Deep Learning-based Integrated Framework for stock price movement prediction
Stock market prediction is a very important problem in the economics field. With the development of machine learning, more and more algorithms are applied in the stock market to predict the stock price movement. However, stock market prediction is regarded as a challenging task for the noise and vol...
Uložené v:
| Vydané v: | Applied soft computing Ročník 133; s. 109921 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.01.2023
|
| Predmet: | |
| ISSN: | 1568-4946, 1872-9681 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Stock market prediction is a very important problem in the economics field. With the development of machine learning, more and more algorithms are applied in the stock market to predict the stock price movement. However, stock market prediction is regarded as a challenging task for the noise and volatility of stock market data. Therefore, in this paper, a novel hybrid model SA-DLSTM is proposed to predict stock market and simulation trading by combine a emotion enhanced convolutional neural network (ECNN), the denoising autoencoder (DAE) models, and long short-term memory model (LSTM). Firstly, user-generated comments on Internet were used as a complement to stock market data, and ECNN was applied to extract the sentiment representation. Secondly, we extract the key features of stock market data by DAE, which can improve the prediction accuracy. Thirdly, we take the timeliness of emotion on stock market into consideration and construct more reliable and realistic sentiment indexes. Finally, the key features of stock data and sentiment indexes are fed into LSTM to make stock market prediction. Experiment results show that the prediction accuracy of SA-DLSTM are superior to other compared models. Meanwhile, SA-DLSTM has a good performance both in return and risk. It can help investors make wise decisions.
•The combination of public opinions and sentiments, SA-DLSTM can provide robust and accurate predictions for the stock market trends.•SA-DLSTM can calculate the sentiment indexes in which they are with different emotion strength, and use an exponential time function to calculate the timeliness of emotion.•SA-DLSTM can extract different features from multivariate financial time series, and integrate features for further classification. |
|---|---|
| AbstractList | Stock market prediction is a very important problem in the economics field. With the development of machine learning, more and more algorithms are applied in the stock market to predict the stock price movement. However, stock market prediction is regarded as a challenging task for the noise and volatility of stock market data. Therefore, in this paper, a novel hybrid model SA-DLSTM is proposed to predict stock market and simulation trading by combine a emotion enhanced convolutional neural network (ECNN), the denoising autoencoder (DAE) models, and long short-term memory model (LSTM). Firstly, user-generated comments on Internet were used as a complement to stock market data, and ECNN was applied to extract the sentiment representation. Secondly, we extract the key features of stock market data by DAE, which can improve the prediction accuracy. Thirdly, we take the timeliness of emotion on stock market into consideration and construct more reliable and realistic sentiment indexes. Finally, the key features of stock data and sentiment indexes are fed into LSTM to make stock market prediction. Experiment results show that the prediction accuracy of SA-DLSTM are superior to other compared models. Meanwhile, SA-DLSTM has a good performance both in return and risk. It can help investors make wise decisions.
•The combination of public opinions and sentiments, SA-DLSTM can provide robust and accurate predictions for the stock market trends.•SA-DLSTM can calculate the sentiment indexes in which they are with different emotion strength, and use an exponential time function to calculate the timeliness of emotion.•SA-DLSTM can extract different features from multivariate financial time series, and integrate features for further classification. |
| ArticleNumber | 109921 |
| Author | Yang, Guang Zhao, Yanli |
| Author_xml | – sequence: 1 givenname: Yanli surname: Zhao fullname: Zhao, Yanli email: hbnancy0626@163.com organization: School of Business Administration, Wuhan Business University, Wuhan, China – sequence: 2 givenname: Guang orcidid: 0000-0002-2161-6301 surname: Yang fullname: Yang, Guang email: yangchgang@zuel.edu.cn organization: School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, China |
| BookMark | eNp9kMtKAzEUhoNUsK2-gKt5gak5mVsCbqRaLQy40XXIZM6UtJ2kJKHi25uhrly4Ohf4Duf_FmRmnUVC7oGugEL9sF-p4PSKUcbSQggGV2QOvGG5qDnMUl_VPC9FWd-QRQh7miDB-Jy0z4inrEXlrbG7vFMB-2xrI-68iqndeDXil_OHbHA-C9HpQ3byRmM2ujOOaGMasTc6GmdvyfWgjgHvfuuSfG5ePtZvefv-ul0_tblmBY35gKihLBpomqFkFaiKib4fGs2xqOqu7BQDDkXRM1qXZYei4CCgUqrqKwVMF0vCL3e1dyF4HKQ2UU0fRK_MUQKVkxW5l5MVOVmRFysJZX_QlGZU_vt_6PECYQp1Nuhl0AatTrk96ih7Z_7DfwCuh33p |
| CitedBy_id | crossref_primary_10_1007_s10462_024_10784_5 crossref_primary_10_1016_j_eswa_2025_127937 crossref_primary_10_1007_s13735_023_00308_2 crossref_primary_10_4236_jmf_2024_143016 crossref_primary_10_3390_appliedmath5030076 crossref_primary_10_1186_s40537_024_01016_2 crossref_primary_10_1007_s11042_023_17184_x crossref_primary_10_1371_journal_pone_0320089 crossref_primary_10_1016_j_asoc_2025_113228 crossref_primary_10_1007_s41060_024_00692_w crossref_primary_10_1142_S0218488525500229 crossref_primary_10_1007_s10489_024_05271_x crossref_primary_10_1007_s00500_023_07915_5 crossref_primary_10_1016_j_neucom_2024_128389 crossref_primary_10_3390_electronics14051036 crossref_primary_10_1016_j_asoc_2025_112978 crossref_primary_10_3390_electronics12183960 crossref_primary_10_1016_j_asoc_2025_113229 crossref_primary_10_1016_j_eswa_2024_125590 crossref_primary_10_1016_j_asoc_2024_111329 crossref_primary_10_1109_ACCESS_2025_3589063 crossref_primary_10_1186_s40854_024_00731_2 crossref_primary_10_1016_j_frl_2025_107305 crossref_primary_10_1016_j_cie_2023_109450 crossref_primary_10_1007_s10614_024_10711_4 crossref_primary_10_1016_j_suscom_2025_101125 crossref_primary_10_1016_j_eswa_2025_127907 crossref_primary_10_1109_ACCESS_2025_3596524 crossref_primary_10_1016_j_engappai_2025_110353 crossref_primary_10_1007_s10614_025_10929_w crossref_primary_10_1016_j_aej_2025_08_024 crossref_primary_10_3390_jtaer20030185 crossref_primary_10_1016_j_najef_2024_102147 crossref_primary_10_7717_peerj_cs_2312 crossref_primary_10_1016_j_knosys_2024_112733 crossref_primary_10_1007_s13369_025_10090_4 crossref_primary_10_1016_j_neucom_2024_127583 crossref_primary_10_1016_j_asoc_2025_113519 crossref_primary_10_1016_j_eswa_2024_125780 crossref_primary_10_1007_s10614_025_11101_0 crossref_primary_10_1016_j_engappai_2024_108687 crossref_primary_10_3390_app13127104 crossref_primary_10_1007_s42979_024_03222_4 crossref_primary_10_1109_ACCESS_2024_3354702 crossref_primary_10_2139_ssrn_5380505 crossref_primary_10_3390_econometrics12020016 crossref_primary_10_1016_j_asoc_2024_111469 crossref_primary_10_1016_j_jrras_2024_101172 crossref_primary_10_7717_peerj_cs_1852 crossref_primary_10_1016_j_asoc_2024_112635 crossref_primary_10_3390_electronics13214225 crossref_primary_10_1016_j_asoc_2024_111629 crossref_primary_10_3390_electronics13173396 crossref_primary_10_1016_j_physa_2025_130533 crossref_primary_10_1016_j_dajour_2023_100212 crossref_primary_10_1016_j_inffus_2023_102049 crossref_primary_10_1080_09540091_2023_2286188 crossref_primary_10_1080_03081079_2023_2294132 crossref_primary_10_1016_j_asoc_2025_113581 crossref_primary_10_1016_j_asoc_2025_112771 crossref_primary_10_1016_j_asoc_2024_112388 crossref_primary_10_1016_j_ins_2024_121561 crossref_primary_10_7717_peerj_cs_3107 crossref_primary_10_1007_s12652_025_04976_2 crossref_primary_10_1007_s41870_024_02220_2 crossref_primary_10_1016_j_eswa_2025_127243 crossref_primary_10_1109_ACCESS_2024_3476159 |
| Cites_doi | 10.1162/neco.1997.9.8.1735 10.1016/j.physa.2021.126810 10.1016/j.eneco.2017.10.035 10.1016/j.knosys.2015.04.017 10.1016/j.ijforecast.2014.12.007 10.1016/j.procs.2020.03.049 10.1016/j.future.2021.07.017 10.1016/j.jebo.2014.06.004 10.1016/j.najef.2016.06.001 10.1016/j.eswa.2018.07.019 10.2308/accr-51865 10.1086/296344 10.1111/joes.12102 10.1016/j.knosys.2018.10.034 10.1016/j.knosys.2017.05.003 10.1016/j.asoc.2021.108084 10.1016/j.eswa.2018.06.016 10.1016/j.future.2020.10.009 10.1016/j.engappai.2016.01.012 10.1016/j.jfineco.2014.08.007 10.1016/j.ins.2014.03.096 10.1109/JSYST.2018.2794462 10.1109/TSMC.2013.2295353 10.1016/j.dss.2016.02.013 10.1016/j.engappai.2019.07.002 10.1111/j.1540-6261.2007.01232.x 10.1016/j.dss.2013.09.013 10.1016/j.knosys.2018.01.016 10.1109/I2CT.2017.8226316 10.1016/j.neucom.2016.11.095 10.1016/j.jempfin.2008.03.002 10.1109/TASLP.2018.2885775 10.1016/j.dss.2012.12.022 10.1016/j.eswa.2020.113704 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2022.109921 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2022_109921 S156849462200970X |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c230t-feec1437177f4251a529ddf7c8e356b4ba218133d20644be9381915aa5d5a12c3 |
| ISICitedReferencesCount | 73 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000903889100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Sat Nov 29 07:01:06 EST 2025 Tue Nov 18 22:28:44 EST 2025 Fri Feb 23 02:37:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Long short-term memory Sentiment analysis Denoising autoencoder Stock market prediction |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c230t-feec1437177f4251a529ddf7c8e356b4ba218133d20644be9381915aa5d5a12c3 |
| ORCID | 0000-0002-2161-6301 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2022_109921 crossref_primary_10_1016_j_asoc_2022_109921 elsevier_sciencedirect_doi_10_1016_j_asoc_2022_109921 |
| PublicationCentury | 2000 |
| PublicationDate | January 2023 2023-01-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Mng, Mehralizadeh (b42) 2016; 11 Zhou, Lu, Fujita (b1) 2015; 85 Yang, He, Chen (b17) 2019; 27 Ledoit, Wolf (b47) 2008; 15 Jiawei, Zhaopeng, Weibing, Taiyu, Jiangtao (b12) 2020; 91 Qadan, Nama (b26) 2018; 69 Siganos, Vagenasnanos, Verwijmeren (b25) 2014; 107 Yu-Chen, Wen-Chen (b36) 2021; 112 Yang (b8) 2021; 125 Long, Lu, C (b33) 2019; 164 Derakhshan, Beigy (b32) 2019; 85 Gillam, Guerard, Cahan (b30) 2015; 31 Baek, Kim (b37) 2018; 113 Zhou, Si, Fujita (b2) 2017; 128 Wu, Zheng, Olson (b22) 2014; 44 Geva, Zahavi (b3) 2014; 57 Wei, Haoyu, Kumar, Lifen (b11) 2021; 100 Tumarkin, From, Whitelaw (b20) 2002 Bileki Guilherme, Flávio, Silva Luiz Henrique, Vanderlei (b13) 2022; 116 Barberis, Greenwood, Jin, Shleifer (b39) 2015; 115 Yang, Zhou (b27) 2016; 38 Chakole, Kolhe, Mahapurush, Yadav, Kurhekar (b34) 2020 M, M, M (b28) 2016; 30 Vincent, Larochelle, Bengio, Manzagol (b40) 2008 Li, Wang, Li, Liu, Gong, Chen (b4) 2014; 278 Zhang, Lou (b10) 2021; 115 Shangkun, Chongyi, Yingke, Yu, Zonghua, Tianxiang (b14) 2022 Tetlock (b29) 2007; 62 Ruan, Durresi, Alfantoukh (b7) 2018; 145 Weng, Lu, Wang, Megahed, Martinez (b24) 2018; 112 Nuno, Paulo, Nelson (b21) 2016; 85 Rui, Liu, Whinston (b31) 2013; 55 Chen, Roll, Ross (b5) 1986 Lee, Kim (b38) 2020 Bartov, Faurel, Mohanram (b18) 2018; 93 Shynkevich, McGinnity, Coleman, Belatreche, Li (b9) 2017; 264 Hasan, Fong (b19) 2018 Nonita Sharma, Akanksha Juneja, Combining of random forest estimates using LSboost for stock market index prediction, in: 2017 2nd International Conference for Convergence in Technology, I2CT, 2017, pp. 1199–1202. Ren, Wu, Liu (b23) 2019; 13 Moghar, Hamiche (b44) 2020; 170 L, S (b43) 2013 P. L, D. M, Stock market prediction with deep learning: A character-based neural language model for event-based trading, in: Proceedings of Australasian Language Technology Association Workshop, 2017, pp. 6–15. Perikos, Hatzilygeroudis (b16) 2016; 51 Hochreiter, Schmidhuber (b41) 1997; 9 Rai, Mahata, Nurujjaman, Majhi, Debnath (b6) 2022; 592 Li, Xu, Geng, Hong (b46) 2022; 114 Shiller (b15) 2015 Wei (10.1016/j.asoc.2022.109921_b11) 2021; 100 Barberis (10.1016/j.asoc.2022.109921_b39) 2015; 115 Shiller (10.1016/j.asoc.2022.109921_b15) 2015 Qadan (10.1016/j.asoc.2022.109921_b26) 2018; 69 Jiawei (10.1016/j.asoc.2022.109921_b12) 2020; 91 Vincent (10.1016/j.asoc.2022.109921_b40) 2008 Derakhshan (10.1016/j.asoc.2022.109921_b32) 2019; 85 Mng (10.1016/j.asoc.2022.109921_b42) 2016; 11 Zhang (10.1016/j.asoc.2022.109921_b10) 2021; 115 Tumarkin (10.1016/j.asoc.2022.109921_b20) 2002 Siganos (10.1016/j.asoc.2022.109921_b25) 2014; 107 Gillam (10.1016/j.asoc.2022.109921_b30) 2015; 31 Zhou (10.1016/j.asoc.2022.109921_b2) 2017; 128 Li (10.1016/j.asoc.2022.109921_b4) 2014; 278 Ruan (10.1016/j.asoc.2022.109921_b7) 2018; 145 L (10.1016/j.asoc.2022.109921_b43) 2013 Zhou (10.1016/j.asoc.2022.109921_b1) 2015; 85 Ledoit (10.1016/j.asoc.2022.109921_b47) 2008; 15 Shynkevich (10.1016/j.asoc.2022.109921_b9) 2017; 264 Chen (10.1016/j.asoc.2022.109921_b5) 1986 Geva (10.1016/j.asoc.2022.109921_b3) 2014; 57 M (10.1016/j.asoc.2022.109921_b28) 2016; 30 10.1016/j.asoc.2022.109921_b35 Yang (10.1016/j.asoc.2022.109921_b8) 2021; 125 Shangkun (10.1016/j.asoc.2022.109921_b14) 2022 Hasan (10.1016/j.asoc.2022.109921_b19) 2018 Rai (10.1016/j.asoc.2022.109921_b6) 2022; 592 Hochreiter (10.1016/j.asoc.2022.109921_b41) 1997; 9 Li (10.1016/j.asoc.2022.109921_b46) 2022; 114 Rui (10.1016/j.asoc.2022.109921_b31) 2013; 55 Yu-Chen (10.1016/j.asoc.2022.109921_b36) 2021; 112 Lee (10.1016/j.asoc.2022.109921_b38) 2020 Tetlock (10.1016/j.asoc.2022.109921_b29) 2007; 62 Chakole (10.1016/j.asoc.2022.109921_b34) 2020 Baek (10.1016/j.asoc.2022.109921_b37) 2018; 113 Ren (10.1016/j.asoc.2022.109921_b23) 2019; 13 Moghar (10.1016/j.asoc.2022.109921_b44) 2020; 170 Yang (10.1016/j.asoc.2022.109921_b27) 2016; 38 Bileki Guilherme (10.1016/j.asoc.2022.109921_b13) 2022; 116 Perikos (10.1016/j.asoc.2022.109921_b16) 2016; 51 Yang (10.1016/j.asoc.2022.109921_b17) 2019; 27 Wu (10.1016/j.asoc.2022.109921_b22) 2014; 44 Bartov (10.1016/j.asoc.2022.109921_b18) 2018; 93 Weng (10.1016/j.asoc.2022.109921_b24) 2018; 112 Nuno (10.1016/j.asoc.2022.109921_b21) 2016; 85 Long (10.1016/j.asoc.2022.109921_b33) 2019; 164 10.1016/j.asoc.2022.109921_b45 |
| References_xml | – volume: 112 start-page: 258 year: 2018 end-page: 273 ident: b24 article-title: Predicting short-term stock prices using ensemble methods and online data sources publication-title: Expert Syst. Appl. – volume: 128 start-page: 93 year: 2017 end-page: 101 ident: b2 article-title: Predicting the listing statuses of Chinese-listed companies using decision trees combined with an improved filter feature selection method publication-title: Knowl.-Based Syst. – volume: 100 year: 2021 ident: b11 article-title: Mean–variance portfolio optimization using machine learning-based stock price prediction publication-title: Appl. Soft Comput. – start-page: 0023 year: 2018 end-page: 0029 ident: b19 article-title: Sentiment analysis based fuzzy decision platform for the Saudi Stock Market publication-title: 2018 IEEE International Conference on Electro/Information Technology – volume: 278 start-page: 826 year: 2014 end-page: 840 ident: b4 article-title: The effect of news and public mood on stock movements publication-title: Inform. Sci. – volume: 85 start-page: 52 year: 2015 end-page: 61 ident: b1 article-title: The performance of corporate financial distress prediction models with features selection guided by domain knowledge and data mining approaches publication-title: Knowl.-Based Syst. – year: 2015 ident: b15 article-title: Irrational Exuberance: Revised and Expanded – volume: 44 start-page: 1077 year: 2014 end-page: 1087 ident: b22 article-title: A decision support approach for online stock forum sentiment analysis publication-title: IEEE Trans. Syst. Man Cybern.: Syst. – volume: 170 start-page: 1168 year: 2020 end-page: 1173 ident: b44 article-title: Stock market prediction using LSTM recurrent neural network publication-title: Procedia Comput. Sci. – volume: 164 start-page: 163 year: 2019 end-page: 173 ident: b33 article-title: Deep learning-based feature engineering for stock price movement prediction publication-title: Knowl.-Based Syst. – volume: 112 year: 2021 ident: b36 article-title: Constructing a stock-price forecast CNN model with gold and crude oil indicators publication-title: Appl. Soft Comput. – volume: 15 start-page: 850 year: 2008 end-page: 859 ident: b47 article-title: Robust performance hypothesis testing with the Sharpe ratio publication-title: J. Empir. Financ. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b41 article-title: Long short-term memory publication-title: Neural Comput. – volume: 93 start-page: 25 year: 2018 end-page: 57 ident: b18 article-title: Can twitter help predict firm-level earnings and stock returns? publication-title: Account. Rev. – volume: 85 start-page: 569 year: 2019 end-page: 578 ident: b32 article-title: Sentiment analysis on stock social media for stock price movement prediction publication-title: Eng. Appl. Artif. Intell. – start-page: 229 year: 2013 end-page: 247 ident: b43 publication-title: Neural Networks and Wavelet de-Noising for Stock Trading and Prediction – volume: 38 start-page: 39 year: 2016 end-page: 53 ident: b27 article-title: Individual stock crowded trades, individual stock investor sentiment and excess returns publication-title: North Am. J. Econ. Finance – volume: 116 year: 2022 ident: b13 article-title: Order book mid-price movement inference by CatBoost classifier from convolutional feature maps publication-title: Appl. Soft Comput. – year: 2022 ident: b14 article-title: Dynamic forecasting of the Shanghai Stock Exchange index movement using multiple types of investor sentiment publication-title: Appl. Soft Comput. – reference: Nonita Sharma, Akanksha Juneja, Combining of random forest estimates using LSboost for stock market index prediction, in: 2017 2nd International Conference for Convergence in Technology, I2CT, 2017, pp. 1199–1202. – volume: 592 year: 2022 ident: b6 article-title: A sentiment-based modeling and analysis of stock price during the COVID-19: U- and Swoosh-shaped recovery publication-title: Physica A – start-page: 383 year: 1986 end-page: 403 ident: b5 article-title: Economic forces and the stock market publication-title: J. Bus. – year: 2002 ident: b20 article-title: Internet message board activity and market efficiency: A case study of the internet service sector using Ragingbull. com publication-title: Financial Markets Institutions and Instruments – start-page: 1096 year: 2008 end-page: 1103 ident: b40 article-title: Extracting and composing robust features with denoising autoencoders – volume: 69 start-page: 42 year: 2018 end-page: 58 ident: b26 article-title: Investor sentiment and the price of oil publication-title: Energy Econ. – volume: 264 start-page: 71 year: 2017 end-page: 88 ident: b9 article-title: Forecasting price movements using technical indicators: Investigating the impact of varying input window length publication-title: Neurocomputing – volume: 51 start-page: 191 year: 2016 end-page: 201 ident: b16 article-title: Recognizing emotions in text using ensemble of classifiers publication-title: Eng. Appl. Artif. Intell. – volume: 57 start-page: 212 year: 2014 end-page: 223 ident: b3 article-title: Empirical evaluation of an automated intraday stock recommendation system incorporating both market data and textual news publication-title: Decis. Support Syst. – volume: 107 start-page: 730 year: 2014 end-page: 743 ident: b25 article-title: Facebook’s daily sentiment and international stock markets publication-title: J. Econ. Behav. Organ. – volume: 30 start-page: 356 year: 2016 end-page: 369 ident: b28 article-title: Walking down wall street with a tablet: A survey of stock market predictions using the web publication-title: J. Econ. Surv. – year: 2020 ident: b34 article-title: A q-learning agent for automated trading in equity stock markets publication-title: Expert Syst. Appl. – volume: 114 year: 2022 ident: b46 article-title: A hybrid approach for forecasting ship motion using CNN-GRU-AM and GCWOA publication-title: Appl. Soft Comput. – volume: 125 start-page: 812 year: 2021 end-page: 819 ident: b8 article-title: A novel study on deep learning framework to predict and analyze the financial time series information publication-title: Future Gener. Comput. Syst. – volume: 145 start-page: 207 year: 2018 end-page: 218 ident: b7 article-title: Using Twitter trust network for stock market analysis publication-title: Knowl.-Based Syst. – volume: 91 year: 2020 ident: b12 article-title: An integrated framework of deep learning and knowledge graph for prediction of stock price trend: An application in Chinese stock exchange market publication-title: Appl. Soft Comput. – volume: 85 start-page: 62 year: 2016 end-page: 73 ident: b21 article-title: Stock market sentiment lexicon acquisition using microblogging data and statistical measures publication-title: Decis. Support Syst. – volume: 11 year: 2016 ident: b42 article-title: Forecasting east asian indices futures via a novel hybrid of wavelet-PCA denoising and artificial neural network models publication-title: PLoS One – volume: 27 start-page: 531 year: 2019 end-page: 543 ident: b17 article-title: Emotion-semantic-enhanced neural network publication-title: IEEE Trans. Audio Speech Lang. Process. – reference: P. L, D. M, Stock market prediction with deep learning: A character-based neural language model for event-based trading, in: Proceedings of Australasian Language Technology Association Workshop, 2017, pp. 6–15. – volume: 113 start-page: 457 year: 2018 end-page: 480 ident: b37 article-title: Modaugnet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module publication-title: Expert Syst. Appl. – volume: 62 start-page: 1139 year: 2007 end-page: 1168 ident: b29 article-title: Giving content to investor sentiment: The role of media in the stock market publication-title: J. Finance – volume: 31 start-page: 575 year: 2015 end-page: 581 ident: b30 article-title: News volume information: Beyond earnings forecasting in a global stock selection model publication-title: Int. J. Forecast. – volume: 13 start-page: 760 year: 2019 end-page: 770 ident: b23 article-title: Forecasting stock market movement direction using sentiment analysis and support vector machine publication-title: IEEE Syst. J. – volume: 115 start-page: 1 year: 2015 end-page: 24 ident: b39 article-title: X-CAPM: An extrapolative capital asset pricing model publication-title: J. Financ. Econ. – year: 2020 ident: b38 article-title: Stock market forecasting with super-high dimensional time-series data using convLSTM, trend sampling, and specialized data augmentation publication-title: Exp. Syst. Appl. – volume: 55 start-page: 863 year: 2013 end-page: 870 ident: b31 article-title: Whose and what chatter matters? the effect of tweets on movie sales publication-title: Decis. Support Syst. – volume: 115 start-page: 872 year: 2021 end-page: 879 ident: b10 article-title: The application research of neural network and BP algorithm in stock price pattern classification and prediction publication-title: Future Gener. Comput. Syst. – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.asoc.2022.109921_b41 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 592 year: 2022 ident: 10.1016/j.asoc.2022.109921_b6 article-title: A sentiment-based modeling and analysis of stock price during the COVID-19: U- and Swoosh-shaped recovery publication-title: Physica A doi: 10.1016/j.physa.2021.126810 – volume: 69 start-page: 42 year: 2018 ident: 10.1016/j.asoc.2022.109921_b26 article-title: Investor sentiment and the price of oil publication-title: Energy Econ. doi: 10.1016/j.eneco.2017.10.035 – volume: 85 start-page: 52 year: 2015 ident: 10.1016/j.asoc.2022.109921_b1 article-title: The performance of corporate financial distress prediction models with features selection guided by domain knowledge and data mining approaches publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.04.017 – volume: 31 start-page: 575 issue: 2 year: 2015 ident: 10.1016/j.asoc.2022.109921_b30 article-title: News volume information: Beyond earnings forecasting in a global stock selection model publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2014.12.007 – volume: 170 start-page: 1168 year: 2020 ident: 10.1016/j.asoc.2022.109921_b44 article-title: Stock market prediction using LSTM recurrent neural network publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.03.049 – volume: 125 start-page: 812 year: 2021 ident: 10.1016/j.asoc.2022.109921_b8 article-title: A novel study on deep learning framework to predict and analyze the financial time series information publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.07.017 – volume: 107 start-page: 730 year: 2014 ident: 10.1016/j.asoc.2022.109921_b25 article-title: Facebook’s daily sentiment and international stock markets publication-title: J. Econ. Behav. Organ. doi: 10.1016/j.jebo.2014.06.004 – volume: 38 start-page: 39 year: 2016 ident: 10.1016/j.asoc.2022.109921_b27 article-title: Individual stock crowded trades, individual stock investor sentiment and excess returns publication-title: North Am. J. Econ. Finance doi: 10.1016/j.najef.2016.06.001 – volume: 100 year: 2021 ident: 10.1016/j.asoc.2022.109921_b11 article-title: Mean–variance portfolio optimization using machine learning-based stock price prediction publication-title: Appl. Soft Comput. – volume: 113 start-page: 457 year: 2018 ident: 10.1016/j.asoc.2022.109921_b37 article-title: Modaugnet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.07.019 – volume: 93 start-page: 25 issue: 3 year: 2018 ident: 10.1016/j.asoc.2022.109921_b18 article-title: Can twitter help predict firm-level earnings and stock returns? publication-title: Account. Rev. doi: 10.2308/accr-51865 – start-page: 383 year: 1986 ident: 10.1016/j.asoc.2022.109921_b5 article-title: Economic forces and the stock market publication-title: J. Bus. doi: 10.1086/296344 – volume: 116 year: 2022 ident: 10.1016/j.asoc.2022.109921_b13 article-title: Order book mid-price movement inference by CatBoost classifier from convolutional feature maps publication-title: Appl. Soft Comput. – volume: 30 start-page: 356 issue: 2 year: 2016 ident: 10.1016/j.asoc.2022.109921_b28 article-title: Walking down wall street with a tablet: A survey of stock market predictions using the web publication-title: J. Econ. Surv. doi: 10.1111/joes.12102 – volume: 164 start-page: 163 year: 2019 ident: 10.1016/j.asoc.2022.109921_b33 article-title: Deep learning-based feature engineering for stock price movement prediction publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.10.034 – volume: 11 issue: 6 year: 2016 ident: 10.1016/j.asoc.2022.109921_b42 article-title: Forecasting east asian indices futures via a novel hybrid of wavelet-PCA denoising and artificial neural network models publication-title: PLoS One – volume: 128 start-page: 93 year: 2017 ident: 10.1016/j.asoc.2022.109921_b2 article-title: Predicting the listing statuses of Chinese-listed companies using decision trees combined with an improved filter feature selection method publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.05.003 – volume: 114 year: 2022 ident: 10.1016/j.asoc.2022.109921_b46 article-title: A hybrid approach for forecasting ship motion using CNN-GRU-AM and GCWOA publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.108084 – volume: 112 start-page: 258 year: 2018 ident: 10.1016/j.asoc.2022.109921_b24 article-title: Predicting short-term stock prices using ensemble methods and online data sources publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.06.016 – volume: 115 start-page: 872 year: 2021 ident: 10.1016/j.asoc.2022.109921_b10 article-title: The application research of neural network and BP algorithm in stock price pattern classification and prediction publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.10.009 – volume: 51 start-page: 191 year: 2016 ident: 10.1016/j.asoc.2022.109921_b16 article-title: Recognizing emotions in text using ensemble of classifiers publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2016.01.012 – volume: 91 year: 2020 ident: 10.1016/j.asoc.2022.109921_b12 article-title: An integrated framework of deep learning and knowledge graph for prediction of stock price trend: An application in Chinese stock exchange market publication-title: Appl. Soft Comput. – volume: 115 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.asoc.2022.109921_b39 article-title: X-CAPM: An extrapolative capital asset pricing model publication-title: J. Financ. Econ. doi: 10.1016/j.jfineco.2014.08.007 – volume: 278 start-page: 826 year: 2014 ident: 10.1016/j.asoc.2022.109921_b4 article-title: The effect of news and public mood on stock movements publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.03.096 – start-page: 0023 year: 2018 ident: 10.1016/j.asoc.2022.109921_b19 article-title: Sentiment analysis based fuzzy decision platform for the Saudi Stock Market – year: 2015 ident: 10.1016/j.asoc.2022.109921_b15 – volume: 13 start-page: 760 issue: 1 year: 2019 ident: 10.1016/j.asoc.2022.109921_b23 article-title: Forecasting stock market movement direction using sentiment analysis and support vector machine publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2018.2794462 – year: 2002 ident: 10.1016/j.asoc.2022.109921_b20 article-title: Internet message board activity and market efficiency: A case study of the internet service sector using Ragingbull. com – volume: 44 start-page: 1077 year: 2014 ident: 10.1016/j.asoc.2022.109921_b22 article-title: A decision support approach for online stock forum sentiment analysis publication-title: IEEE Trans. Syst. Man Cybern.: Syst. doi: 10.1109/TSMC.2013.2295353 – volume: 85 start-page: 62 year: 2016 ident: 10.1016/j.asoc.2022.109921_b21 article-title: Stock market sentiment lexicon acquisition using microblogging data and statistical measures publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2016.02.013 – volume: 85 start-page: 569 year: 2019 ident: 10.1016/j.asoc.2022.109921_b32 article-title: Sentiment analysis on stock social media for stock price movement prediction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.07.002 – volume: 62 start-page: 1139 issue: 3 year: 2007 ident: 10.1016/j.asoc.2022.109921_b29 article-title: Giving content to investor sentiment: The role of media in the stock market publication-title: J. Finance doi: 10.1111/j.1540-6261.2007.01232.x – volume: 57 start-page: 212 year: 2014 ident: 10.1016/j.asoc.2022.109921_b3 article-title: Empirical evaluation of an automated intraday stock recommendation system incorporating both market data and textual news publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2013.09.013 – volume: 145 start-page: 207 year: 2018 ident: 10.1016/j.asoc.2022.109921_b7 article-title: Using Twitter trust network for stock market analysis publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.01.016 – ident: 10.1016/j.asoc.2022.109921_b45 doi: 10.1109/I2CT.2017.8226316 – volume: 264 start-page: 71 year: 2017 ident: 10.1016/j.asoc.2022.109921_b9 article-title: Forecasting price movements using technical indicators: Investigating the impact of varying input window length publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.11.095 – year: 2022 ident: 10.1016/j.asoc.2022.109921_b14 article-title: Dynamic forecasting of the Shanghai Stock Exchange index movement using multiple types of investor sentiment publication-title: Appl. Soft Comput. – year: 2020 ident: 10.1016/j.asoc.2022.109921_b34 article-title: A q-learning agent for automated trading in equity stock markets publication-title: Expert Syst. Appl. – start-page: 229 year: 2013 ident: 10.1016/j.asoc.2022.109921_b43 – volume: 15 start-page: 850 issue: 5 year: 2008 ident: 10.1016/j.asoc.2022.109921_b47 article-title: Robust performance hypothesis testing with the Sharpe ratio publication-title: J. Empir. Financ. doi: 10.1016/j.jempfin.2008.03.002 – volume: 27 start-page: 531 issue: 3 year: 2019 ident: 10.1016/j.asoc.2022.109921_b17 article-title: Emotion-semantic-enhanced neural network publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2018.2885775 – volume: 55 start-page: 863 issue: 4 year: 2013 ident: 10.1016/j.asoc.2022.109921_b31 article-title: Whose and what chatter matters? the effect of tweets on movie sales publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2012.12.022 – ident: 10.1016/j.asoc.2022.109921_b35 – volume: 112 year: 2021 ident: 10.1016/j.asoc.2022.109921_b36 article-title: Constructing a stock-price forecast CNN model with gold and crude oil indicators publication-title: Appl. Soft Comput. – year: 2020 ident: 10.1016/j.asoc.2022.109921_b38 article-title: Stock market forecasting with super-high dimensional time-series data using convLSTM, trend sampling, and specialized data augmentation publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2020.113704 – start-page: 1096 year: 2008 ident: 10.1016/j.asoc.2022.109921_b40 |
| SSID | ssj0016928 |
| Score | 2.5932546 |
| Snippet | Stock market prediction is a very important problem in the economics field. With the development of machine learning, more and more algorithms are applied in... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109921 |
| SubjectTerms | Denoising autoencoder Long short-term memory Sentiment analysis Stock market prediction |
| Title | Deep Learning-based Integrated Framework for stock price movement prediction |
| URI | https://dx.doi.org/10.1016/j.asoc.2022.109921 |
| Volume | 133 |
| WOSCitedRecordID | wos000903889100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA7qfPDFuzhv5MG3UXFp0zSPwwsqIoIX5lNJk0zmpQ7XyX6-J5d2uomo4EsZoVlGvrPTL6fnfAehXZJkQutMgvfjKohUE_5STIpAUUJFLMNI2dqq23N2cZG02_zSt5Lr23YCLM-T4ZD3_hVqGAOwTensL-CuvhQG4DOADleAHa4_Av5Q614pm3ofmKeUsnE_KwqhDFN12Vg2wRCon3xs9IyyUOP5xWqHF0Y3QHVlhVipUev5ah8ct81EHxTlY88Fnm3Q9U7kT93KlfhgNNihv9PHF0g4Fl-YLHxxfjJOgoj76KF2YwkjAY9dB5bKuTqZiwlH7WIGD3sCbBBO6YQYXSvuiqXHBLCvzGJmLWLe5LD99jSqEUY5-LBa6_SofVa9NYq57aVb_ThfJOXy-cZX-pqIfCAX14to3p8KcMuhuYSmdL6MFsqOG9g74BV0bsDFn8HFI3BxBS4GcLEFF1twcQkuHoG7im6Oj64PTgLfDyOQcFAsgo7WEugtHMBZB1xtU1DCleowmeiQxlmUCcPXwlAR4JlRprk9jVMhqKKiSWS4hmbyl1yvI9zhRpdHMmBn0iT6ChpmQH3Fvk4kT4iso2a5Oan0YvGmZ8lTWmYFPqRmQ1Ozoanb0DpqVHN6Tirl27tpueepJ3uOxKVgIt_M2_jjvE00N7LuLTRTvA70NpqVb0W3_7rjLekdWAp32w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-based+Integrated+Framework+for+stock+price+movement+prediction&rft.jtitle=Applied+soft+computing&rft.au=Zhao%2C+Yanli&rft.au=Yang%2C+Guang&rft.date=2023-01-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=133&rft_id=info:doi/10.1016%2Fj.asoc.2022.109921&rft.externalDocID=S156849462200970X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |