10.1016/j.najef.2016.06.001
– volume: 100
  year: 2021
  ident: 10.1016/j.asoc.2022.109921_b11
  article-title: Mean–variance portfolio optimization using machine learning-based stock price prediction
  publication-title: Appl. Soft Comput.
– volume: 113
  start-page: 457
  year: 2018
  ident: 10.1016/j.asoc.2022.109921_b37
  article-title: Modaugnet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.07.019
– volume: 93
  start-page: 25
  issue: 3
  year: 2018
  ident: 10.1016/j.asoc.2022.109921_b18
  article-title: Can twitter help predict firm-level earnings and stock returns?
  publication-title: Account. Rev.
  doi: 10.2308/accr-51865
– start-page: 383
  year: 1986
  ident: 10.1016/j.asoc.2022.109921_b5
  article-title: Economic forces and the stock market
  publication-title: J. Bus.
  doi: 10.1086/296344
– volume: 116
  year: 2022
  ident: 10.1016/j.asoc.2022.109921_b13
  article-title: Order book mid-price movement inference by CatBoost classifier from convolutional feature maps
  publication-title: Appl. Soft Comput.
– volume: 30
  start-page: 356
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2022.109921_b28
  article-title: Walking down wall street with a tablet: A survey of stock market predictions using the web
  publication-title: J. Econ. Surv.
  doi: 10.1111/joes.12102
– volume: 164
  start-page: 163
  year: 2019
  ident: 10.1016/j.asoc.2022.109921_b33
  article-title: Deep learning-based feature engineering for stock price movement prediction
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.10.034
– volume: 11
  issue: 6
  year: 2016
  ident: 10.1016/j.asoc.2022.109921_b42
  article-title: Forecasting east asian indices futures via a novel hybrid of wavelet-PCA denoising and artificial neural network models
  publication-title: PLoS One
– volume: 128
  start-page: 93
  year: 2017
  ident: 10.1016/j.asoc.2022.109921_b2
  article-title: Predicting the listing statuses of Chinese-listed companies using decision trees combined with an improved filter feature selection method
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.05.003
– volume: 114
  year: 2022
  ident: 10.1016/j.asoc.2022.109921_b46
  article-title: A hybrid approach for forecasting ship motion using CNN-GRU-AM and GCWOA
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108084
– volume: 112
  start-page: 258
  year: 2018
  ident: 10.1016/j.asoc.2022.109921_b24
  article-title: Predicting short-term stock prices using ensemble methods and online data sources
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.06.016
– volume: 115
  start-page: 872
  year: 2021
  ident: 10.1016/j.asoc.2022.109921_b10
  article-title: The application research of neural network and BP algorithm in stock price pattern classification and prediction
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.10.009
– volume: 51
  start-page: 191
  year: 2016
  ident: 10.1016/j.asoc.2022.109921_b16
  article-title: Recognizing emotions in text using ensemble of classifiers
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.01.012
– volume: 91
  year: 2020
  ident: 10.1016/j.asoc.2022.109921_b12
  article-title: An integrated framework of deep learning and knowledge graph for prediction of stock price trend: An application in Chinese stock exchange market
  publication-title: Appl. Soft Comput.
– volume: 115
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.asoc.2022.109921_b39
  article-title: X-CAPM: An extrapolative capital asset pricing model
  publication-title: J. Financ. Econ.
  doi: 10.1016/j.jfineco.2014.08.007
– volume: 278
  start-page: 826
  year: 2014
  ident: 10.1016/j.asoc.2022.109921_b4
  article-title: The effect of news and public mood on stock movements
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.03.096
– start-page: 0023
  year: 2018
  ident: 10.1016/j.asoc.2022.109921_b19
  article-title: Sentiment analysis based fuzzy decision platform for the Saudi Stock Market
– year: 2015
  ident: 10.1016/j.asoc.2022.109921_b15
– volume: 13
  start-page: 760
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2022.109921_b23
  article-title: Forecasting stock market movement direction using sentiment analysis and support vector machine
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2018.2794462
– year: 2002
  ident: 10.1016/j.asoc.2022.109921_b20
  article-title: Internet message board activity and market efficiency: A case study of the internet service sector using Ragingbull. com
– volume: 44
  start-page: 1077
  year: 2014
  ident: 10.1016/j.asoc.2022.109921_b22
  article-title: A decision support approach for online stock forum sentiment analysis
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMC.2013.2295353
– volume: 85
  start-page: 62
  year: 2016
  ident: 10.1016/j.asoc.2022.109921_b21
  article-title: Stock market sentiment lexicon acquisition using microblogging data and statistical measures
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2016.02.013
– volume: 85
  start-page: 569
  year: 2019
  ident: 10.1016/j.asoc.2022.109921_b32
  article-title: Sentiment analysis on stock social media for stock price movement prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.07.002
– volume: 62
  start-page: 1139
  issue: 3
  year: 2007
  ident: 10.1016/j.asoc.2022.109921_b29
  article-title: Giving content to investor sentiment: The role of media in the stock market
  publication-title: J. Finance
  doi: 10.1111/j.1540-6261.2007.01232.x
– volume: 57
  start-page: 212
  year: 2014
  ident: 10.1016/j.asoc.2022.109921_b3
  article-title: Empirical evaluation of an automated intraday stock recommendation system incorporating both market data and textual news
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2013.09.013
– volume: 145
  start-page: 207
  year: 2018
  ident: 10.1016/j.asoc.2022.109921_b7
  article-title: Using Twitter trust network for stock market analysis
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.01.016
– ident: 10.1016/j.asoc.2022.109921_b45
  doi: 10.1109/I2CT.2017.8226316
– volume: 264
  start-page: 71
  year: 2017
  ident: 10.1016/j.asoc.2022.109921_b9
  article-title: Forecasting price movements using technical indicators: Investigating the impact of varying input window length
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.11.095
– year: 2022
  ident: 10.1016/j.asoc.2022.109921_b14
  article-title: Dynamic forecasting of the Shanghai Stock Exchange index movement using multiple types of investor sentiment
  publication-title: Appl. Soft Comput.
– year: 2020
  ident: 10.1016/j.asoc.2022.109921_b34
  article-title: A q-learning agent for automated trading in equity stock markets
  publication-title: Expert Syst. Appl.
– start-page: 229
  year: 2013
  ident: 10.1016/j.asoc.2022.109921_b43
– volume: 15
  start-page: 850
  issue: 5
  year: 2008
  ident: 10.1016/j.asoc.2022.109921_b47
  article-title: Robust performance hypothesis testing with the Sharpe ratio
  publication-title: J. Empir. Financ.
  doi: 10.1016/j.jempfin.2008.03.002
– volume: 27
  start-page: 531
  issue: 3
  year: 2019
  ident: 10.1016/j.asoc.2022.109921_b17
  article-title: Emotion-semantic-enhanced neural network
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2018.2885775
– volume: 55
  start-page: 863
  issue: 4
  year: 2013
  ident: 10.1016/j.asoc.2022.109921_b31
  article-title: Whose and what chatter matters? the effect of tweets on movie sales
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2012.12.022
– ident: 10.1016/j.asoc.2022.109921_b35
– volume: 112
  year: 2021
  ident: 10.1016/j.asoc.2022.109921_b36
  article-title: Constructing a stock-price forecast CNN model with gold and crude oil indicators
  publication-title: Appl. Soft Comput.
– year: 2020
  ident: 10.1016/j.asoc.2022.109921_b38
  article-title: Stock market forecasting with super-high dimensional time-series data using convLSTM, trend sampling, and specialized data augmentation
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2020.113704
– start-page: 1096
  year: 2008
  ident: 10.1016/j.asoc.2022.109921_b40
SSID ssj0016928
Score 2.5932546
Snippet Stock market prediction is a very important problem in the economics field. With the development of machine learning, more and more algorithms are applied in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109921
SubjectTerms Denoising autoencoder
Long short-term memory
Sentiment analysis
Stock market prediction
Title Deep Learning-based Integrated Framework for stock price movement prediction
URI https://dx.doi.org/10.1016/j.asoc.2022.109921
Volume 133
WOSCitedRecordID wos000903889100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA7qfPDFuzhv5MG3UXFp0zSPwwsqIoIX5lNJk0zmpQ7XyX6-J5d2uomo4EsZoVlGvrPTL6fnfAehXZJkQutMgvfjKohUE_5STIpAUUJFLMNI2dqq23N2cZG02_zSt5Lr23YCLM-T4ZD3_hVqGAOwTensL-CuvhQG4DOADleAHa4_Av5Q614pm3ofmKeUsnE_KwqhDFN12Vg2wRCon3xs9IyyUOP5xWqHF0Y3QHVlhVipUev5ah8ct81EHxTlY88Fnm3Q9U7kT93KlfhgNNihv9PHF0g4Fl-YLHxxfjJOgoj76KF2YwkjAY9dB5bKuTqZiwlH7WIGD3sCbBBO6YQYXSvuiqXHBLCvzGJmLWLe5LD99jSqEUY5-LBa6_SofVa9NYq57aVb_ThfJOXy-cZX-pqIfCAX14to3p8KcMuhuYSmdL6MFsqOG9g74BV0bsDFn8HFI3BxBS4GcLEFF1twcQkuHoG7im6Oj64PTgLfDyOQcFAsgo7WEugtHMBZB1xtU1DCleowmeiQxlmUCcPXwlAR4JlRprk9jVMhqKKiSWS4hmbyl1yvI9zhRpdHMmBn0iT6ChpmQH3Fvk4kT4iso2a5Oan0YvGmZ8lTWmYFPqRmQ1Ozoanb0DpqVHN6Tirl27tpueepJ3uOxKVgIt_M2_jjvE00N7LuLTRTvA70NpqVb0W3_7rjLekdWAp32w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-based+Integrated+Framework+for+stock+price+movement+prediction&rft.jtitle=Applied+soft+computing&rft.au=Zhao%2C+Yanli&rft.au=Yang%2C+Guang&rft.date=2023-01-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=133&rft_id=info:doi/10.1016%2Fj.asoc.2022.109921&rft.externalDocID=S156849462200970X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon