Multi-objective optimisation of machining process parameters using deep learning-based data-driven genetic algorithm and TOPSIS

Machining process is currently widely employed in mechanical manufacturing systems. Optimum selection of machining process parameters can improve the environmental impact and production efficiency of the machining process effectively. However, existing studies toward machining process parameters opt...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of manufacturing systems Ročník 64; s. 40 - 52
Hlavní autoři: Wu, Pengcheng, He, Yan, Li, Yufeng, He, Jingsen, Liu, Xueqian, Wang, Yulin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.07.2022
Témata:
ISSN:0278-6125, 1878-6642
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Machining process is currently widely employed in mechanical manufacturing systems. Optimum selection of machining process parameters can improve the environmental impact and production efficiency of the machining process effectively. However, existing studies toward machining process parameters optimisation are focusing on computationally expensive numerical simulations and costly physical models, which are inefficient and labor-expensive. Moreover, the numerical simulations and physical models often show an unsatisfactory accuracy in the actual exploitation stage, which would make the final optimisation solution cannot achieve the best optimum results. Therefore, this paper proposes a deep learning based data-driven genetic algorithm and TOPSIS for multi objective optimisation of machining process parameters and searching the final solutions. First, deep learning is employed in this paper to automatically develop the data-driven prediction function of different optimized objectives. Then the developed optimized objective prediction function is converted into the surrogate model and integrated with the genetic algorithm for generating the Pareto set. Finally, the TOPSIS is employed to automatically search the best optimum processing parameter from the generated Pareto set. The experiments conducted on a milling machine and the experimental results show that the proposed parameters selection method is feasible and effective, and it can effectively and adjustably help operators to realize a balance among the multiple different conflicting objectives. •Data-driven genetic algorithm is proposed and employed for machining process parameters optimization.•Deep learning is employed to automatically develop the data-driven prediction function of different objectives.•This work provides a cost-efficient way for the operators to select the process parameters of machining process.•Little effort and expert knowledge are required during the optimal selection of process parameters.•The results can help manufacturers to select best optimal energy-efficient machining process in a flexible way.
AbstractList Machining process is currently widely employed in mechanical manufacturing systems. Optimum selection of machining process parameters can improve the environmental impact and production efficiency of the machining process effectively. However, existing studies toward machining process parameters optimisation are focusing on computationally expensive numerical simulations and costly physical models, which are inefficient and labor-expensive. Moreover, the numerical simulations and physical models often show an unsatisfactory accuracy in the actual exploitation stage, which would make the final optimisation solution cannot achieve the best optimum results. Therefore, this paper proposes a deep learning based data-driven genetic algorithm and TOPSIS for multi objective optimisation of machining process parameters and searching the final solutions. First, deep learning is employed in this paper to automatically develop the data-driven prediction function of different optimized objectives. Then the developed optimized objective prediction function is converted into the surrogate model and integrated with the genetic algorithm for generating the Pareto set. Finally, the TOPSIS is employed to automatically search the best optimum processing parameter from the generated Pareto set. The experiments conducted on a milling machine and the experimental results show that the proposed parameters selection method is feasible and effective, and it can effectively and adjustably help operators to realize a balance among the multiple different conflicting objectives. •Data-driven genetic algorithm is proposed and employed for machining process parameters optimization.•Deep learning is employed to automatically develop the data-driven prediction function of different objectives.•This work provides a cost-efficient way for the operators to select the process parameters of machining process.•Little effort and expert knowledge are required during the optimal selection of process parameters.•The results can help manufacturers to select best optimal energy-efficient machining process in a flexible way.
Author Wang, Yulin
Liu, Xueqian
He, Yan
Wu, Pengcheng
He, Jingsen
Li, Yufeng
Author_xml – sequence: 1
  givenname: Pengcheng
  surname: Wu
  fullname: Wu, Pengcheng
  organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China
– sequence: 2
  givenname: Yan
  surname: He
  fullname: He, Yan
  email: heyan@cqu.edu.cn
  organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China
– sequence: 3
  givenname: Yufeng
  surname: Li
  fullname: Li, Yufeng
  organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China
– sequence: 4
  givenname: Jingsen
  surname: He
  fullname: He, Jingsen
  organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China
– sequence: 5
  givenname: Xueqian
  surname: Liu
  fullname: Liu, Xueqian
  organization: Chongqing Hongyu Precision Industry Group Co. Ltd., Chongqing 402760, China
– sequence: 6
  givenname: Yulin
  surname: Wang
  fullname: Wang, Yulin
  organization: School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
BookMark eNp9kM1KJTEQRoMoeNV5AVd5gW6T2H8X3AwyoxcUBZ11qFSqr2m6kyaJgqt5dbvHWblwVcVXdQrqnLBDHzwxdi5FKYVsLoZymNJ7qYRSpajLJTpgG9m1XdE0lTpkG6HWXqr6mJ2kNAghVSXUhv29fx2zK4IZCLN7Ix7m7CaXILvgeej5BPjivPN7PseAlBKfIcJEmWLir2kdWKKZjwRxXSsMJLLcQobCxuWi53vylB1yGPchuvwycfCWPz88Pu2ezthRD2OiH__rKfvz-9fz9W1x93Czu_55V6C6FLnAqtv2bbVFqNrObLGpyEIljZFt09iuRtlT3QpAkLVBabbQoWrJdGBabHpxecrU512MIaVIvZ6jmyC-ayn0qlAPelWoV4Va1HqJFqj7AqHL_8zkCG78Hr36RGl56s1R1AkdeSTr4mJa2-C-wz8AvouTRQ
CitedBy_id crossref_primary_10_1016_j_icheatmasstransfer_2023_107109
crossref_primary_10_3390_machines12080566
crossref_primary_10_1007_s00170_025_15072_2
crossref_primary_10_1016_j_aei_2025_103456
crossref_primary_10_1016_j_jclepro_2023_140284
crossref_primary_10_1016_j_jclepro_2024_142144
crossref_primary_10_1016_j_measurement_2024_115837
crossref_primary_10_3233_JIFS_231307
crossref_primary_10_1016_j_cie_2025_111161
crossref_primary_10_1007_s13369_023_08238_1
crossref_primary_10_1007_s00170_024_13478_y
crossref_primary_10_1038_s41598_024_69979_z
crossref_primary_10_3390_machines11010079
crossref_primary_10_1007_s12046_025_02882_z
crossref_primary_10_3390_app14156622
crossref_primary_10_1007_s00170_024_13057_1
crossref_primary_10_3390_ma17164093
crossref_primary_10_3390_machines12090635
crossref_primary_10_3390_ma17112723
crossref_primary_10_3390_pr12050950
crossref_primary_10_1016_j_measurement_2025_117823
crossref_primary_10_1080_21681015_2024_2361044
crossref_primary_10_3390_foods11233845
crossref_primary_10_1016_j_jmsy_2023_07_003
crossref_primary_10_1007_s00521_023_08371_w
crossref_primary_10_1016_j_enbuild_2023_112811
crossref_primary_10_1108_ILT_12_2023_0417
crossref_primary_10_1080_09243046_2024_2448081
crossref_primary_10_1007_s40684_024_00625_9
crossref_primary_10_3390_en17153659
crossref_primary_10_1007_s00170_023_12310_3
crossref_primary_10_1016_j_mtcomm_2025_112819
crossref_primary_10_1080_0951192X_2023_2177741
crossref_primary_10_3390_machines13040290
crossref_primary_10_1016_j_energy_2023_129205
crossref_primary_10_1080_00207543_2024_2406998
crossref_primary_10_1002_qre_3513
crossref_primary_10_1016_j_aej_2025_07_034
crossref_primary_10_1016_j_energy_2023_130198
crossref_primary_10_1007_s12008_025_02338_y
crossref_primary_10_1016_j_jmsy_2023_02_015
crossref_primary_10_1080_0951192X_2025_2493685
crossref_primary_10_1016_j_molliq_2024_124390
crossref_primary_10_1007_s00170_024_14445_3
crossref_primary_10_1007_s12008_023_01696_9
crossref_primary_10_1016_j_ces_2024_120829
crossref_primary_10_1016_j_rcim_2024_102943
crossref_primary_10_1016_j_cie_2025_111108
crossref_primary_10_1016_j_ymssp_2024_111473
crossref_primary_10_1007_s41939_022_00138_5
crossref_primary_10_1016_j_jclepro_2024_143963
crossref_primary_10_1016_j_rcim_2025_103028
crossref_primary_10_3390_pr10122645
crossref_primary_10_1016_j_jclepro_2024_143406
crossref_primary_10_1080_00207543_2024_2357740
crossref_primary_10_1007_s12541_025_01334_2
crossref_primary_10_1177_14727978251355770
crossref_primary_10_1016_j_aei_2025_103645
crossref_primary_10_1016_j_jmsy_2022_10_008
crossref_primary_10_1016_j_jmsy_2024_06_005
crossref_primary_10_1016_j_mineng_2023_108484
crossref_primary_10_1016_j_procir_2023_02_055
crossref_primary_10_1088_2631_8695_ad4f50
crossref_primary_10_1016_j_jmsy_2022_10_007
crossref_primary_10_3390_machines12110827
Cites_doi 10.1016/j.jmsy.2017.02.011
10.1109/TIE.2018.2877090
10.1109/TIE.2018.2807414
10.1016/j.matpr.2017.07.210
10.1016/j.jclepro.2013.02.030
10.1109/TEVC.2013.2281535
10.1016/j.ymssp.2018.05.050
10.1016/j.jmsy.2017.11.004
10.1016/j.measurement.2019.02.048
10.1016/j.apenergy.2019.02.052
10.1016/j.jmsy.2021.03.023
10.1007/s00170-018-2373-3
10.1016/j.ymssp.2017.05.006
10.1109/TEVC.2018.2834881
10.1007/s00170-017-1032-4
10.1016/j.eswa.2012.05.056
10.1016/j.jmsy.2020.06.009
10.1016/j.ins.2018.10.005
10.1016/S0890-6955(01)00014-1
10.1038/nature14539
10.1016/j.apenergy.2020.115402
10.1016/j.eswa.2015.11.007
10.1016/j.neucom.2017.09.069
10.1016/j.jmsy.2021.03.025
10.1109/TEVC.2013.2281534
10.1007/s40684-019-00029-0
10.1109/TASE.2018.2826362
10.1016/j.jclepro.2012.08.008
10.1016/j.knosys.2014.02.015
10.1109/TIE.2017.2733438
ContentType Journal Article
Copyright 2022 The Society of Manufacturing Engineers
Copyright_xml – notice: 2022 The Society of Manufacturing Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.jmsy.2022.05.016
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-6642
EndPage 52
ExternalDocumentID 10_1016_j_jmsy_2022_05_016
S0278612522000863
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29K
3EH
3V.
4.4
457
4G.
5GY
5VS
7-5
71M
7WY
883
88I
8AO
8FE
8FG
8FL
8FW
8G5
8P~
8R4
8R5
9JN
9M8
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJCF
ABJNI
ABMAC
ABUWG
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKRA
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BEZIV
BGLVJ
BJAXD
BKOJK
BKOMP
BLXMC
BPHCQ
C1A
CCPQU
CS3
D-I
DU5
DWQXO
E3Z
EBS
EFJIC
EFLBG
EJD
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FRNLG
FYGXN
G-2
GBLVA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K60
K6V
K6~
K7-
KOM
L6V
LY7
M0C
M0F
M0N
M2O
M2P
M41
M7S
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PQBIZ
PQQKQ
PRG
PROAC
PTHSS
Q2X
Q38
R2-
RIG
ROL
RPZ
RWL
S0X
SDF
SES
SET
SPC
SPCBC
SST
SSZ
T5K
TAE
TN5
U5U
WH7
WUQ
ZHY
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFFHD
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
PHGZM
PHGZT
PQBZA
PQGLB
~HD
ID FETCH-LOGICAL-c230t-c489f749ca478b9c64eda41bb1766d85c1fe570aca15bc1b9a8c27eb8ab7c6f03
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808237800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-6125
IngestDate Sat Nov 29 07:20:41 EST 2025
Tue Nov 18 22:12:30 EST 2025
Fri Feb 23 02:40:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Data-driven genetic algorithm
Machining process
Multi-objective optimisation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c230t-c489f749ca478b9c64eda41bb1766d85c1fe570aca15bc1b9a8c27eb8ab7c6f03
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_jmsy_2022_05_016
crossref_citationtrail_10_1016_j_jmsy_2022_05_016
elsevier_sciencedirect_doi_10_1016_j_jmsy_2022_05_016
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Journal of manufacturing systems
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Guo, Lei, Xing, Yan, Li (bib28) 2019; 66
Sreejith, Ngoi (bib1) 2001; 41
Bhushan (bib4) 2013; 39
Rajesh, Yohan, Venkataramaiah, Pallavi (bib18) 2017; 4
Luo, Wang, Liu, Li, Peng (bib25) 2019; 66
Jain, Deb (bib29) 2014; 18
Xiao, Jiang, Gu, Yan, Wang (bib15) 2021; 59
Fan, Sun, Zhao, Song, Wang (bib23) 2019; 240
Sadeghifar, Sedaghati, Jomaa, Songmene (bib16) 2018; 94
Awad, Hassan (bib14) 2018; 46
Giampieri, Ling-Chin, Ma, Smallbone, Roskilly (bib21) 2020
Tavana, Li, Mobin, Komaki, Teymourian (bib32) 2016; 50
Lee, Huang, Ji, Lin (bib5) 2018; 15
Behzadian, Otaghsara, Yazdani, Ignatius (bib33) 2012; 39
Serra, Chibane, Duchosal (bib7) 2018; 99
Wang, Jin, Sun, Doherty (bib13) 2019; 23
Deng, Du, Jia, Zhao, Xie (bib20) 2020; 56
Wu, Liu, Zhang, Terpenny, Gao, Kurfess (bib6) 2017; 43
Muaz, Choudhury (bib12) 2019; 138
Prakash, Gopal, Karthik (bib9) 2020
Zhao, Wang, Yan, Mao, Shen, Wang (bib24) 2018; 65
Karandikar, Schmitz, Smith (bib19) 2021; 59
LeCun, Bengio, Hinton (bib26) 2015; 521
Lu (bib17) 2019; 33
He, Wu, Li, Wang, Tao, Wang (bib35) 2020; 275
Abdeljaber, Avci, Kiranyaz, Boashash, Sodano, Inman (bib27) 2018; 275
Schneider, Krohling (bib34) 2014; 62
Plaza, Lopez (bib2) 2018; 98
Muaz, Choudhury (bib11) 2019; 138
Deb, Jain (bib30) 2014; 18
Ghosh, Martinsen (bib8) 2020; 23
Yan, Li (bib10) 2013; 52
Deng, Lv, Huang, Shi (bib3) 2019; 6
Yi, Xing, Wang, Dong, Vasilakos, Alavi (bib31) 2020; 509
Zhao, Yan, Chen, Mao, Wang, Gao (bib22) 2019; 115
Deb (10.1016/j.jmsy.2022.05.016_bib30) 2014; 18
Giampieri (10.1016/j.jmsy.2022.05.016_bib21) 2020
Behzadian (10.1016/j.jmsy.2022.05.016_bib33) 2012; 39
Muaz (10.1016/j.jmsy.2022.05.016_bib11) 2019; 138
Zhao (10.1016/j.jmsy.2022.05.016_bib22) 2019; 115
Guo (10.1016/j.jmsy.2022.05.016_bib28) 2019; 66
Xiao (10.1016/j.jmsy.2022.05.016_bib15) 2021; 59
Lee (10.1016/j.jmsy.2022.05.016_bib5) 2018; 15
Prakash (10.1016/j.jmsy.2022.05.016_bib9) 2020
Zhao (10.1016/j.jmsy.2022.05.016_bib24) 2018; 65
Schneider (10.1016/j.jmsy.2022.05.016_bib34) 2014; 62
Rajesh (10.1016/j.jmsy.2022.05.016_bib18) 2017; 4
Plaza (10.1016/j.jmsy.2022.05.016_bib2) 2018; 98
Deng (10.1016/j.jmsy.2022.05.016_bib20) 2020; 56
Karandikar (10.1016/j.jmsy.2022.05.016_bib19) 2021; 59
Yan (10.1016/j.jmsy.2022.05.016_bib10) 2013; 52
Deng (10.1016/j.jmsy.2022.05.016_bib3) 2019; 6
Jain (10.1016/j.jmsy.2022.05.016_bib29) 2014; 18
Awad (10.1016/j.jmsy.2022.05.016_bib14) 2018; 46
Abdeljaber (10.1016/j.jmsy.2022.05.016_bib27) 2018; 275
Wu (10.1016/j.jmsy.2022.05.016_bib6) 2017; 43
LeCun (10.1016/j.jmsy.2022.05.016_bib26) 2015; 521
Serra (10.1016/j.jmsy.2022.05.016_bib7) 2018; 99
He (10.1016/j.jmsy.2022.05.016_bib35) 2020; 275
Muaz (10.1016/j.jmsy.2022.05.016_bib12) 2019; 138
Sreejith (10.1016/j.jmsy.2022.05.016_bib1) 2001; 41
Ghosh (10.1016/j.jmsy.2022.05.016_bib8) 2020; 23
Wang (10.1016/j.jmsy.2022.05.016_bib13) 2019; 23
Sadeghifar (10.1016/j.jmsy.2022.05.016_bib16) 2018; 94
Bhushan (10.1016/j.jmsy.2022.05.016_bib4) 2013; 39
Fan (10.1016/j.jmsy.2022.05.016_bib23) 2019; 240
Luo (10.1016/j.jmsy.2022.05.016_bib25) 2019; 66
Lu (10.1016/j.jmsy.2022.05.016_bib17) 2019; 33
Yi (10.1016/j.jmsy.2022.05.016_bib31) 2020; 509
Tavana (10.1016/j.jmsy.2022.05.016_bib32) 2016; 50
References_xml – volume: 275
  year: 2020
  ident: bib35
  article-title: A generic energy prediction model of machine tools using deep learning algorithms
  publication-title: Appl Energy
– volume: 59
  start-page: 522
  year: 2021
  end-page: 534
  ident: bib19
  article-title: Physics-guided logistic classification for tool life modeling and process parameter optimisation in machining(z.star)
  publication-title: J Manuf Syst
– start-page: 261
  year: 2020
  ident: bib21
  article-title: A review of the current automotive manufacturing practice from an energy perspective
  publication-title: Appl Energy
– volume: 18
  start-page: 602
  year: 2014
  end-page: 622
  ident: bib29
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, Part II: handling constraints and extending to an adaptive approach
  publication-title: IEEE Trans Evol Comput
– volume: 41
  start-page: 1831
  year: 2001
  end-page: 1843
  ident: bib1
  article-title: Material removal mechanisms in precision machining of new materials
  publication-title: Int J Mach TOOLS Manuf
– volume: 56
  start-page: 359
  year: 2020
  end-page: 372
  ident: bib20
  article-title: Prognostic study of ball screws by ensemble data-driven particle filters
  publication-title: J Manuf Syst
– volume: 275
  start-page: 1308
  year: 2018
  end-page: 1317
  ident: bib27
  article-title: 1-D CNNs for structural damage detection: verification on a structural health monitoring benchmark data
  publication-title: Neurocomputing
– volume: 98
  start-page: 634
  year: 2018
  end-page: 651
  ident: bib2
  article-title: Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning
  publication-title: Mech Syst Signal Process
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib26
  article-title: Deep learning
  publication-title: Nature
– volume: 115
  start-page: 213
  year: 2019
  end-page: 237
  ident: bib22
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech Syst Signal Process
– volume: 50
  start-page: 17
  year: 2016
  end-page: 39
  ident: bib32
  article-title: Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS
  publication-title: Expert Syst Appl
– volume: 66
  start-page: 509
  year: 2019
  end-page: 518
  ident: bib25
  article-title: Early fault detection of machine tools based on deep learning and dynamic identification
  publication-title: IEEE Trans Ind Electron
– volume: 15
  start-page: 1665
  year: 2018
  end-page: 1676
  ident: bib5
  article-title: An online tool temperature monitoring method based on physics-guided infrared image features and artificial neural network for dry cutting
  publication-title: IEEE Trans Autom Sci Eng
– volume: 66
  start-page: 7316
  year: 2019
  end-page: 7325
  ident: bib28
  article-title: Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data
  publication-title: IEEE Trans Ind Electron
– volume: 509
  start-page: 470
  year: 2020
  end-page: 487
  ident: bib31
  article-title: Behavior of crossover operators in NSGA-III for large-scale optimization problems
  publication-title: Inf Sci
– volume: 23
  start-page: 650
  year: 2020
  end-page: 663
  ident: bib8
  article-title: Generalized approach for multi-response machining process optimization using machine learning and evolutionary algorithms
  publication-title: Eng Sci Technol Int J JESTECH
– volume: 43
  start-page: 25
  year: 2017
  end-page: 34
  ident: bib6
  article-title: A fog computing-based framework for process monitoring and prognosis in cyber-manufacturing
  publication-title: J Manuf Syst
– volume: 99
  start-page: 2025
  year: 2018
  end-page: 2034
  ident: bib7
  article-title: Multi-objective optimization of cutting parameters for turning AISI 52100 hardened steel
  publication-title: Int J Adv Manuf Technol
– volume: 33
  start-page: 208
  year: 2019
  end-page: 215
  ident: bib17
  article-title: A thermal FEA modeling of multiple machining processes for practical machining process optimisation
  publication-title: Sustain Manuf Glob Circ Econ
– start-page: 157
  year: 2020
  ident: bib9
  article-title: Multi-objective optimization using Taguchi based grey relational analysis in turning of Rock dust reinforced aluminum MMC
  publication-title: Measurement
– volume: 39
  start-page: 13051
  year: 2012
  end-page: 13069
  ident: bib33
  article-title: A state-of the-art survey of TOPSIS applications
  publication-title: Expert Syst Appl
– volume: 138
  start-page: 557
  year: 2019
  end-page: 569
  ident: bib11
  article-title: Experimental investigations and multi-objective optimization of MQL-assisted milling process for finishing of AISI 4340 steel
  publication-title: Measurement
– volume: 6
  start-page: 23
  year: 2019
  end-page: 41
  ident: bib3
  article-title: A high efficiency and low carbon oriented machining process route optimization model and its application
  publication-title: Int J Precis Eng Manuf Technol
– volume: 138
  start-page: 557
  year: 2019
  end-page: 569
  ident: bib12
  article-title: Experimental investigations and multi-objective optimization of MQL-assisted milling process for finishing of AISI 4340 steel
  publication-title: Measurement
– volume: 59
  start-page: 535
  year: 2021
  end-page: 548
  ident: bib15
  article-title: A novel approach to CNC machining center processing parameters optimisation considering energy-saving and low-cost
  publication-title: J Manuf Syst
– volume: 65
  start-page: 1539
  year: 2018
  end-page: 1548
  ident: bib24
  article-title: Machine health monitoring using local feature-based gated recurrent unit networks
  publication-title: IEEE Trans Ind Electron
– volume: 39
  start-page: 242
  year: 2013
  end-page: 254
  ident: bib4
  article-title: Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites
  publication-title: J Clean Prod
– volume: 4
  start-page: 8624
  year: 2017
  end-page: 8632
  ident: bib18
  article-title: Optimization of cutting parameters for minimization of cutting temperature and surface roughness in turning of Al6061 alloy
  publication-title: Mater Today Proc
– volume: 240
  start-page: 35
  year: 2019
  end-page: 45
  ident: bib23
  article-title: Deep learning-based feature engineering methods for improved building energy prediction
  publication-title: Appl Energy
– volume: 46
  start-page: 79
  year: 2018
  end-page: 92
  ident: bib14
  article-title: Joint decisions of machining process parameters setting and lot-size determination with environmental and quality cost consideration
  publication-title: J Manuf Syst
– volume: 23
  start-page: 203
  year: 2019
  end-page: 216
  ident: bib13
  article-title: Offline data-driven evolutionary optimization using selective surrogate ensembles
  publication-title: IEEE Trans Evol Comput
– volume: 52
  start-page: 462
  year: 2013
  end-page: 471
  ident: bib10
  article-title: Multi-objective optimization of milling parameters - the trade-offs between energy, production rate and cutting quality
  publication-title: J Clean Prod
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: bib30
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints
  publication-title: IEEE Trans Evol Comput
– volume: 94
  start-page: 2457
  year: 2018
  end-page: 2474
  ident: bib16
  article-title: Finite element analysis and response surface method for robust multi-performance optimization of radial turning of hard 300M steel
  publication-title: Int J Adv Manuf Technol
– volume: 62
  start-page: 47
  year: 2014
  end-page: 56
  ident: bib34
  article-title: A hybrid approach using TOPSIS, differential evolution, and Tabu search to find multiple solutions of constrained non-linear integer optimization problems
  publication-title: Knowledge Based Syst
– volume: 43
  start-page: 25
  year: 2017
  ident: 10.1016/j.jmsy.2022.05.016_bib6
  article-title: A fog computing-based framework for process monitoring and prognosis in cyber-manufacturing
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2017.02.011
– volume: 23
  start-page: 650
  year: 2020
  ident: 10.1016/j.jmsy.2022.05.016_bib8
  article-title: Generalized approach for multi-response machining process optimization using machine learning and evolutionary algorithms
  publication-title: Eng Sci Technol Int J JESTECH
– volume: 66
  start-page: 7316
  year: 2019
  ident: 10.1016/j.jmsy.2022.05.016_bib28
  article-title: Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2018.2877090
– volume: 66
  start-page: 509
  year: 2019
  ident: 10.1016/j.jmsy.2022.05.016_bib25
  article-title: Early fault detection of machine tools based on deep learning and dynamic identification
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2018.2807414
– volume: 4
  start-page: 8624
  year: 2017
  ident: 10.1016/j.jmsy.2022.05.016_bib18
  article-title: Optimization of cutting parameters for minimization of cutting temperature and surface roughness in turning of Al6061 alloy
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2017.07.210
– volume: 33
  start-page: 208
  year: 2019
  ident: 10.1016/j.jmsy.2022.05.016_bib17
  article-title: A thermal FEA modeling of multiple machining processes for practical machining process optimisation
  publication-title: Sustain Manuf Glob Circ Econ
– volume: 52
  start-page: 462
  year: 2013
  ident: 10.1016/j.jmsy.2022.05.016_bib10
  article-title: Multi-objective optimization of milling parameters - the trade-offs between energy, production rate and cutting quality
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2013.02.030
– volume: 18
  start-page: 577
  year: 2014
  ident: 10.1016/j.jmsy.2022.05.016_bib30
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2013.2281535
– volume: 115
  start-page: 213
  year: 2019
  ident: 10.1016/j.jmsy.2022.05.016_bib22
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.05.050
– volume: 46
  start-page: 79
  year: 2018
  ident: 10.1016/j.jmsy.2022.05.016_bib14
  article-title: Joint decisions of machining process parameters setting and lot-size determination with environmental and quality cost consideration
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2017.11.004
– start-page: 261
  year: 2020
  ident: 10.1016/j.jmsy.2022.05.016_bib21
  article-title: A review of the current automotive manufacturing practice from an energy perspective
  publication-title: Appl Energy
– volume: 138
  start-page: 557
  year: 2019
  ident: 10.1016/j.jmsy.2022.05.016_bib12
  article-title: Experimental investigations and multi-objective optimization of MQL-assisted milling process for finishing of AISI 4340 steel
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.02.048
– volume: 240
  start-page: 35
  year: 2019
  ident: 10.1016/j.jmsy.2022.05.016_bib23
  article-title: Deep learning-based feature engineering methods for improved building energy prediction
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.02.052
– volume: 59
  start-page: 535
  year: 2021
  ident: 10.1016/j.jmsy.2022.05.016_bib15
  article-title: A novel approach to CNC machining center processing parameters optimisation considering energy-saving and low-cost
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.03.023
– volume: 99
  start-page: 2025
  year: 2018
  ident: 10.1016/j.jmsy.2022.05.016_bib7
  article-title: Multi-objective optimization of cutting parameters for turning AISI 52100 hardened steel
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-2373-3
– volume: 98
  start-page: 634
  year: 2018
  ident: 10.1016/j.jmsy.2022.05.016_bib2
  article-title: Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.05.006
– volume: 23
  start-page: 203
  year: 2019
  ident: 10.1016/j.jmsy.2022.05.016_bib13
  article-title: Offline data-driven evolutionary optimization using selective surrogate ensembles
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2018.2834881
– volume: 94
  start-page: 2457
  year: 2018
  ident: 10.1016/j.jmsy.2022.05.016_bib16
  article-title: Finite element analysis and response surface method for robust multi-performance optimization of radial turning of hard 300M steel
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-017-1032-4
– volume: 39
  start-page: 13051
  year: 2012
  ident: 10.1016/j.jmsy.2022.05.016_bib33
  article-title: A state-of the-art survey of TOPSIS applications
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.05.056
– volume: 56
  start-page: 359
  year: 2020
  ident: 10.1016/j.jmsy.2022.05.016_bib20
  article-title: Prognostic study of ball screws by ensemble data-driven particle filters
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2020.06.009
– volume: 509
  start-page: 470
  year: 2020
  ident: 10.1016/j.jmsy.2022.05.016_bib31
  article-title: Behavior of crossover operators in NSGA-III for large-scale optimization problems
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.10.005
– volume: 41
  start-page: 1831
  year: 2001
  ident: 10.1016/j.jmsy.2022.05.016_bib1
  article-title: Material removal mechanisms in precision machining of new materials
  publication-title: Int J Mach TOOLS Manuf
  doi: 10.1016/S0890-6955(01)00014-1
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.jmsy.2022.05.016_bib26
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 138
  start-page: 557
  year: 2019
  ident: 10.1016/j.jmsy.2022.05.016_bib11
  article-title: Experimental investigations and multi-objective optimization of MQL-assisted milling process for finishing of AISI 4340 steel
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.02.048
– volume: 275
  year: 2020
  ident: 10.1016/j.jmsy.2022.05.016_bib35
  article-title: A generic energy prediction model of machine tools using deep learning algorithms
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115402
– volume: 50
  start-page: 17
  year: 2016
  ident: 10.1016/j.jmsy.2022.05.016_bib32
  article-title: Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.11.007
– start-page: 157
  year: 2020
  ident: 10.1016/j.jmsy.2022.05.016_bib9
  article-title: Multi-objective optimization using Taguchi based grey relational analysis in turning of Rock dust reinforced aluminum MMC
  publication-title: Measurement
– volume: 275
  start-page: 1308
  year: 2018
  ident: 10.1016/j.jmsy.2022.05.016_bib27
  article-title: 1-D CNNs for structural damage detection: verification on a structural health monitoring benchmark data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.069
– volume: 59
  start-page: 522
  year: 2021
  ident: 10.1016/j.jmsy.2022.05.016_bib19
  article-title: Physics-guided logistic classification for tool life modeling and process parameter optimisation in machining(z.star)
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.03.025
– volume: 18
  start-page: 602
  year: 2014
  ident: 10.1016/j.jmsy.2022.05.016_bib29
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, Part II: handling constraints and extending to an adaptive approach
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2013.2281534
– volume: 6
  start-page: 23
  year: 2019
  ident: 10.1016/j.jmsy.2022.05.016_bib3
  article-title: A high efficiency and low carbon oriented machining process route optimization model and its application
  publication-title: Int J Precis Eng Manuf Technol
  doi: 10.1007/s40684-019-00029-0
– volume: 15
  start-page: 1665
  year: 2018
  ident: 10.1016/j.jmsy.2022.05.016_bib5
  article-title: An online tool temperature monitoring method based on physics-guided infrared image features and artificial neural network for dry cutting
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2018.2826362
– volume: 39
  start-page: 242
  year: 2013
  ident: 10.1016/j.jmsy.2022.05.016_bib4
  article-title: Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2012.08.008
– volume: 62
  start-page: 47
  year: 2014
  ident: 10.1016/j.jmsy.2022.05.016_bib34
  article-title: A hybrid approach using TOPSIS, differential evolution, and Tabu search to find multiple solutions of constrained non-linear integer optimization problems
  publication-title: Knowledge Based Syst
  doi: 10.1016/j.knosys.2014.02.015
– volume: 65
  start-page: 1539
  year: 2018
  ident: 10.1016/j.jmsy.2022.05.016_bib24
  article-title: Machine health monitoring using local feature-based gated recurrent unit networks
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2017.2733438
SSID ssj0012402
Score 2.549218
Snippet Machining process is currently widely employed in mechanical manufacturing systems. Optimum selection of machining process parameters can improve the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 40
SubjectTerms Data-driven genetic algorithm
Deep learning
Machining process
Multi-objective optimisation
Title Multi-objective optimisation of machining process parameters using deep learning-based data-driven genetic algorithm and TOPSIS
URI https://dx.doi.org/10.1016/j.jmsy.2022.05.016
Volume 64
WOSCitedRecordID wos000808237800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1878-6642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012402
  issn: 0278-6125
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXcpIf2UHRF0w089CYwsCSKyzEoUjQ5pAHiAu5JICnKjWFLhm0F6Sm_kk8tN8mqs6A59CIYhETJnueZ0fDNIwCfGeZEKk2QEGWJcJFKJFmikYmuMrVCuJJLt9kEPTlh4zE_HQyu216YixmtKnZ5yRf_1dRmzBjbts4-wNzdpGbAfDZGN0djdnP8J8O7llpUy6l3ZVFtnMI8kHbcarqjT_omdNckEFn577mlxayixpUOCq0X7X4SE2QDXRFZKikqltY52m2XtRN6nU3q5fn6l99mY_T99Ozo7I5sdy6qxjZR-K7IVU8n3UaExlOFq4mBUAilrj7rAkSPNeSoBz-b8sZJx7bgH7raQg0j2fBdW1eXmHdZm2v1_TLBPcfqNZ1CiPaatzecv69DTPen89XvfXsbr8l6i9L2VgTseIkt5W2a2zlyO0c-zHIz9AjsJjTjxvXvHhwdjo-7lSq7OuXqeOEbhMYszyHcfpLbk59eQjN6Dp4F28ADj6AXYKCrl-BpT5_yFbjawhLsYwnWJeywBAOW4AZL0GEJWizBv7EEe1iCAUuwwxI0WIIeS6_Bj6-Hoy_fUNixAynzKrtGCjNeUsyVwJRJrgjWhcCxlFaGtGCZikud0aFQIs6kiiUXTCVUSyYkVaQcpm_ATlVX-i2AJKGxTokqJU0wyYSM4zQbYkKoYpKUeA_E7U-ZqyBnb3dVmeV3G3EPRN01Cy_mcu_ZWWuhPKSjPs3MDeDuue7dg-7yHjzZ_CM-gJ31stEfwWN1sT5fLT8FtP0B2iKy7A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimisation+of+machining+process+parameters+using+deep+learning-based+data-driven+genetic+algorithm+and+TOPSIS&rft.jtitle=Journal+of+manufacturing+systems&rft.au=Wu%2C+Pengcheng&rft.au=He%2C+Yan&rft.au=Li%2C+Yufeng&rft.au=He%2C+Jingsen&rft.date=2022-07-01&rft.issn=0278-6125&rft.volume=64&rft.spage=40&rft.epage=52&rft_id=info:doi/10.1016%2Fj.jmsy.2022.05.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmsy_2022_05_016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-6125&client=summon