ENIC: Ensemble and Nature Inclined Classification with Sparse Depiction based Deep and Transfer Learning for Biosignal Classification

The electrical activities of the brain are recorded and measured with Electroencephalography (EEG) by means of placing the electrodes on the scalp of the brain. It is quite a famous and versatile methodology utilized in both clinical and academic research activities. In this work, sparse depiction i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 117; S. 108416
Hauptverfasser: Prabhakar, Sunil Kumar, Lee, Seong-Whan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.03.2022
Schlagworte:
ISSN:1568-4946, 1872-9681
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The electrical activities of the brain are recorded and measured with Electroencephalography (EEG) by means of placing the electrodes on the scalp of the brain. It is quite a famous and versatile methodology utilized in both clinical and academic research activities. In this work, sparse depiction is initially incorporated to the EEG signals by means of using K-Singular Value Decomposition (K-SVD) algorithm and the features are extracted by means of using Self-Organizing Map (SOM) technique. The extracted features are initially classified with Extreme Learning Machine (ELM) and the proposed classification versions of ELM such as Ensemble ELM model and Nature Inclined ELM Model. The proposed ensemble ELM model makes use of the combination of Modified Adaboost. RT based on wavelet thresholding with ELM. The proposed Nature Inclined ELM makes use of the combination of some famous swarm intelligence algorithms such as Genetic Algorithm based ELM (GA-ELM), Particle Swarm Optimization based ELM (PSO-ELM), Ant Colony Optimization based ELM (ACO-ELM), Artificial Bee Colony based ELM (ABC-ELM) and Glowworm Swarm Optimization based ELM (GSO-ELM). The​ extracted features are also classified with deep learning methodology by means of utilizing an incidental Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN). Another famous methodology using Non-negative Matrix Factorization (NMF) and Affinity Propagation Congregation based Mutual Information (APCMI) with transfer learning techniques is also proposed and implemented once the sparse modelling is done and the results are analysed. The proposed methodology is implemented for two EEG datasets such as epilepsy dataset and schizophrenia dataset and a comprehensive analysis is done with very promising results. •Sparse Depiction is imposed to EEG Signals initially.•K-SVD algorithm and Self-Organizing Map technique is utilized.•An Ensemble and Nature Inclined Classification model with ELM is proposed.•A transfer learning model along with deep learning model is also implemented.•The developed models are tested on two EEG signal datasets.
AbstractList The electrical activities of the brain are recorded and measured with Electroencephalography (EEG) by means of placing the electrodes on the scalp of the brain. It is quite a famous and versatile methodology utilized in both clinical and academic research activities. In this work, sparse depiction is initially incorporated to the EEG signals by means of using K-Singular Value Decomposition (K-SVD) algorithm and the features are extracted by means of using Self-Organizing Map (SOM) technique. The extracted features are initially classified with Extreme Learning Machine (ELM) and the proposed classification versions of ELM such as Ensemble ELM model and Nature Inclined ELM Model. The proposed ensemble ELM model makes use of the combination of Modified Adaboost. RT based on wavelet thresholding with ELM. The proposed Nature Inclined ELM makes use of the combination of some famous swarm intelligence algorithms such as Genetic Algorithm based ELM (GA-ELM), Particle Swarm Optimization based ELM (PSO-ELM), Ant Colony Optimization based ELM (ACO-ELM), Artificial Bee Colony based ELM (ABC-ELM) and Glowworm Swarm Optimization based ELM (GSO-ELM). The​ extracted features are also classified with deep learning methodology by means of utilizing an incidental Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN). Another famous methodology using Non-negative Matrix Factorization (NMF) and Affinity Propagation Congregation based Mutual Information (APCMI) with transfer learning techniques is also proposed and implemented once the sparse modelling is done and the results are analysed. The proposed methodology is implemented for two EEG datasets such as epilepsy dataset and schizophrenia dataset and a comprehensive analysis is done with very promising results. •Sparse Depiction is imposed to EEG Signals initially.•K-SVD algorithm and Self-Organizing Map technique is utilized.•An Ensemble and Nature Inclined Classification model with ELM is proposed.•A transfer learning model along with deep learning model is also implemented.•The developed models are tested on two EEG signal datasets.
ArticleNumber 108416
Author Prabhakar, Sunil Kumar
Lee, Seong-Whan
Author_xml – sequence: 1
  givenname: Sunil Kumar
  orcidid: 0000-0003-4019-2345
  surname: Prabhakar
  fullname: Prabhakar, Sunil Kumar
– sequence: 2
  givenname: Seong-Whan
  surname: Lee
  fullname: Lee, Seong-Whan
  email: sw.lee@korea.ac.kr
BookMark eNp9kEFOwzAQRS0EEm3hAqx8gRTbcRwHsYG2QKWqLChry3HGxVXqRHYAcQDuTdqy6qKrmfma9zXzh-jcNx4QuqFkTAkVt5uxjo0ZM8JYL0hOxRkaUJmzpBCSnvd9JmTCCy4u0TDGDemhgskB-p0t55M7PPMRtmUNWPsKL3X3GQDPvamdhwpPah2js87ozjUef7vuA7-1OkTAU2id2auljv3qFKDde6yC9tFCwAvQwTu_xrYJ-NE10a29ro88r9CF1XWE6_86Qu9Ps9XkJVm8Ps8nD4vEsJR0iZUFIVpkPOWGZDnr54pbIdOcsIpSnhHITQk8pwXlglsqSkYLUxpuaJYxk44QO_ia0MQYwKo2uK0OP4oStQtSbdQuSLULUh2C7CF5BBnX7c_ugnb1afT-gEL_1JeDoKJx4A1ULoDpVNW4U_gfT3qRKw
CitedBy_id crossref_primary_10_1088_1361_6501_ad9043
crossref_primary_10_3389_fnins_2023_1145526
crossref_primary_10_3390_bioengineering11100986
crossref_primary_10_1016_j_neucom_2023_126874
crossref_primary_10_1016_j_ins_2025_122426
crossref_primary_10_1109_TFUZZ_2024_3363623
crossref_primary_10_1016_j_asoc_2025_113211
crossref_primary_10_1088_1741_2552_ad7f8e
crossref_primary_10_3389_frai_2023_1156269
Cites_doi 10.1109/TNSRE.2017.2748388
10.1371/journal.pone.0188629
10.1016/j.eswa.2009.09.051
10.1109/TKDE.2009.191
10.1016/j.procs.2016.07.422
10.1155/2019/1806314
10.1016/j.bspc.2011.07.007
10.1155/2015/129021
10.1155/2020/8853835
10.1109/TIFS.2016.2577551
10.1016/j.cmpb.2016.08.013
10.1007/s11760-012-0362-9
10.1177/0954411920966937
10.1007/s00521-013-1522-8
10.1002/ima.22486
10.1016/j.bspc.2021.102936
10.3390/ijerph16040599
10.1016/j.engappai.2010.06.009
10.1186/s40708-020-00105-1
10.1103/PhysRevE.64.061907
10.1007/s11045-016-0389-0
10.1016/j.bbe.2019.12.002
10.1155/2014/426152
10.1016/j.eswa.2011.07.048
10.1109/78.650093
10.3390/brainsci9120348
10.2174/1573405615666190404163233
10.5370/JEET.2016.11.4.993
10.1142/S012906572150026X
10.3390/app7101060
10.1002/ima.20283
10.1109/TNSRE.2018.2839116
10.1016/j.patcog.2015.03.010
10.3389/fnagi.2016.00092
10.1155/2015/405890
10.1007/978-3-319-28397-5_28
10.1016/j.eswa.2018.04.021
10.1109/ACCESS.2020.3011140
10.1109/TITB.2006.884369
10.1142/S0129065706000482
10.1155/2019/8719387
10.1109/TSP.2013.2250968
10.1109/TIM.2009.2026612
10.1155/2008/361705
10.1155/2014/813197
10.1007/s00521-012-1158-0
10.1109/IJCNN.2004.1380068
10.1109/TCYB.2015.2399420
10.1155/2014/627892
10.1007/s11517-018-1875-3
10.1007/s11042-021-10597-6
10.3389/fnins.2020.00808
10.1088/1741-2560/9/5/056002
10.1109/TIP.2010.2081678
10.1155/2020/8206245
10.1016/j.eswa.2011.07.008
10.1007/s11517-015-1351-2
10.1016/j.compbiomed.2019.01.013
10.1109/TNNLS.2019.2946869
10.1016/j.jbi.2018.05.007
10.1016/j.heliyon.2020.e05689
10.1016/j.bbe.2020.05.008
10.24251/HICSS.2020.393
10.1016/j.patcog.2019.01.015
10.18280/ts.370209
10.1109/ACCESS.2020.2975848
10.1155/2015/103796
10.1109/34.879789
10.3390/electronics9050811
10.1155/2020/2918276
10.1155/2018/9593682
10.1109/CBMS.2012.6266371
10.1016/j.eswa.2019.03.021
10.1016/j.neunet.2020.01.017
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2022.108416
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2022_108416
S1568494622000047
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c230t-f8900a65434c0572f89d4f683702d11450e7cbe47191464f16b219cbc4c1552c3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000781500800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:03:56 EST 2025
Tue Nov 18 22:28:06 EST 2025
Fri Feb 23 02:43:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords SOM
Deep learning
Transfer learning
EEG
ELM
K-SVD
Sparse
Swarm intelligence
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c230t-f8900a65434c0572f89d4f683702d11450e7cbe47191464f16b219cbc4c1552c3
ORCID 0000-0003-4019-2345
ParticipantIDs crossref_primary_10_1016_j_asoc_2022_108416
crossref_citationtrail_10_1016_j_asoc_2022_108416
elsevier_sciencedirect_doi_10_1016_j_asoc_2022_108416
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ding, Xuand, Nie (b29) 2014; 25
Ullah, Hussain, Qazi, Aboalsamh (b53) 2018; 107
Aayesha, Qureshi, Afzaal (b17) 2021; 80
Andrzejak, Lehnertz, Rieke, Mormann, Elger (b84) 2001; 64
She, Chen, Ma, Nguyen, Zhang (b46) 2018; 2018
Acharya, Molinari, Vinitha, Chattopadhyay (b90) 2012; 7
G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of the IEEE International Joint Conference on Neural Networks, Vol. 2, 2004, pp. 985–990.
Krishnan, Raj, Balasubramanian, Chen (b21) 2020
Michielli, Acharya, Molinari (b80) 2019; 106
Lee, Fazli, Mehnert, Lee (b51) 2015; 48
Krishnan, Ghose (b76) 2011
So, Madusanka, Choi, Choi, Park (b55) 2019; 15
Yildirim, Baloglu, Acharya (b56) 2019; 16
Chu, Lin, Yang, Diao, Zhang, Zhang, Fan, Shen, Yan (b39) 2019; 2019
Ultsch, Siemon (b65) 1990
Chen, Atnafu, Schlattner, Weldtsadik, Roh, Kim, Lee, Blankertz, Fazli (b4) 2016; 11
Lee, Williamson, Won, Fazli, Lee (b2) 2018; 26
Lu (b41) 2016; 46
Shoeibi, Ghassemi, Khodatars (b14) 2020
A. Graves, Generating sequences with recurrent neural networks, 0000.
Yaghoobi, Nam, Gribonval, Davies (b64) 2013; 61
Nkengfack, Tchiotsop, Atangana, Door, Wolf (b16) 2021; 23
Zhao, Guo, Wang, Li, Pang, Georgakopoulos (b43) 2015
Yang, Li (b12) 2009; 59
Murugavel, Ramakrishnan (b48) 2016; 54
Foithong, Pinngern, Attachoo (b82) 2012; 39
Raghu, Sriraam, Temel, Rao, Kubben (b62) 2020; 124
Schmidt, Laurberg (b81) 2008; 2008
Raghu, Sriraam, Pradeep (b92) 2017
Elad, Aharon (b11) 2006
Sharma, Omlin (b68) 2009; 5
Shalbaf, Bagherzadeh, Maghsoudi (b23) 2020
Aslan, Akin (b26) 2020; 37
.
Yu, Qiao, Chen, Lee, Fei, Shen (b5) 2019; 90
Karaboga, Akay (b75) 2009; 214
Prabhakar, Rajaguru (b69) 2020; 6
Singh, Singh, Malhotra (b22) 2021; 235
Prabhakar, Rajaguru, Lee (b25) 2020; 8
Nicolaou, Georgiou (b86) 2012; 39
Jammoussi, Nasr (b31) 2020; 2020
Kumar, Dewal, Anand (b91) 2014; 8
Lee, Jeong, Shim, Lee (b60) 2020
Yang, Zhou, Xie, Ding, Yang, Zhang (b67) 2011; 20
R. Buettner, D. Beil, S. Scholtz, A. Djemai, Development of a machine learning based algorithm to accurately detect schizophrenia based on one-minute EEG recordings, in: Proceedings of the 53rd Hawaii International Conference on System Sciences, 2020.
Liang (b44) 2006; 16
Suresh, Saraswathi, Sundararajan (b38) 2010; 23
Han, Kwak, Oh, Lee (b57) 2020; 40
Rajaguru, Thangavel (b70) 2014; 2014
Mao, Zhang, Liu, Li, Yang (b30) 2014; 2014
Ding, Zhang, Xu, Guo, Zhang (b49) 2015; 2015
Wang, Cai, Peng, Jia (b35) 2015; 2015
Huang, Li, Chen, Lin, Yao (b10) 2020; 14
Jiang (b61) 2017; 25
Lee, Jeong, Lee (b50) 2020; 8
Srinath, Gayathri (b19) 2021; 31
Lee, Lewicki, Sejnowski (b66) 2000; 22
Prabhakar, Rajaguru, Kim (b24) 2020; 2020
Zhu, Suk, Lee, Shen (b6) 2017
Pan, Yang (b59) 2010; 22
Wang, Shi, Zhang, Zhu (b83) 2021; 2021
She, Hu, Luo (b45) 2019; 57
Jeong, Yu, Lee, Lee (b58) 2019; 9
Liu, Dai, Wang (b73) 2008; 34
Zhou, Tan, Wen, Sun, Han, Xu (b9) 2016; 8
Wei, Liu, Yan, Sun (b71) 2016; 28
Manivasagam (b40) 2016; 46
L. Duan, M. Bao, J. Miao, Y. Xu, J. Chen, Classification Based on Multilayer Extreme Learning Machine for Motor Imagery Task from EEG Signals, Procedia Comput. Sci. (ISSN: 1877-0509) 88, 176–184
Li, Huang, Zhou, Zhong (b79) 2017; 7
Kwon, Lee, Guan, Lee (b3) 2020; 31
S. Xie, S. Krishnan, A.T. Lawniczak, Sparse principal component extraction and classification of long-term biomedical signals, in: 25th International Symposium on Computer-Based Medical Systems, Rome, 2012, pp. 1–6.
Schuster, Paliwal (b77) 1997; 45
Siddiqui, Menendez, Huang, Hussain (b13) 2020; 7
Wei, Huang, Chen, Zheng, Wang (b34) 2019; 2019
Shin, Lee, Lee, Lee (b8) 2012; 9
Suk, Lee (b1) 2011; 21
Ozdemir, Cura, Akan (b18) 2021
Olejarczyk, Jernajczyk (b85) 2017; 12
Cao, Lin (b32) 2015; 2015
He, Cao (b54) 2018; 83
Liu, Xiao, Xu, Cai (b15) 2021; 20
Avci (b37) 2016; 11
Hassan, Subasi (b87) 2016; 136
Srinivasan, Eswaran, Sriraam (b88) 2007; 11
Yaseen, Faris, Ansari (b36) 2020; 2020
Eshelman, Schaffer (b72) 1991
Souza (b33) 2020; 9
Raghu, Sriraam, Hegde, Kubben (b93) 2019; 127
L. Duan, Y. Xu, S. Cui, J. Chen, M. Bao, Feature extraction of motor imagery eeg based on extreme learning machine auto encoder, in: Proceedings of ELM-2015, Vol. 1.
Hoyer (b63) 2004; 5
Baygin, Yaman, Tuncer, Dogan, Barua, Acharya (b20) 2021; 70
Salahi, Jamalian, Taati (b74) 2013; 23
Jirayucharoensak, Ngum, Israsena (b52) 2014; 2014
Pravin, Sriraam, Benakop, Jinaga (b89) 2010; 37
Han (10.1016/j.asoc.2022.108416_b57) 2020; 40
Nkengfack (10.1016/j.asoc.2022.108416_b16) 2021; 23
Elad (10.1016/j.asoc.2022.108416_b11) 2006
Shalbaf (10.1016/j.asoc.2022.108416_b23) 2020
Lee (10.1016/j.asoc.2022.108416_b51) 2015; 48
Chu (10.1016/j.asoc.2022.108416_b39) 2019; 2019
Wang (10.1016/j.asoc.2022.108416_b35) 2015; 2015
Lu (10.1016/j.asoc.2022.108416_b41) 2016; 46
Foithong (10.1016/j.asoc.2022.108416_b82) 2012; 39
Ultsch (10.1016/j.asoc.2022.108416_b65) 1990
10.1016/j.asoc.2022.108416_b78
Yaghoobi (10.1016/j.asoc.2022.108416_b64) 2013; 61
Srinivasan (10.1016/j.asoc.2022.108416_b88) 2007; 11
Siddiqui (10.1016/j.asoc.2022.108416_b13) 2020; 7
Wang (10.1016/j.asoc.2022.108416_b83) 2021; 2021
Wei (10.1016/j.asoc.2022.108416_b34) 2019; 2019
Raghu (10.1016/j.asoc.2022.108416_b93) 2019; 127
Yildirim (10.1016/j.asoc.2022.108416_b56) 2019; 16
Prabhakar (10.1016/j.asoc.2022.108416_b25) 2020; 8
Murugavel (10.1016/j.asoc.2022.108416_b48) 2016; 54
Sharma (10.1016/j.asoc.2022.108416_b68) 2009; 5
Pravin (10.1016/j.asoc.2022.108416_b89) 2010; 37
Ding (10.1016/j.asoc.2022.108416_b29) 2014; 25
Lee (10.1016/j.asoc.2022.108416_b66) 2000; 22
Raghu (10.1016/j.asoc.2022.108416_b62) 2020; 124
Lee (10.1016/j.asoc.2022.108416_b50) 2020; 8
Ding (10.1016/j.asoc.2022.108416_b49) 2015; 2015
Huang (10.1016/j.asoc.2022.108416_b10) 2020; 14
Prabhakar (10.1016/j.asoc.2022.108416_b24) 2020; 2020
Ullah (10.1016/j.asoc.2022.108416_b53) 2018; 107
Lee (10.1016/j.asoc.2022.108416_b60) 2020
Liu (10.1016/j.asoc.2022.108416_b15) 2021; 20
Aayesha (10.1016/j.asoc.2022.108416_b17) 2021; 80
Shoeibi (10.1016/j.asoc.2022.108416_b14) 2020
Manivasagam (10.1016/j.asoc.2022.108416_b40) 2016; 46
Liu (10.1016/j.asoc.2022.108416_b73) 2008; 34
Yu (10.1016/j.asoc.2022.108416_b5) 2019; 90
She (10.1016/j.asoc.2022.108416_b46) 2018; 2018
Eshelman (10.1016/j.asoc.2022.108416_b72) 1991
Schuster (10.1016/j.asoc.2022.108416_b77) 1997; 45
Srinath (10.1016/j.asoc.2022.108416_b19) 2021; 31
10.1016/j.asoc.2022.108416_b27
10.1016/j.asoc.2022.108416_b28
Schmidt (10.1016/j.asoc.2022.108416_b81) 2008; 2008
Lee (10.1016/j.asoc.2022.108416_b2) 2018; 26
Ozdemir (10.1016/j.asoc.2022.108416_b18) 2021
Pan (10.1016/j.asoc.2022.108416_b59) 2010; 22
He (10.1016/j.asoc.2022.108416_b54) 2018; 83
Souza (10.1016/j.asoc.2022.108416_b33) 2020; 9
Cao (10.1016/j.asoc.2022.108416_b32) 2015; 2015
Acharya (10.1016/j.asoc.2022.108416_b90) 2012; 7
Baygin (10.1016/j.asoc.2022.108416_b20) 2021; 70
Prabhakar (10.1016/j.asoc.2022.108416_b69) 2020; 6
Zhao (10.1016/j.asoc.2022.108416_b43) 2015
Andrzejak (10.1016/j.asoc.2022.108416_b84) 2001; 64
Hoyer (10.1016/j.asoc.2022.108416_b63) 2004; 5
Liang (10.1016/j.asoc.2022.108416_b44) 2006; 16
Zhu (10.1016/j.asoc.2022.108416_b6) 2017
Aslan (10.1016/j.asoc.2022.108416_b26) 2020; 37
So (10.1016/j.asoc.2022.108416_b55) 2019; 15
Krishnan (10.1016/j.asoc.2022.108416_b76) 2011
Yang (10.1016/j.asoc.2022.108416_b12) 2009; 59
Li (10.1016/j.asoc.2022.108416_b79) 2017; 7
Wei (10.1016/j.asoc.2022.108416_b71) 2016; 28
She (10.1016/j.asoc.2022.108416_b45) 2019; 57
Olejarczyk (10.1016/j.asoc.2022.108416_b85) 2017; 12
Rajaguru (10.1016/j.asoc.2022.108416_b70) 2014; 2014
Raghu (10.1016/j.asoc.2022.108416_b92) 2017
Avci (10.1016/j.asoc.2022.108416_b37) 2016; 11
Kwon (10.1016/j.asoc.2022.108416_b3) 2020; 31
Mao (10.1016/j.asoc.2022.108416_b30) 2014; 2014
Hassan (10.1016/j.asoc.2022.108416_b87) 2016; 136
10.1016/j.asoc.2022.108416_b7
Singh (10.1016/j.asoc.2022.108416_b22) 2021; 235
Suresh (10.1016/j.asoc.2022.108416_b38) 2010; 23
Salahi (10.1016/j.asoc.2022.108416_b74) 2013; 23
Suk (10.1016/j.asoc.2022.108416_b1) 2011; 21
10.1016/j.asoc.2022.108416_b47
Michielli (10.1016/j.asoc.2022.108416_b80) 2019; 106
Zhou (10.1016/j.asoc.2022.108416_b9) 2016; 8
Yaseen (10.1016/j.asoc.2022.108416_b36) 2020; 2020
Yang (10.1016/j.asoc.2022.108416_b67) 2011; 20
Karaboga (10.1016/j.asoc.2022.108416_b75) 2009; 214
Jiang (10.1016/j.asoc.2022.108416_b61) 2017; 25
10.1016/j.asoc.2022.108416_b42
Kumar (10.1016/j.asoc.2022.108416_b91) 2014; 8
Nicolaou (10.1016/j.asoc.2022.108416_b86) 2012; 39
Shin (10.1016/j.asoc.2022.108416_b8) 2012; 9
Chen (10.1016/j.asoc.2022.108416_b4) 2016; 11
Jammoussi (10.1016/j.asoc.2022.108416_b31) 2020; 2020
Jirayucharoensak (10.1016/j.asoc.2022.108416_b52) 2014; 2014
Jeong (10.1016/j.asoc.2022.108416_b58) 2019; 9
Krishnan (10.1016/j.asoc.2022.108416_b21) 2020
References_xml – volume: 23
  year: 2021
  ident: b16
  article-title: Classification of EEG signals for epileptic seizures detection and eye states identification using Jacobi polynomial transforms-based measures of complexity and least-squares support vector machines
  publication-title: Inform. Med. Unlocked
– volume: 5
  start-page: 1
  year: 2009
  end-page: 12
  ident: b68
  article-title: Performance comparison of particle swarm optimization with traditional clustering algorithms used in self organizing map
  publication-title: Int. J. Comput. Intell.
– year: 2020
  ident: b14
  article-title: Application of deep learning techniques for automated detection of epileptic seizures: A review
– volume: 2015
  year: 2015
  ident: b49
  article-title: Deep extreme learning machine and its application in EEG classification
  publication-title: Math. Probl. Eng.
– volume: 127
  start-page: 323
  year: 2019
  end-page: 341
  ident: b93
  article-title: A novel approach for classification of epileptic seizures using matrix determinant
  publication-title: Expert Syst. Appl.
– volume: 235
  start-page: 167
  year: 2021
  end-page: 184
  ident: b22
  article-title: Spectral features based convolutional neural network for accurate and prompt identification of schizophrenic patients
  publication-title: Proc. Inst. Mech. Eng. [H]
– volume: 57
  start-page: 147
  year: 2019
  end-page: 157
  ident: b45
  article-title: A hierarchical semi-supervised extreme learning machine method for EEG recognition
  publication-title: Med. Biol. Eng. Comput.
– volume: 21
  start-page: 123
  year: 2011
  end-page: 130
  ident: b1
  article-title: Subject and class specific frequency bands selection for multi-class motor imagery classification
  publication-title: Int. J. Imaging Syst. Technol.
– volume: 70
  year: 2021
  ident: b20
  article-title: Automated accurate schizophrenia detection system using collatz pattern technique with EEG signals’
  publication-title: Biomed. Signal Process. Control
– volume: 8
  start-page: 1323
  year: 2014
  end-page: 1334
  ident: b91
  article-title: Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network
  publication-title: SiViP
– volume: 7
  start-page: 401
  year: 2012
  end-page: 408
  ident: b90
  article-title: Automatic diagnosis of epileptic EEG using entropies
  publication-title: Biomed. Signal Process. Control
– volume: 39
  start-page: 202
  year: 2012
  end-page: 209
  ident: b86
  article-title: Detection of epileptic electroencephalogram based on perumutation entropy and support vector machine
  publication-title: Expert Syst. Appl.
– volume: 2020
  year: 2020
  ident: b31
  article-title: A hybrid method based on extreme learning machine and self organizing map for pattern classification
  publication-title: Comput. Intell. Neurosci.
– volume: 16
  start-page: 29
  year: 2006
  end-page: 38
  ident: b44
  article-title: Classification of mental tasks from EEG signals using extreme learning machine
  publication-title: Int. J. Neural Syst.
– volume: 107
  start-page: 61
  year: 2018
  end-page: 71
  ident: b53
  article-title: An automated system for epilepsy detection using EEG brain signals based on deep learning approach
  publication-title: Expert Syst. Appl.
– volume: 34
  start-page: 208
  year: 2008
  end-page: 210
  ident: b73
  article-title: Ant colony algorithm parameters optimization
  publication-title: Comput. Eng.
– reference: S. Xie, S. Krishnan, A.T. Lawniczak, Sparse principal component extraction and classification of long-term biomedical signals, in: 25th International Symposium on Computer-Based Medical Systems, Rome, 2012, pp. 1–6.
– volume: 25
  start-page: 549
  year: 2014
  end-page: 556
  ident: b29
  article-title: Extreme learning machine
  publication-title: Neural Comput. Appl.
– volume: 11
  start-page: 993
  year: 2016
  end-page: 1002
  ident: b37
  article-title: An automatic diagnosis system for hepatitis diseases based on genetic wavelet kernel extreme learning machine
  publication-title: J. Electr. Eng. Technol.
– volume: 59
  start-page: 884
  year: 2009
  end-page: 892
  ident: b12
  article-title: Multifocus image fusion and restoration with sparse representation
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 80
  start-page: 17849
  year: 2021
  end-page: 17877
  ident: b17
  article-title: Machine learning-based EEG signals classification model for epileptic seizure detection
  publication-title: Multimedia Tools Appl.
– volume: 11
  start-page: 288
  year: 2007
  end-page: 295
  ident: b88
  article-title: Approximate entropy-based epileptic EEG detection using artificial neural networks
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 8
  start-page: 134524
  year: 2020
  end-page: 134535
  ident: b50
  article-title: SessionNet: FEature similarity-based weighted ensemble learning for motor imagery classification
  publication-title: IEEE Access
– volume: 83
  start-page: 103
  year: 2018
  end-page: 111
  ident: b54
  article-title: Automated depression analysis using convolutional neural networks from speech
  publication-title: J. Biomed. Inform.
– volume: 22
  start-page: 1078
  year: 2000
  end-page: 1089
  ident: b66
  article-title: ICA Mixture models for unsupervised classification of non-Gaussian classes and automatic context switching in blind signal separation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 51
  year: 2017
  end-page: 66
  ident: b92
  article-title: Classification of epileptic seizures using wavelet packet log energy and norm entropies with recurrent elman neural network classifier
  publication-title: Cognitive Neurodynamics, Vol. 11
– reference: R. Buettner, D. Beil, S. Scholtz, A. Djemai, Development of a machine learning based algorithm to accurately detect schizophrenia based on one-minute EEG recordings, in: Proceedings of the 53rd Hawaii International Conference on System Sciences, 2020.
– start-page: 9
  year: 2015
  ident: b43
  article-title: Analyze EEG signals with extreme learning machine based on PMIS feature selection
  publication-title: Int. J. Mach. Learn. Cybern.
– start-page: 115
  year: 1991
  end-page: 122
  ident: b72
  article-title: Preventing premature convergence in genetic algorithms by preventing incest
  publication-title: Proceedings of the 4th International Conference on Genetic Algorithms (ICGA ’91)
– volume: 20
  year: 2021
  ident: b15
  article-title: Minireview of epilepsy detection techniques based on electroencephalogram signals
  publication-title: Front. Syst. Neurosci.
– volume: 37
  start-page: 3284
  year: 2010
  end-page: 3291
  ident: b89
  article-title: Entropies based detection of epileptic seizures with artificial neural network classifiers
  publication-title: Expert Syst. Appl.
– volume: 9
  start-page: 811
  year: 2020
  ident: b33
  article-title: An advanced pruning method in the architecture of extreme learning machines using L1 regularization and bootstrapping
  publication-title: Electronics
– start-page: 895
  year: 2006
  end-page: 900
  ident: b11
  article-title: Image denoising via learned dictionaries and sparse representation
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), Vol. 1
– volume: 46
  year: 2016
  ident: b40
  article-title: Fault detection in state variable filter circuit using kernel extreme learning machine (KELM) algorithm
  publication-title: Inform. MIDEM
– reference: L. Duan, M. Bao, J. Miao, Y. Xu, J. Chen, Classification Based on Multilayer Extreme Learning Machine for Motor Imagery Task from EEG Signals, Procedia Comput. Sci. (ISSN: 1877-0509) 88, 176–184,
– volume: 5
  start-page: 1457
  year: 2004
  end-page: 1469
  ident: b63
  article-title: Non-negative matrix factorization with sparseness constraints
  publication-title: J. Mach. Learn. Res.
– year: 2021
  ident: b18
  article-title: Epileptic EEG classification by using time-frequency images for deep learning
  publication-title: Int. J. Neural Syst.
– volume: 136
  start-page: 65
  year: 2016
  end-page: 77
  ident: b87
  article-title: Automatic identification of epileptic seizures from EEG signals using linear programming boosting
  publication-title: Comput. Methods Programs Biomed.
– volume: 214
  start-page: 108
  year: 2009
  end-page: 132
  ident: b75
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Appl. Math. Comput.
– volume: 2021
  year: 2021
  ident: b83
  article-title: An affinity propagation-based clustering method for the temporal dynamics management of high-speed railway passenger demand
  publication-title: J. Adv. Transp.
– start-page: 1354
  year: 2020
  end-page: 1358
  ident: b60
  article-title: Decoding movement imagination and execution from eeg signals using bci-transfer learning method based on relation network
  publication-title: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 64
  year: 2001
  ident: b84
  article-title: Indications of non linear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev. E
– volume: 124
  start-page: 202
  year: 2020
  end-page: 212
  ident: b62
  article-title: EEG Based multi-class seizure type classification using convolutional neural network and transfer learning
  publication-title: Neural Netw.
– volume: 2015
  year: 2015
  ident: b35
  article-title: A novel multiple instance learning method based on extreme learning machine
  publication-title: Comput. Intell. Neurosci.
– start-page: 451
  year: 2011
  end-page: 467
  ident: b76
  article-title: Glowworm swarm optimization for multimodal search spaces
  publication-title: Handbook of Swarm Intelligence
– volume: 12
  year: 2017
  ident: b85
  article-title: Graph-based analysis of brain connectivity in schizophrenia
  publication-title: PLoS One
– volume: 25
  start-page: 2270
  year: 2017
  end-page: 2284
  ident: b61
  article-title: Seizure classification from EEG signals using transfer learning, semi-supervised learning and TSK fuzzy system
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 46
  year: 2016
  ident: b41
  article-title: Robust extreme learning machine with its application to indoor positioning
  publication-title: IEEE Trans. Cybern.
– volume: 61
  start-page: 2341
  year: 2013
  end-page: 2355
  ident: b64
  article-title: Constrained overcomplete analysis operator learning for cosparse signal modelling
  publication-title: IEEE Trans. Signal Process.
– volume: 106
  start-page: 71
  year: 2019
  end-page: 81
  ident: b80
  article-title: Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals
  publication-title: Comput. Biol. Med.
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 14
  ident: b24
  article-title: Schizophrenia EEG signal classification based on swarm intelligence computing
  publication-title: Comput. Intell. Neurosci.
– reference: L. Duan, Y. Xu, S. Cui, J. Chen, M. Bao, Feature extraction of motor imagery eeg based on extreme learning machine auto encoder, in: Proceedings of ELM-2015, Vol. 1.
– volume: 6
  year: 2020
  ident: b69
  article-title: Alcoholic EEG signal classification with correlation dimension based distance metrics approach and modified adaboost classification
  publication-title: Heliyon
– volume: 8
  start-page: 92
  year: 2016
  ident: b9
  article-title: The biomarkers for identifying preclinical Alzheimer’s disease via structural and functional magnetic resonance imaging
  publication-title: Front. Aging Neurosci.
– volume: 23
  start-page: 1149
  year: 2010
  end-page: 1157
  ident: b38
  article-title: Performance enhancement of extreme learning machine for multi-category sparse data classification problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 7
  start-page: 1060
  year: 2017
  ident: b79
  article-title: Human emotion recognition with electroencephalographic multidimensional features by hybrid deep neural networks
  publication-title: Appl. Sci.
– volume: 16
  start-page: 599
  year: 2019
  ident: b56
  article-title: A deep learning model for automated sleep stages classification using PSG signals
  publication-title: Int. J. Environ. Res. Public Health
– volume: 2019
  year: 2019
  ident: b39
  article-title: Globality-locality preserving maximum variance extreme learning machine
  publication-title: Complexity
– year: 2020
  ident: b21
  article-title: Schizophrenia detection using multivariate empirical mode decomposition and entropy measures from multichannel EEG entropy measures from multichannel EEG signal
  publication-title: Biocybern. Biomed. Eng.
– start-page: 305
  year: 1990
  end-page: 308
  ident: b65
  article-title: Kohonen’s self organizing feature maps for exploratory data analysis
  publication-title: Proceedings of the Proceedings of International Neural Networks Conference (INNC ’90)
– start-page: 1
  year: 2020
  end-page: 11
  ident: b23
  article-title: Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals
  publication-title: Phys. Eng. Sci. Med.
– volume: 2018
  year: 2018
  ident: b46
  article-title: Sparse representation-based extreme learning machine for motor imagery EEG classification
  publication-title: Comput. Intell. Neurosci.
– volume: 2015
  year: 2015
  ident: b32
  article-title: Extreme learning machines on high dimensional and large data applications: A survey
  publication-title: Math. Probl. Eng.
– volume: 48
  start-page: 2725
  year: 2015
  end-page: 2737
  ident: b51
  article-title: Subject-dependent classification for robust idle state detection using multi-modal neuroimaging and data-fusion techniques in BCI
  publication-title: Pattern Recognit.
– volume: 2014
  year: 2014
  ident: b52
  article-title: EEG-Based emotion recognition using deep learning network with principal component based covariate shift adaptation
  publication-title: Sci. World J.
– volume: 15
  start-page: 689
  year: 2019
  end-page: 698
  ident: b55
  article-title: Deep learning for Alzheimer’s disease classification using texture features
  publication-title: Curr. Med. Imaging Rev.
– volume: 90
  start-page: 220
  year: 2019
  end-page: 231
  ident: b5
  article-title: Weighted graph regularized sparse brain network construction for MCI identification
  publication-title: Pattern Recognit.
– volume: 31
  start-page: 729
  year: 2021
  end-page: 740
  ident: b19
  article-title: Detection and classification of electroencephalogram signals for epilepsy disease using machine learning methods
  publication-title: Int. J. Imaging Syst. Technol.
– volume: 26
  start-page: 1443
  year: 2018
  end-page: 1459
  ident: b2
  article-title: A high performance spelling system based on EEG-EOG signals with visual feedback
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 2008
  year: 2008
  ident: b81
  article-title: Nonnegative matrix factorization with Gaussian process priors
  publication-title: Comput. Intell. Neurosci.
– volume: 2014
  year: 2014
  ident: b30
  article-title: Improved extreme learning machine and its application in image quality assessment
  publication-title: Math. Probl. Eng.
– volume: 45
  start-page: 2673
  year: 1997
  end-page: 2681
  ident: b77
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
– volume: 31
  start-page: 3839
  year: 2020
  end-page: 3852
  ident: b3
  article-title: Subject-independent brain-computer interfaces based on deep convolutional neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 9
  year: 2012
  ident: b8
  article-title: Sparse representation-based classification scheme for motor imagery-based brain-computer interface systems
  publication-title: J. Neural Eng.
– volume: 20
  start-page: 1112
  year: 2011
  end-page: 1125
  ident: b67
  article-title: Blind spectral unmixing based on sparse nonnegative matrix factorization
  publication-title: IEEE Trans. Image Process.
– volume: 2020
  year: 2020
  ident: b36
  article-title: Hybridized extreme learning machine model with salp swarm algorithm: A novel predictive model for hydrological application
  publication-title: Complexity
– volume: 2014
  year: 2014
  ident: b70
  article-title: Wavelets and morphological operators based classification of epilepsy risk levels
  publication-title: Math. Probl. Eng.
– volume: 14
  start-page: 808
  year: 2020
  ident: b10
  article-title: An intelligent EEG classification methodology based on sparse representation enhanced deep learning networks
  publication-title: Front. Neurosci.
– volume: 7
  start-page: 5
  year: 2020
  ident: b13
  article-title: A review of epileptic seizure detection using machine learning classifiers
  publication-title: Brain Inform.
– volume: 54
  start-page: 149
  year: 2016
  end-page: 161
  ident: b48
  article-title: Hierarchical multi-class SVM with ELM kernel for epileptic EEG signal classification
  publication-title: Med. Biol. Eng. Comput.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 18
  ident: b58
  article-title: Classification of drowsiness levels based on a deep spatio-temporal convolutional bidirectional LSTM network using electroencephalography signals
  publication-title: Brain Sci.
– volume: 28
  start-page: 817
  year: 2016
  end-page: 833
  ident: b71
  article-title: Robotic grasping recognition using multi-modal deep extreme learning machine
  publication-title: Multidimens. Syst. Signal Process.
– volume: 11
  start-page: 2635
  year: 2016
  end-page: 2647
  ident: b4
  article-title: A high-security EEG-based login system with RSVP stimuli and dry electrodes
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 37
  start-page: 235
  year: 2020
  end-page: 244
  ident: b26
  article-title: Automatic detection of schizophrenia by applying deep learning over spectrogram images of EEG signals
  publication-title: Trait. Signal
– reference: .
– reference: G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of the IEEE International Joint Conference on Neural Networks, Vol. 2, 2004, pp. 985–990.
– volume: 40
  start-page: 324
  year: 2020
  end-page: 336
  ident: b57
  article-title: Classification of Pilots’ mental states using a multimodal deep learning network
  publication-title: Biocybern. Biomed. Eng.
– volume: 2019
  year: 2019
  ident: b34
  article-title: Application of extreme learning machine for predicting chlorophyll-a concentration inartificial upwelling processes
  publication-title: Math. Probl. Eng.
– volume: 8
  start-page: 39875
  year: 2020
  end-page: 39897
  ident: b25
  article-title: A framework for schizophrenia EEG signal classification with nature inspired optimization algorithms
  publication-title: IEEE Access
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: b59
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 39
  start-page: 574
  year: 2012
  end-page: 584
  ident: b82
  article-title: Feature subset selection wrapper based on mutual information and rough sets
  publication-title: Expert Syst. Appl.
– volume: 23
  start-page: 2101
  year: 2013
  end-page: 2106
  ident: b74
  article-title: Global minimization of multi-funnel functions using particle swarm optimization
  publication-title: Neural Comput. Appl.
– start-page: 1
  year: 2017
  end-page: 14
  ident: b6
  article-title: Discriminative self-representation sparse regression for neuroimaging-based Alzheimer’s disease diagnosis
  publication-title: Brain Imaging Behav.
– reference: A. Graves, Generating sequences with recurrent neural networks, 0000.
– volume: 25
  start-page: 2270
  issue: 12
  year: 2017
  ident: 10.1016/j.asoc.2022.108416_b61
  article-title: Seizure classification from EEG signals using transfer learning, semi-supervised learning and TSK fuzzy system
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2748388
– volume: 12
  year: 2017
  ident: 10.1016/j.asoc.2022.108416_b85
  article-title: Graph-based analysis of brain connectivity in schizophrenia
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0188629
– volume: 37
  start-page: 3284
  year: 2010
  ident: 10.1016/j.asoc.2022.108416_b89
  article-title: Entropies based detection of epileptic seizures with artificial neural network classifiers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.09.051
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 10.1016/j.asoc.2022.108416_b59
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– ident: 10.1016/j.asoc.2022.108416_b42
  doi: 10.1016/j.procs.2016.07.422
– volume: 2019
  year: 2019
  ident: 10.1016/j.asoc.2022.108416_b39
  article-title: Globality-locality preserving maximum variance extreme learning machine
  publication-title: Complexity
  doi: 10.1155/2019/1806314
– volume: 7
  start-page: 401
  year: 2012
  ident: 10.1016/j.asoc.2022.108416_b90
  article-title: Automatic diagnosis of epileptic EEG using entropies
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2011.07.007
– volume: 2015
  year: 2015
  ident: 10.1016/j.asoc.2022.108416_b49
  article-title: Deep extreme learning machine and its application in EEG classification
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2015/129021
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.108416_b24
  article-title: Schizophrenia EEG signal classification based on swarm intelligence computing
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2020/8853835
– volume: 11
  start-page: 2635
  issue: 12
  year: 2016
  ident: 10.1016/j.asoc.2022.108416_b4
  article-title: A high-security EEG-based login system with RSVP stimuli and dry electrodes
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2016.2577551
– volume: 34
  start-page: 208
  issue: 11
  year: 2008
  ident: 10.1016/j.asoc.2022.108416_b73
  article-title: Ant colony algorithm parameters optimization
  publication-title: Comput. Eng.
– volume: 136
  start-page: 65
  year: 2016
  ident: 10.1016/j.asoc.2022.108416_b87
  article-title: Automatic identification of epileptic seizures from EEG signals using linear programming boosting
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.08.013
– volume: 8
  start-page: 1323
  year: 2014
  ident: 10.1016/j.asoc.2022.108416_b91
  article-title: Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network
  publication-title: SiViP
  doi: 10.1007/s11760-012-0362-9
– volume: 235
  start-page: 167
  issue: 2
  year: 2021
  ident: 10.1016/j.asoc.2022.108416_b22
  article-title: Spectral features based convolutional neural network for accurate and prompt identification of schizophrenic patients
  publication-title: Proc. Inst. Mech. Eng. [H]
  doi: 10.1177/0954411920966937
– volume: 25
  start-page: 549
  year: 2014
  ident: 10.1016/j.asoc.2022.108416_b29
  article-title: Extreme learning machine
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1522-8
– volume: 31
  start-page: 729
  issue: 2
  year: 2021
  ident: 10.1016/j.asoc.2022.108416_b19
  article-title: Detection and classification of electroencephalogram signals for epilepsy disease using machine learning methods
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22486
– volume: 70
  year: 2021
  ident: 10.1016/j.asoc.2022.108416_b20
  article-title: Automated accurate schizophrenia detection system using collatz pattern technique with EEG signals’
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102936
– volume: 16
  start-page: 599
  issue: 4
  year: 2019
  ident: 10.1016/j.asoc.2022.108416_b56
  article-title: A deep learning model for automated sleep stages classification using PSG signals
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph16040599
– volume: 23
  start-page: 1149
  issn: 0952-1976
  issue: 7
  year: 2010
  ident: 10.1016/j.asoc.2022.108416_b38
  article-title: Performance enhancement of extreme learning machine for multi-category sparse data classification problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2010.06.009
– volume: 7
  start-page: 5
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.108416_b13
  article-title: A review of epileptic seizure detection using machine learning classifiers
  publication-title: Brain Inform.
  doi: 10.1186/s40708-020-00105-1
– volume: 64
  year: 2001
  ident: 10.1016/j.asoc.2022.108416_b84
  article-title: Indications of non linear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.061907
– volume: 28
  start-page: 817
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2022.108416_b71
  article-title: Robotic grasping recognition using multi-modal deep extreme learning machine
  publication-title: Multidimens. Syst. Signal Process.
  doi: 10.1007/s11045-016-0389-0
– start-page: 451
  year: 2011
  ident: 10.1016/j.asoc.2022.108416_b76
  article-title: Glowworm swarm optimization for multimodal search spaces
– volume: 40
  start-page: 324
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.108416_b57
  article-title: Classification of Pilots’ mental states using a multimodal deep learning network
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2019.12.002
– ident: 10.1016/j.asoc.2022.108416_b78
– volume: 2014
  year: 2014
  ident: 10.1016/j.asoc.2022.108416_b30
  article-title: Improved extreme learning machine and its application in image quality assessment
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2014/426152
– volume: 39
  start-page: 574
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2022.108416_b82
  article-title: Feature subset selection wrapper based on mutual information and rough sets
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.07.048
– volume: 5
  start-page: 1457
  year: 2004
  ident: 10.1016/j.asoc.2022.108416_b63
  article-title: Non-negative matrix factorization with sparseness constraints
  publication-title: J. Mach. Learn. Res.
– volume: 45
  start-page: 2673
  issue: 11
  year: 1997
  ident: 10.1016/j.asoc.2022.108416_b77
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650093
– start-page: 895
  year: 2006
  ident: 10.1016/j.asoc.2022.108416_b11
  article-title: Image denoising via learned dictionaries and sparse representation
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2022.108416_b58
  article-title: Classification of drowsiness levels based on a deep spatio-temporal convolutional bidirectional LSTM network using electroencephalography signals
  publication-title: Brain Sci.
  doi: 10.3390/brainsci9120348
– volume: 15
  start-page: 689
  issue: 7
  year: 2019
  ident: 10.1016/j.asoc.2022.108416_b55
  article-title: Deep learning for Alzheimer’s disease classification using texture features
  publication-title: Curr. Med. Imaging Rev.
  doi: 10.2174/1573405615666190404163233
– volume: 11
  start-page: 993
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2022.108416_b37
  article-title: An automatic diagnosis system for hepatitis diseases based on genetic wavelet kernel extreme learning machine
  publication-title: J. Electr. Eng. Technol.
  doi: 10.5370/JEET.2016.11.4.993
– year: 2021
  ident: 10.1016/j.asoc.2022.108416_b18
  article-title: Epileptic EEG classification by using time-frequency images for deep learning
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S012906572150026X
– volume: 7
  start-page: 1060
  year: 2017
  ident: 10.1016/j.asoc.2022.108416_b79
  article-title: Human emotion recognition with electroencephalographic multidimensional features by hybrid deep neural networks
  publication-title: Appl. Sci.
  doi: 10.3390/app7101060
– volume: 21
  start-page: 123
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2022.108416_b1
  article-title: Subject and class specific frequency bands selection for multi-class motor imagery classification
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.20283
– start-page: 51
  year: 2017
  ident: 10.1016/j.asoc.2022.108416_b92
  article-title: Classification of epileptic seizures using wavelet packet log energy and norm entropies with recurrent elman neural network classifier
– volume: 26
  start-page: 1443
  issue: 7
  year: 2018
  ident: 10.1016/j.asoc.2022.108416_b2
  article-title: A high performance spelling system based on EEG-EOG signals with visual feedback
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2839116
– volume: 48
  start-page: 2725
  issue: 8
  year: 2015
  ident: 10.1016/j.asoc.2022.108416_b51
  article-title: Subject-dependent classification for robust idle state detection using multi-modal neuroimaging and data-fusion techniques in BCI
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.03.010
– volume: 8
  start-page: 92
  year: 2016
  ident: 10.1016/j.asoc.2022.108416_b9
  article-title: The biomarkers for identifying preclinical Alzheimer’s disease via structural and functional magnetic resonance imaging
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2016.00092
– volume: 2015
  year: 2015
  ident: 10.1016/j.asoc.2022.108416_b35
  article-title: A novel multiple instance learning method based on extreme learning machine
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2015/405890
– ident: 10.1016/j.asoc.2022.108416_b47
  doi: 10.1007/978-3-319-28397-5_28
– volume: 107
  start-page: 61
  year: 2018
  ident: 10.1016/j.asoc.2022.108416_b53
  article-title: An automated system for epilepsy detection using EEG brain signals based on deep learning approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.04.021
– volume: 8
  start-page: 134524
  year: 2020
  ident: 10.1016/j.asoc.2022.108416_b50
  article-title: SessionNet: FEature similarity-based weighted ensemble learning for motor imagery classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011140
– volume: 11
  start-page: 288
  issue: 3
  year: 2007
  ident: 10.1016/j.asoc.2022.108416_b88
  article-title: Approximate entropy-based epileptic EEG detection using artificial neural networks
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2006.884369
– volume: 16
  start-page: 29
  issue: 1
  year: 2006
  ident: 10.1016/j.asoc.2022.108416_b44
  article-title: Classification of mental tasks from EEG signals using extreme learning machine
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065706000482
– volume: 46
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2022.108416_b40
  article-title: Fault detection in state variable filter circuit using kernel extreme learning machine (KELM) algorithm
  publication-title: Inform. MIDEM
– start-page: 305
  year: 1990
  ident: 10.1016/j.asoc.2022.108416_b65
  article-title: Kohonen’s self organizing feature maps for exploratory data analysis
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.108416_b23
  article-title: Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals
  publication-title: Phys. Eng. Sci. Med.
– volume: 2019
  year: 2019
  ident: 10.1016/j.asoc.2022.108416_b34
  article-title: Application of extreme learning machine for predicting chlorophyll-a concentration inartificial upwelling processes
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2019/8719387
– volume: 61
  start-page: 2341
  issue: 9
  year: 2013
  ident: 10.1016/j.asoc.2022.108416_b64
  article-title: Constrained overcomplete analysis operator learning for cosparse signal modelling
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2250968
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2022.108416_b6
  article-title: Discriminative self-representation sparse regression for neuroimaging-based Alzheimer’s disease diagnosis
  publication-title: Brain Imaging Behav.
– volume: 59
  start-page: 884
  year: 2009
  ident: 10.1016/j.asoc.2022.108416_b12
  article-title: Multifocus image fusion and restoration with sparse representation
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2009.2026612
– year: 2020
  ident: 10.1016/j.asoc.2022.108416_b14
– volume: 2008
  year: 2008
  ident: 10.1016/j.asoc.2022.108416_b81
  article-title: Nonnegative matrix factorization with Gaussian process priors
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2008/361705
– volume: 2014
  year: 2014
  ident: 10.1016/j.asoc.2022.108416_b70
  article-title: Wavelets and morphological operators based classification of epilepsy risk levels
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2014/813197
– volume: 23
  start-page: 2101
  issue: 7–8
  year: 2013
  ident: 10.1016/j.asoc.2022.108416_b74
  article-title: Global minimization of multi-funnel functions using particle swarm optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-1158-0
– ident: 10.1016/j.asoc.2022.108416_b28
  doi: 10.1109/IJCNN.2004.1380068
– start-page: 9
  year: 2015
  ident: 10.1016/j.asoc.2022.108416_b43
  article-title: Analyze EEG signals with extreme learning machine based on PMIS feature selection
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 46
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2022.108416_b41
  article-title: Robust extreme learning machine with its application to indoor positioning
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2399420
– volume: 2014
  year: 2014
  ident: 10.1016/j.asoc.2022.108416_b52
  article-title: EEG-Based emotion recognition using deep learning network with principal component based covariate shift adaptation
  publication-title: Sci. World J.
  doi: 10.1155/2014/627892
– start-page: 115
  year: 1991
  ident: 10.1016/j.asoc.2022.108416_b72
  article-title: Preventing premature convergence in genetic algorithms by preventing incest
– volume: 20
  year: 2021
  ident: 10.1016/j.asoc.2022.108416_b15
  article-title: Minireview of epilepsy detection techniques based on electroencephalogram signals
  publication-title: Front. Syst. Neurosci.
– volume: 57
  start-page: 147
  year: 2019
  ident: 10.1016/j.asoc.2022.108416_b45
  article-title: A hierarchical semi-supervised extreme learning machine method for EEG recognition
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-018-1875-3
– volume: 5
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2022.108416_b68
  article-title: Performance comparison of particle swarm optimization with traditional clustering algorithms used in self organizing map
  publication-title: Int. J. Comput. Intell.
– volume: 80
  start-page: 17849
  year: 2021
  ident: 10.1016/j.asoc.2022.108416_b17
  article-title: Machine learning-based EEG signals classification model for epileptic seizure detection
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-021-10597-6
– volume: 214
  start-page: 108
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2022.108416_b75
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Appl. Math. Comput.
– volume: 14
  start-page: 808
  year: 2020
  ident: 10.1016/j.asoc.2022.108416_b10
  article-title: An intelligent EEG classification methodology based on sparse representation enhanced deep learning networks
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00808
– volume: 9
  year: 2012
  ident: 10.1016/j.asoc.2022.108416_b8
  article-title: Sparse representation-based classification scheme for motor imagery-based brain-computer interface systems
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/9/5/056002
– volume: 20
  start-page: 1112
  issue: 4
  year: 2011
  ident: 10.1016/j.asoc.2022.108416_b67
  article-title: Blind spectral unmixing based on sparse nonnegative matrix factorization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2081678
– volume: 2020
  year: 2020
  ident: 10.1016/j.asoc.2022.108416_b36
  article-title: Hybridized extreme learning machine model with salp swarm algorithm: A novel predictive model for hydrological application
  publication-title: Complexity
  doi: 10.1155/2020/8206245
– volume: 39
  start-page: 202
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2022.108416_b86
  article-title: Detection of epileptic electroencephalogram based on perumutation entropy and support vector machine
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.07.008
– volume: 54
  start-page: 149
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2022.108416_b48
  article-title: Hierarchical multi-class SVM with ELM kernel for epileptic EEG signal classification
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-015-1351-2
– volume: 106
  start-page: 71
  year: 2019
  ident: 10.1016/j.asoc.2022.108416_b80
  article-title: Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.01.013
– volume: 31
  start-page: 3839
  issue: 10
  year: 2020
  ident: 10.1016/j.asoc.2022.108416_b3
  article-title: Subject-independent brain-computer interfaces based on deep convolutional neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2946869
– volume: 83
  start-page: 103
  year: 2018
  ident: 10.1016/j.asoc.2022.108416_b54
  article-title: Automated depression analysis using convolutional neural networks from speech
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.05.007
– volume: 6
  issue: 12
  year: 2020
  ident: 10.1016/j.asoc.2022.108416_b69
  article-title: Alcoholic EEG signal classification with correlation dimension based distance metrics approach and modified adaboost classification
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e05689
– year: 2020
  ident: 10.1016/j.asoc.2022.108416_b21
  article-title: Schizophrenia detection using multivariate empirical mode decomposition and entropy measures from multichannel EEG entropy measures from multichannel EEG signal
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.05.008
– ident: 10.1016/j.asoc.2022.108416_b27
  doi: 10.24251/HICSS.2020.393
– volume: 90
  start-page: 220
  year: 2019
  ident: 10.1016/j.asoc.2022.108416_b5
  article-title: Weighted graph regularized sparse brain network construction for MCI identification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.01.015
– volume: 37
  start-page: 235
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2022.108416_b26
  article-title: Automatic detection of schizophrenia by applying deep learning over spectrogram images of EEG signals
  publication-title: Trait. Signal
  doi: 10.18280/ts.370209
– volume: 8
  start-page: 39875
  year: 2020
  ident: 10.1016/j.asoc.2022.108416_b25
  article-title: A framework for schizophrenia EEG signal classification with nature inspired optimization algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2975848
– volume: 2015
  year: 2015
  ident: 10.1016/j.asoc.2022.108416_b32
  article-title: Extreme learning machines on high dimensional and large data applications: A survey
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2015/103796
– volume: 23
  year: 2021
  ident: 10.1016/j.asoc.2022.108416_b16
  article-title: Classification of EEG signals for epileptic seizures detection and eye states identification using Jacobi polynomial transforms-based measures of complexity and least-squares support vector machines
  publication-title: Inform. Med. Unlocked
– volume: 22
  start-page: 1078
  issue: 10
  year: 2000
  ident: 10.1016/j.asoc.2022.108416_b66
  article-title: ICA Mixture models for unsupervised classification of non-Gaussian classes and automatic context switching in blind signal separation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.879789
– volume: 9
  start-page: 811
  year: 2020
  ident: 10.1016/j.asoc.2022.108416_b33
  article-title: An advanced pruning method in the architecture of extreme learning machines using L1 regularization and bootstrapping
  publication-title: Electronics
  doi: 10.3390/electronics9050811
– volume: 2020
  year: 2020
  ident: 10.1016/j.asoc.2022.108416_b31
  article-title: A hybrid method based on extreme learning machine and self organizing map for pattern classification
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2020/2918276
– volume: 2018
  year: 2018
  ident: 10.1016/j.asoc.2022.108416_b46
  article-title: Sparse representation-based extreme learning machine for motor imagery EEG classification
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2018/9593682
– volume: 2021
  year: 2021
  ident: 10.1016/j.asoc.2022.108416_b83
  article-title: An affinity propagation-based clustering method for the temporal dynamics management of high-speed railway passenger demand
  publication-title: J. Adv. Transp.
– ident: 10.1016/j.asoc.2022.108416_b7
  doi: 10.1109/CBMS.2012.6266371
– volume: 127
  start-page: 323
  year: 2019
  ident: 10.1016/j.asoc.2022.108416_b93
  article-title: A novel approach for classification of epileptic seizures using matrix determinant
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.03.021
– start-page: 1354
  year: 2020
  ident: 10.1016/j.asoc.2022.108416_b60
  article-title: Decoding movement imagination and execution from eeg signals using bci-transfer learning method based on relation network
– volume: 124
  start-page: 202
  year: 2020
  ident: 10.1016/j.asoc.2022.108416_b62
  article-title: EEG Based multi-class seizure type classification using convolutional neural network and transfer learning
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.01.017
SSID ssj0016928
Score 2.3960686
Snippet The electrical activities of the brain are recorded and measured with Electroencephalography (EEG) by means of placing the electrodes on the scalp of the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108416
SubjectTerms Deep learning
EEG
ELM
K-SVD
SOM
Sparse
Swarm intelligence
Transfer learning
Title ENIC: Ensemble and Nature Inclined Classification with Sparse Depiction based Deep and Transfer Learning for Biosignal Classification
URI https://dx.doi.org/10.1016/j.asoc.2022.108416
Volume 117
WOSCitedRecordID wos000781500800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF6l0EMvFCgV0FLtoTe0keP4tdwoCoIKRZUCbW6Wd72GQHCsPBAnbvxvZvZhSAQIDr1YycoeW5kvszPjb2YI-Zn4EpCQJSxrc8kCGSZMREHERM6xK64Icl3h_fck7naTfp__aTTuXC3MzTAuy-T2llf_VdWwBsrG0tl3qLsWCgvwGZQOR1A7HN-k-E73-ADj_E45UddYF4Wp8a7u34nWAN3K3MzCRJaQ0b_OxvYqCHKRRlQNzPxw3OGQp6wqLUNva4Uau56shoH5azBCDgjmIOZkPvV6nas7AZuvSeyzqdsx0SqPM3GRXRmmd29WDoa7mvi9wBXqqVF5zv5dWDjbTAUEuTVVyxnXKGEBtylHZ31N6aa1ny0PX4M-a9pNluGymQFqmyi--XjyfB_thf2tZh06QttlijJSlJEaGR_Ish-HHAz78v5xp_-7fg8VcT2dt35yW3ZlGIKLT_K8a_PEXTldJSs2zqD7Bh9rpKHKdfLZzfCg1qR_IfcIlz3qwEJB0dSAhTqw0HnFUgQLNWChNVioBgtFsGgZDizUgYUCWGgNlgWZG-TssHN6cMTsaA4mIWadsiLhnpfpumQJHr8P3_OgiLCTkp9DiB16KpZCgefDYSsOilYkYGuUQgYSe_7J9leyVI5KtUlo2I7iXObSzyMRSJXwAoToMAEWPaG2SMv9qqm0fetxfMowfVmfW2S3vqYyXVtePTt0ykqt32n8yRSw98p12--6yzfy6fFP8Z0sTccztUM-ypvpYDL-YYH3APo8pLw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ENIC%3A+Ensemble+and+Nature+Inclined+Classification+with+Sparse+Depiction+based+Deep+and+Transfer+Learning+for+Biosignal+Classification&rft.jtitle=Applied+soft+computing&rft.au=Prabhakar%2C+Sunil+Kumar&rft.au=Lee%2C+Seong-Whan&rft.date=2022-03-01&rft.issn=1568-4946&rft.volume=117&rft.spage=108416&rft_id=info:doi/10.1016%2Fj.asoc.2022.108416&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2022_108416
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon