A dual-population based bidirectional coevolution algorithm for constrained multi-objective optimization problems

The balance between multiple objectives and various constraints is the key to solving constrained multi-objective optimization problems (CMOPs). When dealing with CMOPs with complex feasible regions, some evolutionary algorithms suffer from great challenges in converging to the constrained Pareto fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 215; S. 119258
Hauptverfasser: Bao, Qian, Wang, Maocai, Dai, Guangming, Chen, Xiaoyu, Song, Zhiming, Li, Shuijia
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.04.2023
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The balance between multiple objectives and various constraints is the key to solving constrained multi-objective optimization problems (CMOPs). When dealing with CMOPs with complex feasible regions, some evolutionary algorithms suffer from great challenges in converging to the constrained Pareto front (CPF) with well-distributed feasible solutions. To address this issue, this paper proposes a dual-population based bidirectional coevolution algorithm, called DBC-CMOEA, which aims to converge to the CPF using promising solutions explored from both feasible and infeasible regions. To do so, DBC-CMOEA maintains two populations and an archive, where the dual-population is complementary in the search process and the archive is used to retain promising feasible and infeasible solutions, thus facilitating information exchange between these two populations. For updating the archive, a nondominated sorting procedure and an angle-based selected scheme are conducted to store infeasible and feasible solutions, as they can help to maintain the diversity of the search and find more feasible regions. To evolve the CPF from the bidirectional side of the feasible region, a novel mating selection strategy is used to choose appropriate mating parents. In comparison with some related constraint multi-objective optimization algorithms on a number of benchmark problems, experimental results show that the proposed algorithm performs better than the state-of-the-art constrained multi-objective evolutionary optimizers. •A cooperative dual-population algorithm is proposed for solving CMOPs.•Constraints are handled in three different ways to explore the search space.•A brand-new selection strategy is applied to select the mating parents.•A novel archive update strategy is designed to retain the promising information.
AbstractList The balance between multiple objectives and various constraints is the key to solving constrained multi-objective optimization problems (CMOPs). When dealing with CMOPs with complex feasible regions, some evolutionary algorithms suffer from great challenges in converging to the constrained Pareto front (CPF) with well-distributed feasible solutions. To address this issue, this paper proposes a dual-population based bidirectional coevolution algorithm, called DBC-CMOEA, which aims to converge to the CPF using promising solutions explored from both feasible and infeasible regions. To do so, DBC-CMOEA maintains two populations and an archive, where the dual-population is complementary in the search process and the archive is used to retain promising feasible and infeasible solutions, thus facilitating information exchange between these two populations. For updating the archive, a nondominated sorting procedure and an angle-based selected scheme are conducted to store infeasible and feasible solutions, as they can help to maintain the diversity of the search and find more feasible regions. To evolve the CPF from the bidirectional side of the feasible region, a novel mating selection strategy is used to choose appropriate mating parents. In comparison with some related constraint multi-objective optimization algorithms on a number of benchmark problems, experimental results show that the proposed algorithm performs better than the state-of-the-art constrained multi-objective evolutionary optimizers. •A cooperative dual-population algorithm is proposed for solving CMOPs.•Constraints are handled in three different ways to explore the search space.•A brand-new selection strategy is applied to select the mating parents.•A novel archive update strategy is designed to retain the promising information.
ArticleNumber 119258
Author Song, Zhiming
Bao, Qian
Li, Shuijia
Dai, Guangming
Wang, Maocai
Chen, Xiaoyu
Author_xml – sequence: 1
  givenname: Qian
  orcidid: 0000-0002-9084-2011
  surname: Bao
  fullname: Bao, Qian
  email: qian.bao@cug.edu.cn
  organization: School of Computer Science, China University of Geosciences, Wuhan 430074, China
– sequence: 2
  givenname: Maocai
  surname: Wang
  fullname: Wang, Maocai
  email: cugwangmc@126.com
  organization: School of Computer Science, China University of Geosciences, Wuhan 430074, China
– sequence: 3
  givenname: Guangming
  surname: Dai
  fullname: Dai, Guangming
  email: cugdgm@126.com
  organization: School of Computer Science, China University of Geosciences, Wuhan 430074, China
– sequence: 4
  givenname: Xiaoyu
  orcidid: 0000-0002-4588-8475
  surname: Chen
  fullname: Chen, Xiaoyu
  email: xiaoyu.chen@cug.edu.cn
  organization: School of Computer Science, China University of Geosciences, Wuhan 430074, China
– sequence: 5
  givenname: Zhiming
  surname: Song
  fullname: Song, Zhiming
  email: songzm@cug.edu.cn
  organization: School of Computer Science, China University of Geosciences, Wuhan 430074, China
– sequence: 6
  givenname: Shuijia
  orcidid: 0000-0003-3838-0072
  surname: Li
  fullname: Li, Shuijia
  email: shuijiali@cug.edu.cn
  organization: School of Computer Science, China University of Geosciences, Wuhan 430074, China
BookMark eNp9kMtOwzAQRS1UJNrCD7DKDySMnYcTiU1V8ZIqsene8ivgyImDnRTB15MQViy6GmlG5-rO2aBV5zqN0C2GBAMu7ppEh0-eECAkwbgieXmB1rikaVzQKl2hNVQ5jTNMsyu0CaEBwBSArtHHLlIjt3Hv-tHywbguEjxoFQmjjNdy3nAbSadPzo6_d27fnDfDexvVzk-XLgyem25i2tEOJnaimbmTjlw_mNZ8L7G9d8LqNlyjy5rboG_-5hYdHx-O--f48Pr0st8dYklSGGKNpRJlRnHGS6G05JWkNOVpKQuJFScFh7yiWVlBWmsAyJUgeYFVAUIQDOkWlUus9C4Er2smzfDbZG5rGQY2m2MNm82x2RxbzE0o-Yf23rTcf52H7hdITz-djPYsSKM7qReNTDlzDv8BC3-Nng
CitedBy_id crossref_primary_10_1007_s00500_024_09896_5
crossref_primary_10_1109_TEVC_2024_3358854
crossref_primary_10_1016_j_asoc_2024_111290
crossref_primary_10_1016_j_eswa_2023_121707
crossref_primary_10_1016_j_eswa_2023_121718
crossref_primary_10_1016_j_asoc_2025_113900
crossref_primary_10_1007_s12065_024_00932_9
crossref_primary_10_1016_j_swevo_2024_101746
crossref_primary_10_1016_j_asoc_2024_112428
crossref_primary_10_1109_TCYB_2025_3531449
crossref_primary_10_1016_j_eswa_2024_126073
crossref_primary_10_1016_j_ins_2023_119593
crossref_primary_10_7717_peerj_cs_2102
crossref_primary_10_1016_j_eswa_2023_121563
crossref_primary_10_1016_j_engappai_2025_111419
crossref_primary_10_1016_j_swevo_2024_101584
crossref_primary_10_1016_j_swevo_2025_102016
crossref_primary_10_1016_j_eswa_2024_125068
Cites_doi 10.1007/s00500-019-03794-x
10.1109/CEC.2014.6900645
10.1016/j.eswa.2018.02.040
10.1109/TCYB.2020.3021138
10.1007/s00500-008-0323-y
10.1109/3468.650319
10.1109/4235.797969
10.1109/TCYB.2018.2819208
10.1016/j.swevo.2021.100983
10.1109/TEVC.2008.2009032
10.1016/j.swevo.2021.100952
10.1016/j.swevo.2022.101161
10.1080/03052159908941377
10.1162/evco_a_00226
10.1016/j.eswa.2015.05.050
10.1109/4235.996017
10.1016/j.swevo.2018.08.017
10.1109/TEVC.2021.3110130
10.1109/TEVC.2017.2767023
10.1016/j.asoc.2013.10.008
10.1016/j.asoc.2017.06.053
10.1109/TSMC.2020.3034180
10.1109/TCYB.2019.2899225
10.1109/TCYB.2015.2493239
10.1016/j.asoc.2012.07.027
10.1109/TEVC.2013.2281534
10.1109/TCYB.2021.3056176
10.1109/TEVC.2022.3145582
10.1109/TEVC.2013.2281535
10.1016/j.swevo.2021.100961
10.1109/TEVC.2018.2855411
10.1109/TEVC.2007.892759
10.1016/j.swevo.2019.100619
10.1109/TEVC.2006.872344
10.1016/j.asoc.2018.10.027
10.1109/TEVC.2003.810761
10.1109/MCI.2017.2742868
10.1109/TEVC.2020.3004012
10.1016/j.ins.2018.07.012
10.1109/TEVC.2019.2896967
10.1109/4235.585893
10.1162/evco_a_00259
10.1016/j.ins.2021.07.078
10.1109/TEVC.2019.2894743
10.1109/TEVC.2021.3066301
10.1109/TEVC.2016.2587749
10.1109/CEC.2010.5586545
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2022.119258
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_119258
S095741742202276X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c230t-e1cdb84714a8bdeca9c773a38c6c1da26a059748903fe0005db2561d60bb2103
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000895291200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Nov 18 20:49:22 EST 2025
Sat Nov 29 07:08:22 EST 2025
Fri Feb 23 02:38:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Constrained multi-objective
Cooperative dual-population
Constrained-handling technique
Bidirectional coevolution
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c230t-e1cdb84714a8bdeca9c773a38c6c1da26a059748903fe0005db2561d60bb2103
ORCID 0000-0003-3838-0072
0000-0002-4588-8475
0000-0002-9084-2011
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2022_119258
crossref_primary_10_1016_j_eswa_2022_119258
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_119258
PublicationCentury 2000
PublicationDate 2023-04-01
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cuate, Uribe, Lara, Schütze (b9) 2020; 52
Peng, Liu, Gu (b37) 2017; 60
Agrawal, Deb, Agrawal (b1) 1994; 9
Wang, Liang, Zhang (b47) 2018; 49
Liu, Wang (b31) 2019; 23
Tharwat, Schenck (b43) 2021; 67
Wolpert, Macready (b50) 1997; 1
Bao, Wang, Dai, Chen, Song, Li (b3) 2022; 75
Deb, Thiele, Laumanns, Zitzler (b15) 2005
Tian, Zhang, Xiao, Zhang, Jin (b46) 2021; 25
Zhang, Lin, Gao, Li (b53) 2015; 42
Bosman, Thierens (b4) 2003; 7
Qiao, Yu, Qu, Liang, Song, Yue (b38) 2022; 26
Ishibuchi, Imada, Setoguchi, Nojima (b24) 2018; 26
Ma, Wang (b33) 2019; 23
Zhang, Hui (b52) 2007; 11
Jiao, Luo, Shang, Liu (b28) 2014; 14
Qiao, Yu, Qu, Liang, Song, Yue (b39) 2022
(pp. 1–8).
Chen, Wu, Pedrycz, Suganthan, Xing, Zhu (b7) 2021; 51
Jain, Deb (b26) 2014; 18
Deb (b11) 2011
Zou, Sun, Yang, Zheng (b57) 2021; 579
Fan, Fang, Li, Cai, Wei, Goodman (b16) 2019; 74
García, Monroy, Hernández, Coello (b22) 2021; 67
Ishibuchi, Setoguchi, Masuda, Nojima (b25) 2017; 21
Cai, Wang (b5) 2006; 10
Kumar, Wu, Ali, Luo, Mallipeddi, Suganthan (b29) 2021; 67
Zitzler, Thiele (b56) 1999; 3
Woldesenbet, Yen, Tessema (b49) 2009; 13
Tian, Cheng, Zhang, Jin (b44) 2017; 12
Deb, Jain (b13) 2014; 18
Fan, Li, Cai, Li, Wei, Zhang (b19) 2019; 44
Wang, Wang, Li, Yen (b48) 2016; 46
Qiu, Zhu, Wu, Chen, Pedrycz, Suganthan (b40) 2022; 52
Deb, Pratap, Agarwal, Meyarivan (b14) 2002; 6
Coello, Christiansen (b8) 1999; 31
Wu, Wen, Wang, Pedrycz, Suganthan (b51) 2022; 26
Fonseca, Fleming (b21) 1998; 28
Jan, Khanum (b27) 2013; 13
Ming, Trivedi, Wang, Srinivasan, Zhang (b36) 2021; 25
Chen, Tian, Pedrycz, Wu, Wang, Wang (b6) 2020; 50
Alcalá-Fdez, Sánchez, Garcia, del Jesus, Ventura, Garrell (b2) 2009; 13
Deb, Goyal (b12) 1999; 26
Liu, Wang, Tang (b32) 2022; 52
Martinez, S. Z., & Coello, C. A. C. (2014). A multiobjective evolutionary algorithm based on decomposition for constrained multiobjective optimization. In
Tian, Zhang, Su, Zhang, Tan, Jin (b45) 2022; 52
Miguel Antonio, Coello Coello (b35) 2018; 22
Cuate, Uribe, Ponsich, Lara, Beltran, Sánchez (b10) 2019
Fan, Li, Cai, Li, Wei, Zhang (b20) 2020; 28
Zhou, Zhu, Wang, Zhang, Xiang, Zhang (b55) 2020; 50
Fan, Li, Cai, Hu, Lin, Li (b17) 2016
Fan, Li, Cai, Huang, Fang, Yugen (b18) 2019; 23
Ho-Huu, Duong-Gia, Vo-Duy, Le-Duc, Nguyen-Thoi (b23) 2018; 102
Li, Chen, Fu, Yao (b30) 2019; 23
(pp. 429–436).
Takahama, T., & Sakai, S. (2010). Efficient constrained optimization by the constrained adaptive differential evolution. In
Zhou, Dai, Zhang, Li, Ma (b54) 2018; 465
Ray, Singh, Isaacs, Smith (b41) 2009
Fan (10.1016/j.eswa.2022.119258_b16) 2019; 74
Coello (10.1016/j.eswa.2022.119258_b8) 1999; 31
Deb (10.1016/j.eswa.2022.119258_b12) 1999; 26
Deb (10.1016/j.eswa.2022.119258_b14) 2002; 6
Deb (10.1016/j.eswa.2022.119258_b13) 2014; 18
Wolpert (10.1016/j.eswa.2022.119258_b50) 1997; 1
Jiao (10.1016/j.eswa.2022.119258_b28) 2014; 14
Ishibuchi (10.1016/j.eswa.2022.119258_b24) 2018; 26
Fonseca (10.1016/j.eswa.2022.119258_b21) 1998; 28
Alcalá-Fdez (10.1016/j.eswa.2022.119258_b2) 2009; 13
Ishibuchi (10.1016/j.eswa.2022.119258_b25) 2017; 21
Wang (10.1016/j.eswa.2022.119258_b48) 2016; 46
Bao (10.1016/j.eswa.2022.119258_b3) 2022; 75
Cuate (10.1016/j.eswa.2022.119258_b9) 2020; 52
Agrawal (10.1016/j.eswa.2022.119258_b1) 1994; 9
García (10.1016/j.eswa.2022.119258_b22) 2021; 67
Fan (10.1016/j.eswa.2022.119258_b18) 2019; 23
Wang (10.1016/j.eswa.2022.119258_b47) 2018; 49
Peng (10.1016/j.eswa.2022.119258_b37) 2017; 60
Zou (10.1016/j.eswa.2022.119258_b57) 2021; 579
Li (10.1016/j.eswa.2022.119258_b30) 2019; 23
Deb (10.1016/j.eswa.2022.119258_b11) 2011
Qiao (10.1016/j.eswa.2022.119258_b38) 2022; 26
Jan (10.1016/j.eswa.2022.119258_b27) 2013; 13
10.1016/j.eswa.2022.119258_b42
Tian (10.1016/j.eswa.2022.119258_b46) 2021; 25
Qiao (10.1016/j.eswa.2022.119258_b39) 2022
Jain (10.1016/j.eswa.2022.119258_b26) 2014; 18
Zhang (10.1016/j.eswa.2022.119258_b53) 2015; 42
Zitzler (10.1016/j.eswa.2022.119258_b56) 1999; 3
Fan (10.1016/j.eswa.2022.119258_b19) 2019; 44
Tian (10.1016/j.eswa.2022.119258_b44) 2017; 12
Cai (10.1016/j.eswa.2022.119258_b5) 2006; 10
Kumar (10.1016/j.eswa.2022.119258_b29) 2021; 67
Ray (10.1016/j.eswa.2022.119258_b41) 2009
Miguel Antonio (10.1016/j.eswa.2022.119258_b35) 2018; 22
Ming (10.1016/j.eswa.2022.119258_b36) 2021; 25
Bosman (10.1016/j.eswa.2022.119258_b4) 2003; 7
Liu (10.1016/j.eswa.2022.119258_b32) 2022; 52
Chen (10.1016/j.eswa.2022.119258_b7) 2021; 51
Zhou (10.1016/j.eswa.2022.119258_b54) 2018; 465
10.1016/j.eswa.2022.119258_b34
Wu (10.1016/j.eswa.2022.119258_b51) 2022; 26
Tian (10.1016/j.eswa.2022.119258_b45) 2022; 52
Liu (10.1016/j.eswa.2022.119258_b31) 2019; 23
Deb (10.1016/j.eswa.2022.119258_b15) 2005
Fan (10.1016/j.eswa.2022.119258_b20) 2020; 28
Fan (10.1016/j.eswa.2022.119258_b17) 2016
Zhang (10.1016/j.eswa.2022.119258_b52) 2007; 11
Zhou (10.1016/j.eswa.2022.119258_b55) 2020; 50
Cuate (10.1016/j.eswa.2022.119258_b10) 2019
Qiu (10.1016/j.eswa.2022.119258_b40) 2022; 52
Ho-Huu (10.1016/j.eswa.2022.119258_b23) 2018; 102
Tharwat (10.1016/j.eswa.2022.119258_b43) 2021; 67
Chen (10.1016/j.eswa.2022.119258_b6) 2020; 50
Ma (10.1016/j.eswa.2022.119258_b33) 2019; 23
Woldesenbet (10.1016/j.eswa.2022.119258_b49) 2009; 13
References_xml – volume: 28
  start-page: 339
  year: 2020
  end-page: 378
  ident: b20
  article-title: Difficulty adjustable and scalable constrained multiobjective test problem toolkit
  publication-title: Evolutionary Computation
– volume: 50
  start-page: 3086
  year: 2020
  end-page: 3099
  ident: b55
  article-title: Tri-goal evolution framework for constrained many-objective optimization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 67
  year: 2021
  ident: b29
  article-title: A benchmark-suite of real-world constrained multi-objective optimization problems and some baseline results
  publication-title: Swarm and Evolutionary Computation
– volume: 23
  start-page: 12491
  year: 2019
  end-page: 12510
  ident: b18
  article-title: An improved epsilon constraint-handling method in moea/d for cmops with large infeasible regions
  publication-title: Soft Computing
– volume: 10
  start-page: 658
  year: 2006
  end-page: 675
  ident: b5
  article-title: A multiobjective optimization-based evolutionary algorithm for constrained optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 25
  start-page: 102
  year: 2021
  end-page: 116
  ident: b46
  article-title: A coevolutionary framework for constrained multiobjective optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 465
  start-page: 232
  year: 2018
  end-page: 247
  ident: b54
  article-title: Entropy based evolutionary algorithm with adaptive reference points for many-objective optimization problems
  publication-title: Information Sciences
– volume: 13
  start-page: 307
  year: 2009
  end-page: 318
  ident: b2
  article-title: Keel: a software tool to assess evolutionary algorithms for data mining problems
  publication-title: Soft Computing
– start-page: 460
  year: 2016
  end-page: 467
  ident: b17
  article-title: Angle-based constrained dominance principle in moea/d for constrained multi-objective optimization problems
  publication-title: 2016 IEEE congress on evolutionary computation
– volume: 26
  start-page: 30
  year: 1999
  end-page: 45
  ident: b12
  article-title: A combined genetic adaptive search (geneas) for engineering design
  publication-title: Computer Science and Informatics
– volume: 26
  start-page: 646
  year: 2022
  end-page: 660
  ident: b51
  article-title: A voting-mechanism based ensemble framework for constraint handling techniques
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 23
  start-page: 972
  year: 2019
  end-page: 986
  ident: b33
  article-title: Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 46
  start-page: 2938
  year: 2016
  end-page: 2952
  ident: b48
  article-title: Incorporating objective function information into the feasibility rule for constrained evolutionary optimization
  publication-title: IEEE Transactions on Cybernetics
– reference: Takahama, T., & Sakai, S. (2010). Efficient constrained optimization by the constrained adaptive differential evolution. In
– reference: (pp. 1–8).
– volume: 13
  start-page: 514
  year: 2009
  end-page: 525
  ident: b49
  article-title: Constraint handling in multiobjective evolutionary optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 3
  year: 2011
  end-page: 34
  ident: b11
  article-title: Multi-objective optimisation using evolutionary algorithms: An introduction
  publication-title: Multi-objective evolutionary optimisation for product design and manufacturing
– volume: 102
  start-page: 262
  year: 2018
  end-page: 272
  ident: b23
  article-title: An efficient combination of multi-objective evolutionary optimization and reliability analysis for reliability-based design optimization of truss structures
  publication-title: Expert Systems with Applications
– volume: 67
  year: 2021
  ident: b22
  article-title: Coarseemoa: An indicatorbased evolutionary algorithm for solving equality constrained multi-objective optimization problems
  publication-title: Swarm and Evolutionary Computation
– volume: 60
  start-page: 613
  year: 2017
  end-page: 622
  ident: b37
  article-title: An evolutionary algorithm with directed weights for constrained multi-objective optimization
  publication-title: Applied Soft Computing
– volume: 28
  start-page: 26
  year: 1998
  end-page: 37
  ident: b21
  article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms. i. a unified formulation
  publication-title: IEEE Transactions on Systems, Man & Cybernetics, Part A (Systems & Humans)
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: b44
  article-title: Platemo: A matlab platform for evolutionary multi-objective optimization
  publication-title: IEEE Computational Intelligence Magazine
– volume: 52
  start-page: 1716
  year: 2022
  end-page: 1730
  ident: b40
  article-title: Ensemble many-objective optimization algorithm based on voting mechanism
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– start-page: 145
  year: 2009
  end-page: 165
  ident: b41
  article-title: Infeasibility driven evolutionary algorithm for constrained optimization
  publication-title: Constraint-handling in evolutionary optimization
– volume: 52
  start-page: 9559
  year: 2022
  end-page: 9572
  ident: b45
  article-title: Balancing objective optimization and constraint satisfaction in constrained evolutionary multiobjective optimization
  publication-title: IEEE Transactions on Cybernetics
– volume: 7
  start-page: 174
  year: 2003
  end-page: 188
  ident: b4
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: (pp. 429–436).
– volume: 579
  start-page: 89
  year: 2021
  end-page: 102
  ident: b57
  article-title: A dual-population algorithm based on alternative evolution and degeneration for solving constrained multi-objective optimization problems
  publication-title: Information Sciences
– start-page: 105
  year: 2005
  end-page: 145
  ident: b15
  article-title: Scalable test problems for evolutionary multiobjective optimization
  publication-title: Evolutionary multiobjective optimization: theoretical advances and applications
– volume: 13
  start-page: 128
  year: 2013
  end-page: 148
  ident: b27
  article-title: A study of two penalty-parameterless constraint handling techniques in the framework of moea/d
  publication-title: Applied Soft Computing
– reference: Martinez, S. Z., & Coello, C. A. C. (2014). A multiobjective evolutionary algorithm based on decomposition for constrained multiobjective optimization. In
– volume: 44
  start-page: 665
  year: 2019
  end-page: 679
  ident: b19
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm and Evolutionary Computation
– volume: 18
  start-page: 602
  year: 2014
  end-page: 622
  ident: b26
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: Handling constraints and extending to an adaptive approach
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 14
  start-page: 363
  year: 2014
  end-page: 380
  ident: b28
  article-title: A modified objective function method with feasibleguiding strategy to solve constrained multiobjective optimization problems
  publication-title: Applied Soft Computing
– volume: 31
  start-page: 337
  year: 1999
  end-page: 368
  ident: b8
  article-title: Moses: A multiobjective tool for engineering design
  publication-title: Engineering Optimization
– volume: 21
  start-page: 169
  year: 2017
  end-page: 190
  ident: b25
  article-title: Performance of decomposition-based many-objective algorithms strongly depends on pareto front shapes
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 22
  start-page: 851
  year: 2018
  end-page: 865
  ident: b35
  article-title: Coevolutionary multiobjective evolutionary algorithms: Survey of the state-of-the-art
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 51
  start-page: 1507
  year: 2021
  end-page: 1522
  ident: b7
  article-title: An adaptive resource allocation strategy for objective space partition-based multiobjective optimization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 26
  start-page: 263
  year: 2022
  end-page: 277
  ident: b38
  article-title: An evolutionary multitasking optimization framework for constrained multiobjective optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 52
  year: 2020
  ident: b9
  article-title: A benchmark for equality constrained multiobjective optimization
  publication-title: Swarm and Evolutionary Computation
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: b56
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 67
  year: 2021
  ident: b43
  article-title: Population initialization techniques for evolutionary algorithms for single-objective constrained optimization problems: Deterministic vs. stochastic techniques
  publication-title: Swarm and Evolutionary Computation
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b14
  article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b52
  article-title: Moead: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 42
  start-page: 7831
  year: 2015
  end-page: 7845
  ident: b53
  article-title: Backtracking search algorithm with three constraint handling methods for constrained optimization problems
  publication-title: Expert Systems with Applications
– volume: 9
  start-page: 115
  year: 1994
  end-page: 148
  ident: b1
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Systems
– volume: 52
  start-page: 10163
  year: 2022
  end-page: 10176
  ident: b32
  article-title: Handling constrained multiobjective optimization problems via bidirectional coevolution
  publication-title: IEEE Transactions on Cybernetics
– start-page: 53
  year: 2019
  end-page: 65
  ident: b10
  article-title: A new hybrid metaheuristic for equality constrained bi-objective optimization problems
  publication-title: Evolutionary multi-criterion optimization
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: b13
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 1
  year: 2022
  ident: b39
  article-title: Dynamic auxiliary task-based evolutionary multitasking for constrained multi-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 26
  start-page: 411
  year: 2018
  end-page: 440
  ident: b24
  article-title: How to specify a reference point in hypervolume calculation for fair performance comparison
  publication-title: Evolutionary Computation
– volume: 25
  start-page: 739
  year: 2021
  end-page: 753
  ident: b36
  article-title: A dual-population-based evolutionary algorithm for constrained multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 75
  year: 2022
  ident: b3
  article-title: An archive-based two-stage evolutionary algorithm for constrained multi-objective optimization problems
  publication-title: Swarm and Evolutionary Computation
– volume: 50
  start-page: 3367
  year: 2020
  end-page: 3380
  ident: b6
  article-title: Hyperplane assisted evolutionary algorithm for many-objective optimization problems
  publication-title: IEEE Transactions on Cybernetics
– volume: 23
  start-page: 870
  year: 2019
  end-page: 884
  ident: b31
  article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 23
  start-page: 303
  year: 2019
  end-page: 315
  ident: b30
  article-title: Two-archive evolutionary algorithm for constrained multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 74
  start-page: 621
  year: 2019
  end-page: 633
  ident: b16
  article-title: Moea/d with angle-based constrained dominance principle for constrained multi-objective optimization problems
  publication-title: Applied Soft Computing
– volume: 49
  start-page: 2060
  year: 2018
  end-page: 2072
  ident: b47
  article-title: Cooperative differential evolution framework for constrained multiobjective optimization
  publication-title: IEEE Transactions on Cybernetics
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b50
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 23
  start-page: 12491
  year: 2019
  ident: 10.1016/j.eswa.2022.119258_b18
  article-title: An improved epsilon constraint-handling method in moea/d for cmops with large infeasible regions
  publication-title: Soft Computing
  doi: 10.1007/s00500-019-03794-x
– start-page: 105
  year: 2005
  ident: 10.1016/j.eswa.2022.119258_b15
  article-title: Scalable test problems for evolutionary multiobjective optimization
– ident: 10.1016/j.eswa.2022.119258_b34
  doi: 10.1109/CEC.2014.6900645
– volume: 102
  start-page: 262
  year: 2018
  ident: 10.1016/j.eswa.2022.119258_b23
  article-title: An efficient combination of multi-objective evolutionary optimization and reliability analysis for reliability-based design optimization of truss structures
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.02.040
– volume: 52
  start-page: 9559
  year: 2022
  ident: 10.1016/j.eswa.2022.119258_b45
  article-title: Balancing objective optimization and constraint satisfaction in constrained evolutionary multiobjective optimization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2020.3021138
– volume: 13
  start-page: 307
  year: 2009
  ident: 10.1016/j.eswa.2022.119258_b2
  article-title: Keel: a software tool to assess evolutionary algorithms for data mining problems
  publication-title: Soft Computing
  doi: 10.1007/s00500-008-0323-y
– start-page: 53
  year: 2019
  ident: 10.1016/j.eswa.2022.119258_b10
  article-title: A new hybrid metaheuristic for equality constrained bi-objective optimization problems
– volume: 28
  start-page: 26
  year: 1998
  ident: 10.1016/j.eswa.2022.119258_b21
  article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms. i. a unified formulation
  publication-title: IEEE Transactions on Systems, Man & Cybernetics, Part A (Systems & Humans)
  doi: 10.1109/3468.650319
– volume: 3
  start-page: 257
  year: 1999
  ident: 10.1016/j.eswa.2022.119258_b56
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.797969
– start-page: 460
  year: 2016
  ident: 10.1016/j.eswa.2022.119258_b17
  article-title: Angle-based constrained dominance principle in moea/d for constrained multi-objective optimization problems
– volume: 49
  start-page: 2060
  year: 2018
  ident: 10.1016/j.eswa.2022.119258_b47
  article-title: Cooperative differential evolution framework for constrained multiobjective optimization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2819208
– start-page: 145
  year: 2009
  ident: 10.1016/j.eswa.2022.119258_b41
  article-title: Infeasibility driven evolutionary algorithm for constrained optimization
– volume: 67
  year: 2021
  ident: 10.1016/j.eswa.2022.119258_b22
  article-title: Coarseemoa: An indicatorbased evolutionary algorithm for solving equality constrained multi-objective optimization problems
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2021.100983
– volume: 13
  start-page: 514
  year: 2009
  ident: 10.1016/j.eswa.2022.119258_b49
  article-title: Constraint handling in multiobjective evolutionary optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.2009032
– volume: 67
  year: 2021
  ident: 10.1016/j.eswa.2022.119258_b43
  article-title: Population initialization techniques for evolutionary algorithms for single-objective constrained optimization problems: Deterministic vs. stochastic techniques
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2021.100952
– volume: 75
  year: 2022
  ident: 10.1016/j.eswa.2022.119258_b3
  article-title: An archive-based two-stage evolutionary algorithm for constrained multi-objective optimization problems
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2022.101161
– volume: 31
  start-page: 337
  year: 1999
  ident: 10.1016/j.eswa.2022.119258_b8
  article-title: Moses: A multiobjective tool for engineering design
  publication-title: Engineering Optimization
  doi: 10.1080/03052159908941377
– volume: 26
  start-page: 411
  year: 2018
  ident: 10.1016/j.eswa.2022.119258_b24
  article-title: How to specify a reference point in hypervolume calculation for fair performance comparison
  publication-title: Evolutionary Computation
  doi: 10.1162/evco_a_00226
– volume: 42
  start-page: 7831
  year: 2015
  ident: 10.1016/j.eswa.2022.119258_b53
  article-title: Backtracking search algorithm with three constraint handling methods for constrained optimization problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.05.050
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.eswa.2022.119258_b14
  article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 44
  start-page: 665
  year: 2019
  ident: 10.1016/j.eswa.2022.119258_b19
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.08.017
– volume: 26
  start-page: 646
  year: 2022
  ident: 10.1016/j.eswa.2022.119258_b51
  article-title: A voting-mechanism based ensemble framework for constraint handling techniques
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2021.3110130
– volume: 26
  start-page: 30
  year: 1999
  ident: 10.1016/j.eswa.2022.119258_b12
  article-title: A combined genetic adaptive search (geneas) for engineering design
  publication-title: Computer Science and Informatics
– volume: 22
  start-page: 851
  year: 2018
  ident: 10.1016/j.eswa.2022.119258_b35
  article-title: Coevolutionary multiobjective evolutionary algorithms: Survey of the state-of-the-art
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2017.2767023
– start-page: 3
  year: 2011
  ident: 10.1016/j.eswa.2022.119258_b11
  article-title: Multi-objective optimisation using evolutionary algorithms: An introduction
– volume: 50
  start-page: 3086
  year: 2020
  ident: 10.1016/j.eswa.2022.119258_b55
  article-title: Tri-goal evolution framework for constrained many-objective optimization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 14
  start-page: 363
  year: 2014
  ident: 10.1016/j.eswa.2022.119258_b28
  article-title: A modified objective function method with feasibleguiding strategy to solve constrained multiobjective optimization problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2013.10.008
– volume: 9
  start-page: 115
  year: 1994
  ident: 10.1016/j.eswa.2022.119258_b1
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Systems
– volume: 60
  start-page: 613
  year: 2017
  ident: 10.1016/j.eswa.2022.119258_b37
  article-title: An evolutionary algorithm with directed weights for constrained multi-objective optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.06.053
– volume: 52
  start-page: 1716
  year: 2022
  ident: 10.1016/j.eswa.2022.119258_b40
  article-title: Ensemble many-objective optimization algorithm based on voting mechanism
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2020.3034180
– volume: 50
  start-page: 3367
  year: 2020
  ident: 10.1016/j.eswa.2022.119258_b6
  article-title: Hyperplane assisted evolutionary algorithm for many-objective optimization problems
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2019.2899225
– volume: 46
  start-page: 2938
  year: 2016
  ident: 10.1016/j.eswa.2022.119258_b48
  article-title: Incorporating objective function information into the feasibility rule for constrained evolutionary optimization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2015.2493239
– volume: 13
  start-page: 128
  year: 2013
  ident: 10.1016/j.eswa.2022.119258_b27
  article-title: A study of two penalty-parameterless constraint handling techniques in the framework of moea/d
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.07.027
– volume: 18
  start-page: 602
  year: 2014
  ident: 10.1016/j.eswa.2022.119258_b26
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: Handling constraints and extending to an adaptive approach
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281534
– volume: 52
  start-page: 10163
  year: 2022
  ident: 10.1016/j.eswa.2022.119258_b32
  article-title: Handling constrained multiobjective optimization problems via bidirectional coevolution
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2021.3056176
– volume: 26
  start-page: 263
  year: 2022
  ident: 10.1016/j.eswa.2022.119258_b38
  article-title: An evolutionary multitasking optimization framework for constrained multiobjective optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2022.3145582
– volume: 18
  start-page: 577
  year: 2014
  ident: 10.1016/j.eswa.2022.119258_b13
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281535
– volume: 67
  year: 2021
  ident: 10.1016/j.eswa.2022.119258_b29
  article-title: A benchmark-suite of real-world constrained multi-objective optimization problems and some baseline results
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2021.100961
– volume: 23
  start-page: 303
  year: 2019
  ident: 10.1016/j.eswa.2022.119258_b30
  article-title: Two-archive evolutionary algorithm for constrained multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2018.2855411
– volume: 11
  start-page: 712
  year: 2007
  ident: 10.1016/j.eswa.2022.119258_b52
  article-title: Moead: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.892759
– volume: 52
  year: 2020
  ident: 10.1016/j.eswa.2022.119258_b9
  article-title: A benchmark for equality constrained multiobjective optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2019.100619
– volume: 10
  start-page: 658
  year: 2006
  ident: 10.1016/j.eswa.2022.119258_b5
  article-title: A multiobjective optimization-based evolutionary algorithm for constrained optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2006.872344
– volume: 74
  start-page: 621
  year: 2019
  ident: 10.1016/j.eswa.2022.119258_b16
  article-title: Moea/d with angle-based constrained dominance principle for constrained multi-objective optimization problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.10.027
– volume: 7
  start-page: 174
  year: 2003
  ident: 10.1016/j.eswa.2022.119258_b4
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.810761
– volume: 12
  start-page: 73
  year: 2017
  ident: 10.1016/j.eswa.2022.119258_b44
  article-title: Platemo: A matlab platform for evolutionary multi-objective optimization
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2017.2742868
– volume: 25
  start-page: 102
  year: 2021
  ident: 10.1016/j.eswa.2022.119258_b46
  article-title: A coevolutionary framework for constrained multiobjective optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2020.3004012
– volume: 465
  start-page: 232
  year: 2018
  ident: 10.1016/j.eswa.2022.119258_b54
  article-title: Entropy based evolutionary algorithm with adaptive reference points for many-objective optimization problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.07.012
– start-page: 1
  year: 2022
  ident: 10.1016/j.eswa.2022.119258_b39
  article-title: Dynamic auxiliary task-based evolutionary multitasking for constrained multi-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 23
  start-page: 972
  year: 2019
  ident: 10.1016/j.eswa.2022.119258_b33
  article-title: Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2019.2896967
– volume: 1
  start-page: 67
  year: 1997
  ident: 10.1016/j.eswa.2022.119258_b50
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– volume: 28
  start-page: 339
  year: 2020
  ident: 10.1016/j.eswa.2022.119258_b20
  article-title: Difficulty adjustable and scalable constrained multiobjective test problem toolkit
  publication-title: Evolutionary Computation
  doi: 10.1162/evco_a_00259
– volume: 579
  start-page: 89
  year: 2021
  ident: 10.1016/j.eswa.2022.119258_b57
  article-title: A dual-population algorithm based on alternative evolution and degeneration for solving constrained multi-objective optimization problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.07.078
– volume: 51
  start-page: 1507
  year: 2021
  ident: 10.1016/j.eswa.2022.119258_b7
  article-title: An adaptive resource allocation strategy for objective space partition-based multiobjective optimization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 23
  start-page: 870
  year: 2019
  ident: 10.1016/j.eswa.2022.119258_b31
  article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2019.2894743
– volume: 25
  start-page: 739
  year: 2021
  ident: 10.1016/j.eswa.2022.119258_b36
  article-title: A dual-population-based evolutionary algorithm for constrained multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2021.3066301
– volume: 21
  start-page: 169
  year: 2017
  ident: 10.1016/j.eswa.2022.119258_b25
  article-title: Performance of decomposition-based many-objective algorithms strongly depends on pareto front shapes
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2016.2587749
– ident: 10.1016/j.eswa.2022.119258_b42
  doi: 10.1109/CEC.2010.5586545
SSID ssj0017007
Score 2.5070744
Snippet The balance between multiple objectives and various constraints is the key to solving constrained multi-objective optimization problems (CMOPs). When dealing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119258
SubjectTerms Bidirectional coevolution
Constrained multi-objective
Constrained-handling technique
Cooperative dual-population
Title A dual-population based bidirectional coevolution algorithm for constrained multi-objective optimization problems
URI https://dx.doi.org/10.1016/j.eswa.2022.119258
Volume 215
WOSCitedRecordID wos000895291200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMv3NHGTX7gLfKUOGnsPFZoCBBMICqRt8hxnJGqTUqble0f7GdzHNtpVtAESLxEVRTXyTlfzi3ngtArEHBhxERAykksSMRpRPKSclImErSBkqCyu0LhD-z0lKdp8mk0unK1MNsFq2t-cZGs_iur4RwwW5fO_gW7-z-FE_AbmA5HYDsc_4jxU0-XV5FVP5nL05oK7MzKqC8T-5ON2trb8MTirFlX7bdll3MotcWoB0fAmi7dkDT53IhFrwEBs7SVm56dRbO5FtzXnZNb2x_aVc4NvpHvAqddiPbzAJxfbeT6owD1Wu0i6F26ASC5Pls6NdulIxh5mVaiuTwfxi5oOEh56QJqrqhml8FkIpOMRIEZ3nOsjFzmLCQxM8MUneCmphD0FyVg4hHzY7X5oTtLUQp6IaGmQ_xec-0vejO9F9XXsTi9hQ4omyR8jA6m707S9_0XKeab0nt3c7YAy-QK7u_0eyNnYLjM7qO71uPAU4OUB2ik6ofonpvmga1wf4S-T_EecHAHHHwNOHgAHNwDBwNw8AA4eA84eAgc7IDzGM3enMxevyV2IAeR4Km2RAWyyLU5EwmeF0qKRDIWipDLWAaFoLHwtX_K4f0vlfYGihws6qCI_TyngR8-QeO6qdUhwmWQBKUMaM4KGcU85IUPjjhlgkVFFCfiCAWOgJm0zer1Eywyl5U4zzTRM030zBD9CHn9mpVp1XLj1RPHl8wam4aYGcDohnVP_3HdM3Rn9wY8R-N2fa5eoNty21ab9UuLtp_pTKps
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dual-population+based+bidirectional+coevolution+algorithm+for+constrained+multi-objective+optimization+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Bao%2C+Qian&rft.au=Wang%2C+Maocai&rft.au=Dai%2C+Guangming&rft.au=Chen%2C+Xiaoyu&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=215&rft_id=info:doi/10.1016%2Fj.eswa.2022.119258&rft.externalDocID=S095741742202276X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon