Multi-objective global and local Surrogate-Assisted optimization on polymer flooding

•An novel stochastic method is proposed to conduct multi-objective optimization.•Proxy-based optimization is involved to improve computational efficiency.•Two applications on polymer flooding cases are discussed and compared with other multi-objective methods. Oil production and polymer injection ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) Jg. 342; S. 127678
Hauptverfasser: Zhang, Ruxin, Chen, Hongquan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.06.2023
Schlagworte:
ISSN:0016-2361, 1873-7153
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •An novel stochastic method is proposed to conduct multi-objective optimization.•Proxy-based optimization is involved to improve computational efficiency.•Two applications on polymer flooding cases are discussed and compared with other multi-objective methods. Oil production and polymer injection are two performance indicators of polymer flooding and are usually conflicting objectives. In order to obtain optimal trade-off solutions, this paper proposes a multi-objective global and local surrogate-assisted particle swarm optimization (MO-GLSPSO) method, which consists of alternative steps: global population prescreen and local population search. The global steps use generalized regression neural network (GRNN) to prescreen a better population, and the local steps use radial basis function (RBF) as proxy to search for the next generation. The global steps aim to reduce the chance of generations being trapped in local minima, and the local steps obtain the optimal solutions with a fast convergence rate. The rates (liquid production rate and water injection rate) and polymer injection concentration of wells are tuned to obtain a Pareto-front that maximizes cumulative oil production and minimizes cumulative polymer injection. The MO-GLSPSO method is tested using both synthetic and Brugge benchmark cases. The iterations generally improve the oil production or reduce polymer injection and are stabilized at a Pareto-front of the two objectives. Improved sweep efficiency and polymer utility are also observed in the optimal results. The proposed method is also compared with other two methods, multi-objective genetic algorithm (MOGA) and multi-objective particle swarm optimization (MOPSO), to examine the pros and cons. The results indicate that MO-GLSPSO has a better pareto-front than others.
AbstractList •An novel stochastic method is proposed to conduct multi-objective optimization.•Proxy-based optimization is involved to improve computational efficiency.•Two applications on polymer flooding cases are discussed and compared with other multi-objective methods. Oil production and polymer injection are two performance indicators of polymer flooding and are usually conflicting objectives. In order to obtain optimal trade-off solutions, this paper proposes a multi-objective global and local surrogate-assisted particle swarm optimization (MO-GLSPSO) method, which consists of alternative steps: global population prescreen and local population search. The global steps use generalized regression neural network (GRNN) to prescreen a better population, and the local steps use radial basis function (RBF) as proxy to search for the next generation. The global steps aim to reduce the chance of generations being trapped in local minima, and the local steps obtain the optimal solutions with a fast convergence rate. The rates (liquid production rate and water injection rate) and polymer injection concentration of wells are tuned to obtain a Pareto-front that maximizes cumulative oil production and minimizes cumulative polymer injection. The MO-GLSPSO method is tested using both synthetic and Brugge benchmark cases. The iterations generally improve the oil production or reduce polymer injection and are stabilized at a Pareto-front of the two objectives. Improved sweep efficiency and polymer utility are also observed in the optimal results. The proposed method is also compared with other two methods, multi-objective genetic algorithm (MOGA) and multi-objective particle swarm optimization (MOPSO), to examine the pros and cons. The results indicate that MO-GLSPSO has a better pareto-front than others.
ArticleNumber 127678
Author Zhang, Ruxin
Chen, Hongquan
Author_xml – sequence: 1
  givenname: Ruxin
  surname: Zhang
  fullname: Zhang, Ruxin
  email: ruxinzhang@tamu.edu
– sequence: 2
  givenname: Hongquan
  surname: Chen
  fullname: Chen, Hongquan
  email: chenhongquan@tamu.edu
BookMark eNp9kMtqwzAQRUVJoUnaH-jKP2BXD1uyoZsQ-oKULpquhSyNg4xiBUkJpF9fp-mqi8DAzOKegXtmaDL4ARC6J7ggmPCHvuj24AqKKSsIFVzUV2hKasFyQSo2QVM8pnLKOLlBsxh7jLGoq3KK1u97l2zu2x50sgfINs63ymVqMJnzerw-9yH4jUqQL2K0MYHJ_C7Zrf1WyfohG2fn3XELIeuc98YOm1t03SkX4e5vz9HX89N6-ZqvPl7elotVrinDKW8oNoR1vMWirDqNWYOFaTioqgSosRBKEGpK03bAK04MZWVVMc512zS0FYTNET3_1cHHGKCTu2C3KhwlwfLkRfby5EWevMizlxGq_0Hapt8qKSjrLqOPZxTGUgcLQUZtYdBgbBj1SePtJfwHo4iBRg
CitedBy_id crossref_primary_10_1016_j_geoen_2023_212309
crossref_primary_10_1007_s11947_024_03449_2
crossref_primary_10_1016_j_compgeo_2024_106146
crossref_primary_10_1515_polyeng_2024_0076
crossref_primary_10_1002_cjce_25558
crossref_primary_10_1016_j_geoen_2024_213422
crossref_primary_10_2118_219444_PA
crossref_primary_10_2118_223602_PA
crossref_primary_10_1016_j_swevo_2025_102003
crossref_primary_10_3390_pr11102865
Cites_doi 10.2118/209608-PA
10.2118/187298-MS
10.1109/72.97934
10.1016/j.petrol.2021.109116
10.1109/4235.996017
10.2118/200388-MS
10.1109/ICNN.1995.488968
10.2118/143067-MS
10.1002/ese3.1276
10.1007/978-3-642-15844-5_37
10.1016/j.petrol.2017.03.026
10.1016/j.petrol.2014.11.006
10.1109/4235.797969
10.1007/s00158-014-1125-8
10.1109/TCYB.2018.2809430
10.2523/IPTC-19314-MS
10.1109/TNN.2002.1000134
10.1016/j.petrol.2013.11.006
10.1016/j.petrol.2018.03.062
10.1109/TEVC.2017.2675628
10.1016/j.fuel.2021.122600
10.2118/124815-MS
10.1016/j.jngse.2019.103038
10.2118/182598-PA
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.fuel.2023.127678
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7153
ExternalDocumentID 10_1016_j_fuel_2023_127678
S0016236123002910
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
VH1
WUQ
XPP
ZY4
~HD
ID FETCH-LOGICAL-c230t-920d13f6b0745fc03907d96ea54ee8077a712d4dbfe6561d23455366cb992b713
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000940208000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-2361
IngestDate Tue Nov 18 22:08:51 EST 2025
Sat Nov 29 07:30:32 EST 2025
Fri Feb 23 02:37:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Radial basis function
Generalized regression neural network
Multi-objective optimization method
Particle swarm optimization
Uncertainty analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c230t-920d13f6b0745fc03907d96ea54ee8077a712d4dbfe6561d23455366cb992b713
ParticipantIDs crossref_primary_10_1016_j_fuel_2023_127678
crossref_citationtrail_10_1016_j_fuel_2023_127678
elsevier_sciencedirect_doi_10_1016_j_fuel_2023_127678
PublicationCentury 2000
PublicationDate 2023-06-15
PublicationDateYYYYMMDD 2023-06-15
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-15
  day: 15
PublicationDecade 2020
PublicationTitle Fuel (Guildford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen HQ, Yang CD, Datta-Gupta A, Zhang JY, Chen LQ, Liu L, Chen BX, Cui XF, Shi FS, Bahar A. A hierarchical multiscale framework for history marching and optimal well placement for a HPHT fractured gas reservoir, Tarim Basin, China. IPTC-19314, presented at the International Petroleum Technology Conference, Beijing, China, 26-28 March 2019. 2019.
Christie, Eydinov, Demyanov (b0080) 2013
Onwunalu (b0110) 2010
Pirrone, Battigelli, Ruvo (b0195) 2014
Horn J, Nafpliotis N, 1993. Multiobjective Optimization using the Niched Pareto Genetic Algorithm. Illinois Genetic Algorithms Laboratory.
Specht (b0135) 1991; 2
Castellini, Gullapalli, Hoang (b0060) 2005
Fu, Wen (b0040) 2017
Wang, Ju, Carr, Li, Cheng (b0190) 2014
Sun, Jin, Cheng (b0180) 2017; 21
Lake LW, 1989. Enhanced Oil Recovery.
Hajizadeh, Christie, Demyanov (b0075) 2011
Mohamed L, Christie M, Demyanov V. 2011. History Matching and Uncertainty Quantification: Multiobjective Particle Swarm Optimisation Approach. Presented at the SPE EUROPEC/EAGE Annual Conference and Exhibition, Vienna, Austria, 23–26 May. SPE-143067-MS. https://doi.org/10.2118/143067-MS.
Al-Mudhafar, Rao, Srinivasan, Vo Thanh, Al Lawe (b0160) 2022
Kennedy J, Eberhart RC. 1995. Particle Swarm Optimization. Proc., IEEE International Conference on Neural Networks, Piscataway, New Jersey, 1942–1948.
Izui, Yamada, Nishiwaki (b0020) 2015; 51
Chen HQ, Park JY, Datta-gupta A, et al., 2020. Improving Polymerflood Performance Via Streamline-Based Rate Optimization: Mangala Field, India. Presented at the SPE SPE Improved Oil Recovery Conference. SPE 2003888-MS.
Doren JV, Douma SG, Wassing LBM, Kraaijevanger JFBM, Zwart AHD, 2011. Adjoint-based optimization of polymer flooding. Presented at the SPE Enhanced Oil Recovery Conference. SPE-144024-MS.
Joo, Shiqian, Juwei (b0140) 2002; 13
Mohamed, Christie, Demyanov (b0065) 2010
Zakirov, Aanonsen, Zakirov (b0115) 1996
Al-Mudhafar (b0185) 2016
Hajizadeh, Christie, Demyanov (b0070) 2010
Chen, Sen (b0145) 2022
Al-Mudhafar (b0165) 2019; 72
Ekkawong, Han, Olalotit-Lawal, Datta-Gupta (b0005) 2017; 153
Deb, Pratap, Agarwal (b0035) 2002; 6
Yeten, Castellini, Guyaguler (b0120) 2005
Zubarev DI. Pros and cons of applying a proxy model as a substitute for full reservoir simulations. SPE Annual Technical Conference and Exhibition. New Orleans, LA; 2009. doi:10. 2118/124815-MS.
Wang Y, Yin DQ, Yang SX, Sun GY, 2019. Global and Local Surrogate-Assisted Differential Evolution for Expensive Constrained Optimization Problems with Inequality Constraints. IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 5, MAY 2019.
Olalotiti-Lawal, Datta-Gupta (b0045) 2018; 2018
Sen, Chen, Datta-Gupta (b0210) 2022; 311
Zitzler, Thiele (b0095) 1999; 3
Sen, Chen, Datta-Gupta, Kwon, Mishra (b0200) 2020
Sen, Chen, Datta-Gupta, Kwon, Mishra (b0205) 2021; 207
Horowitz, Afonso, Mendonca (b0125) 2013; 112
Tanaka SS, Kam D, Xie J, Wang ZM, Wen XH, Dehghani K, Chen HQ, Datta-Gupta A, 2017. A Generalized Derivative-Free Rate Allocation Optimization for Water and Gas Flooding Using Streamline-Based Method. Presented at the SPE Annual Technical Conference and Exhibition. SPE-187298-MS.
Loshchilov I, Schoenauer M, Sebag M. 2010. Comparison-Based Optimizers Need Comparison-Based Surrogates. Proceedings of the 11th Inter- national Conference on Parallel Problem Solving from Nature, 11–15 September, Krako ́w, Poland.
Park, Datta-Gupta, King (b0015) 2015; 125
Joo (10.1016/j.fuel.2023.127678_b0140) 2002; 13
Sun (10.1016/j.fuel.2023.127678_b0180) 2017; 21
Sen (10.1016/j.fuel.2023.127678_b0200) 2020
Mohamed (10.1016/j.fuel.2023.127678_b0065) 2010
Specht (10.1016/j.fuel.2023.127678_b0135) 1991; 2
Al-Mudhafar (10.1016/j.fuel.2023.127678_b0185) 2016
Olalotiti-Lawal (10.1016/j.fuel.2023.127678_b0045) 2018; 2018
Christie (10.1016/j.fuel.2023.127678_b0080) 2013
Al-Mudhafar (10.1016/j.fuel.2023.127678_b0165) 2019; 72
Castellini (10.1016/j.fuel.2023.127678_b0060) 2005
Chen (10.1016/j.fuel.2023.127678_b0145) 2022
Izui (10.1016/j.fuel.2023.127678_b0020) 2015; 51
Deb (10.1016/j.fuel.2023.127678_b0035) 2002; 6
10.1016/j.fuel.2023.127678_b0085
10.1016/j.fuel.2023.127678_b0025
Fu (10.1016/j.fuel.2023.127678_b0040) 2017
Zitzler (10.1016/j.fuel.2023.127678_b0095) 1999; 3
Sen (10.1016/j.fuel.2023.127678_b0210) 2022; 311
10.1016/j.fuel.2023.127678_b0100
10.1016/j.fuel.2023.127678_b0105
Yeten (10.1016/j.fuel.2023.127678_b0120) 2005
Wang (10.1016/j.fuel.2023.127678_b0190) 2014
Pirrone (10.1016/j.fuel.2023.127678_b0195) 2014
Hajizadeh (10.1016/j.fuel.2023.127678_b0070) 2010
Ekkawong (10.1016/j.fuel.2023.127678_b0005) 2017; 153
Hajizadeh (10.1016/j.fuel.2023.127678_b0075) 2011
Zakirov (10.1016/j.fuel.2023.127678_b0115) 1996
10.1016/j.fuel.2023.127678_b0090
10.1016/j.fuel.2023.127678_b0150
Horowitz (10.1016/j.fuel.2023.127678_b0125) 2013; 112
10.1016/j.fuel.2023.127678_b0170
10.1016/j.fuel.2023.127678_b0055
10.1016/j.fuel.2023.127678_b0010
10.1016/j.fuel.2023.127678_b0175
Al-Mudhafar (10.1016/j.fuel.2023.127678_b0160) 2022
Park (10.1016/j.fuel.2023.127678_b0015) 2015; 125
10.1016/j.fuel.2023.127678_b0030
Sen (10.1016/j.fuel.2023.127678_b0205) 2021; 207
Onwunalu (10.1016/j.fuel.2023.127678_b0110) 2010
References_xml – volume: 125
  start-page: 48
  year: 2015
  end-page: 66
  ident: b0015
  article-title: Handling conflicting multiple objectives using Pareto-based evolutionary algorithm during history matching of reservoir performance
  publication-title: J Pet Sci Eng
– reference: Wang Y, Yin DQ, Yang SX, Sun GY, 2019. Global and Local Surrogate-Assisted Differential Evolution for Expensive Constrained Optimization Problems with Inequality Constraints. IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 5, MAY 2019.
– volume: 2
  start-page: 568
  year: 1991
  end-page: 576
  ident: b0135
  article-title: A general regression neural network
  publication-title: IEEE Trans Neural Netw
– reference: Chen HQ, Park JY, Datta-gupta A, et al., 2020. Improving Polymerflood Performance Via Streamline-Based Rate Optimization: Mangala Field, India. Presented at the SPE SPE Improved Oil Recovery Conference. SPE 2003888-MS.
– year: 2011
  ident: b0075
  article-title: Towards Multi-objective history matching: faster convergence and uncertainty quantification
  publication-title: In: Proc., SPE Reservoir Simulation Symposium Society of Petroleum Engineers
– reference: Horn J, Nafpliotis N, 1993. Multiobjective Optimization using the Niched Pareto Genetic Algorithm. Illinois Genetic Algorithms Laboratory.
– volume: 3
  start-page: 3
  year: 1999
  ident: b0095
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
  publication-title: IEEE Trans Evol Comput
– year: 2014
  ident: b0190
  article-title: Application of artificial intelligence on black shale Lithofacies prediction in marcellus shale
  publication-title: Appalachian Basin Unconventional Resources Technology Conference
– year: 1996
  ident: b0115
  article-title: Optimizing Reservoir Performance by Automatic Allocation of Well Rates
  publication-title: Paper presented at the ECMOR V—5th European Conference on the Mathematics of Oil Recovery
– year: 2016
  ident: b0185
  article-title: Incorporation of bootstrapping and cross-validation for efficient multivariate facies and petrophysical modeling
  publication-title: Soc Petrol Eng
– volume: 112
  start-page: 206
  year: 2013
  end-page: 219
  ident: b0125
  article-title: Surrogate based optimal waterflooding management
  publication-title: J Pet Sci Eng
– year: 2010
  ident: b0070
  article-title: History matching with differential evolution approach; a look at new search strategies
  publication-title: In: Proc., SPE EUROPEC/EAGE Annual Conference and Exhibition Society of Petroleum Engineers
– year: 2005
  ident: b0120
  article-title: A Comparison Study on Experimental Design and Response Surface Methodologies
  publication-title: Presented at the SPE Reservoir Simulation Symposium
– volume: 51
  start-page: 173
  year: 2015
  end-page: 182
  ident: b0020
  article-title: Multi-objective optimization using an aggregative gradient-based method
  publication-title: Struct Multidiscip Optim
– reference: Kennedy J, Eberhart RC. 1995. Particle Swarm Optimization. Proc., IEEE International Conference on Neural Networks, Piscataway, New Jersey, 1942–1948.
– volume: 207
  year: 2021
  ident: b0205
  article-title: Machine learning based rate optimization under geologic uncertainty
  publication-title: J Pet Sci Eng
– year: 2022
  ident: b0160
  article-title: Rapid evaluation and optimization of carbon dioxide-enhanced oil recovery using experimental design and reduced-physics proxy models
  publication-title: Energy Sci Eng
– volume: 153
  start-page: 47
  year: 2017
  end-page: 58
  ident: b0005
  article-title: Multi-objective design and optimization of polymer flood performance
  publication-title: J Pet Sci Eng
– reference: Lake LW, 1989. Enhanced Oil Recovery.
– volume: 13
  start-page: 697
  year: 2002
  end-page: 710
  ident: b0140
  article-title: Face recognition with radial basis function (RBF) neural networks
  publication-title: IEEE Trans Neural Netw
– volume: 72
  year: 2019
  ident: b0165
  article-title: Polynomial and nonparametric regressions for efficient predictive proxy metamodeling: application through the CO
  publication-title: J Nat Gas Sci Eng
– reference: Doren JV, Douma SG, Wassing LBM, Kraaijevanger JFBM, Zwart AHD, 2011. Adjoint-based optimization of polymer flooding. Presented at the SPE Enhanced Oil Recovery Conference. SPE-144024-MS.
– volume: 2018
  start-page: 759
  year: 2018
  end-page: 777
  ident: b0045
  article-title: A Multi-objective Markov chain Monte Carlo approach for history matching and uncertainty quantification
  publication-title: J Pet Sci Eng
– reference: Zubarev DI. Pros and cons of applying a proxy model as a substitute for full reservoir simulations. SPE Annual Technical Conference and Exhibition. New Orleans, LA; 2009. doi:10. 2118/124815-MS.
– year: 2010
  ident: b0110
  article-title: Optimization of Field Development Using Particle Swarm Optimization and New Well Pattern Descriptions
– volume: 21
  start-page: 644
  year: 2017
  end-page: 660
  ident: b0180
  article-title: Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems
  publication-title: IEEE Trans Evol Comput
– year: 2014
  ident: b0195
  article-title: Lithofacies classification of thin layered turbidite reservoirs through the integration of core data and dielectric dispersion log measurements
  publication-title: Soc Petrol Eng
– year: 2017
  ident: b0040
  article-title: Model-based multi-objective optimization methods for efficient management of subsurface flow
  publication-title: SPE J
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0035
  article-title: A fast and elitist Multi-objective genetic algorithm: Nsga-Ii
  publication-title: IEEE Trans Evol Comput
– volume: 311
  year: 2022
  ident: b0210
  article-title: Inter-well connectivity detection in CO
  publication-title: Fuel
– reference: Loshchilov I, Schoenauer M, Sebag M. 2010. Comparison-Based Optimizers Need Comparison-Based Surrogates. Proceedings of the 11th Inter- national Conference on Parallel Problem Solving from Nature, 11–15 September, Krako ́w, Poland.
– year: 2005
  ident: b0060
  article-title: Quantifying uncertainty in production forecast for fields with significant history: a West African case study
  publication-title: In: Proc., International Petroleum Technology Conference International Petroleum Technology Conference
– year: 2022
  ident: b0145
  article-title: A flow feature clustering-assisted uncertainty analysis workflow for optimal well rates in waterflood projects
  publication-title: SPE J
– reference: Chen HQ, Yang CD, Datta-Gupta A, Zhang JY, Chen LQ, Liu L, Chen BX, Cui XF, Shi FS, Bahar A. A hierarchical multiscale framework for history marching and optimal well placement for a HPHT fractured gas reservoir, Tarim Basin, China. IPTC-19314, presented at the International Petroleum Technology Conference, Beijing, China, 26-28 March 2019. 2019.
– year: 2020
  ident: b0200
  article-title: October). Data-Driven Rate Optimization Under Geologic Uncertainty
  publication-title: In SPE Annual Technical Conference and Exhibition. OnePetro
– reference: Tanaka SS, Kam D, Xie J, Wang ZM, Wen XH, Dehghani K, Chen HQ, Datta-Gupta A, 2017. A Generalized Derivative-Free Rate Allocation Optimization for Water and Gas Flooding Using Streamline-Based Method. Presented at the SPE Annual Technical Conference and Exhibition. SPE-187298-MS.
– year: 2013
  ident: b0080
  article-title: Use of multi-objective algorithms in history matching of a real field
  publication-title: In: Proc., SPE Reservoir Simulation Symposium Society of Petroleum Engineers
– reference: Mohamed L, Christie M, Demyanov V. 2011. History Matching and Uncertainty Quantification: Multiobjective Particle Swarm Optimisation Approach. Presented at the SPE EUROPEC/EAGE Annual Conference and Exhibition, Vienna, Austria, 23–26 May. SPE-143067-MS. https://doi.org/10.2118/143067-MS.
– year: 2010
  ident: b0065
  article-title: Application of Particle Swarms for history matching in the Brugge reservoir
  publication-title: In: Proc., SPE Annual Technical Conference and Exhibition Society of Petroleum Engineers
– year: 2005
  ident: 10.1016/j.fuel.2023.127678_b0060
  article-title: Quantifying uncertainty in production forecast for fields with significant history: a West African case study
– year: 2022
  ident: 10.1016/j.fuel.2023.127678_b0145
  article-title: A flow feature clustering-assisted uncertainty analysis workflow for optimal well rates in waterflood projects
  publication-title: SPE J
  doi: 10.2118/209608-PA
– ident: 10.1016/j.fuel.2023.127678_b0030
  doi: 10.2118/187298-MS
– ident: 10.1016/j.fuel.2023.127678_b0090
– year: 2014
  ident: 10.1016/j.fuel.2023.127678_b0195
  article-title: Lithofacies classification of thin layered turbidite reservoirs through the integration of core data and dielectric dispersion log measurements
  publication-title: Soc Petrol Eng
– volume: 2
  start-page: 568
  issue: 6
  year: 1991
  ident: 10.1016/j.fuel.2023.127678_b0135
  article-title: A general regression neural network
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.97934
– volume: 207
  year: 2021
  ident: 10.1016/j.fuel.2023.127678_b0205
  article-title: Machine learning based rate optimization under geologic uncertainty
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2021.109116
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.fuel.2023.127678_b0035
  article-title: A fast and elitist Multi-objective genetic algorithm: Nsga-Ii
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– ident: 10.1016/j.fuel.2023.127678_b0055
  doi: 10.2118/200388-MS
– year: 2010
  ident: 10.1016/j.fuel.2023.127678_b0065
  article-title: Application of Particle Swarms for history matching in the Brugge reservoir
– ident: 10.1016/j.fuel.2023.127678_b0100
  doi: 10.1109/ICNN.1995.488968
– ident: 10.1016/j.fuel.2023.127678_b0105
  doi: 10.2118/143067-MS
– year: 2022
  ident: 10.1016/j.fuel.2023.127678_b0160
  article-title: Rapid evaluation and optimization of carbon dioxide-enhanced oil recovery using experimental design and reduced-physics proxy models
  publication-title: Energy Sci Eng
  doi: 10.1002/ese3.1276
– ident: 10.1016/j.fuel.2023.127678_b0175
  doi: 10.1007/978-3-642-15844-5_37
– volume: 153
  start-page: 47
  year: 2017
  ident: 10.1016/j.fuel.2023.127678_b0005
  article-title: Multi-objective design and optimization of polymer flood performance
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2017.03.026
– volume: 125
  start-page: 48
  year: 2015
  ident: 10.1016/j.fuel.2023.127678_b0015
  article-title: Handling conflicting multiple objectives using Pareto-based evolutionary algorithm during history matching of reservoir performance
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2014.11.006
– year: 2013
  ident: 10.1016/j.fuel.2023.127678_b0080
  article-title: Use of multi-objective algorithms in history matching of a real field
– year: 2005
  ident: 10.1016/j.fuel.2023.127678_b0120
  article-title: A Comparison Study on Experimental Design and Response Surface Methodologies
– ident: 10.1016/j.fuel.2023.127678_b0025
– volume: 3
  start-page: 3
  year: 1999
  ident: 10.1016/j.fuel.2023.127678_b0095
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.797969
– year: 2020
  ident: 10.1016/j.fuel.2023.127678_b0200
  article-title: October). Data-Driven Rate Optimization Under Geologic Uncertainty
– volume: 51
  start-page: 173
  issue: 1
  year: 2015
  ident: 10.1016/j.fuel.2023.127678_b0020
  article-title: Multi-objective optimization using an aggregative gradient-based method
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-014-1125-8
– ident: 10.1016/j.fuel.2023.127678_b0085
  doi: 10.1109/TCYB.2018.2809430
– year: 2014
  ident: 10.1016/j.fuel.2023.127678_b0190
  article-title: Application of artificial intelligence on black shale Lithofacies prediction in marcellus shale
  publication-title: Appalachian Basin Unconventional Resources Technology Conference
– ident: 10.1016/j.fuel.2023.127678_b0170
  doi: 10.2523/IPTC-19314-MS
– volume: 13
  start-page: 697
  issue: 3
  year: 2002
  ident: 10.1016/j.fuel.2023.127678_b0140
  article-title: Face recognition with radial basis function (RBF) neural networks
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2002.1000134
– volume: 112
  start-page: 206
  issue: 3
  year: 2013
  ident: 10.1016/j.fuel.2023.127678_b0125
  article-title: Surrogate based optimal waterflooding management
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2013.11.006
– volume: 2018
  start-page: 759
  issue: 166
  year: 2018
  ident: 10.1016/j.fuel.2023.127678_b0045
  article-title: A Multi-objective Markov chain Monte Carlo approach for history matching and uncertainty quantification
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2018.03.062
– year: 2010
  ident: 10.1016/j.fuel.2023.127678_b0070
  article-title: History matching with differential evolution approach; a look at new search strategies
– volume: 21
  start-page: 644
  issue: 4
  year: 2017
  ident: 10.1016/j.fuel.2023.127678_b0180
  article-title: Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2017.2675628
– volume: 311
  year: 2022
  ident: 10.1016/j.fuel.2023.127678_b0210
  article-title: Inter-well connectivity detection in CO2 WAG projects using statistical recurrent unit models
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122600
– ident: 10.1016/j.fuel.2023.127678_b0150
  doi: 10.2118/124815-MS
– volume: 72
  year: 2019
  ident: 10.1016/j.fuel.2023.127678_b0165
  article-title: Polynomial and nonparametric regressions for efficient predictive proxy metamodeling: application through the CO2-EOR in shale oil reservoirs
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2019.103038
– year: 2010
  ident: 10.1016/j.fuel.2023.127678_b0110
– ident: 10.1016/j.fuel.2023.127678_b0010
– year: 2011
  ident: 10.1016/j.fuel.2023.127678_b0075
  article-title: Towards Multi-objective history matching: faster convergence and uncertainty quantification
– year: 2016
  ident: 10.1016/j.fuel.2023.127678_b0185
  article-title: Incorporation of bootstrapping and cross-validation for efficient multivariate facies and petrophysical modeling
  publication-title: Soc Petrol Eng
– year: 1996
  ident: 10.1016/j.fuel.2023.127678_b0115
  article-title: Optimizing Reservoir Performance by Automatic Allocation of Well Rates
– year: 2017
  ident: 10.1016/j.fuel.2023.127678_b0040
  article-title: Model-based multi-objective optimization methods for efficient management of subsurface flow
  publication-title: SPE J
  doi: 10.2118/182598-PA
SSID ssj0007854
Score 2.467464
Snippet •An novel stochastic method is proposed to conduct multi-objective optimization.•Proxy-based optimization is involved to improve computational efficiency.•Two...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 127678
SubjectTerms Generalized regression neural network
Multi-objective optimization method
Particle swarm optimization
Radial basis function
Uncertainty analysis
Title Multi-objective global and local Surrogate-Assisted optimization on polymer flooding
URI https://dx.doi.org/10.1016/j.fuel.2023.127678
Volume 342
WOSCitedRecordID wos000940208000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBej3cP2MPbJui_0sLegYEm2ZT2W0tHtoYwtg7wZ25JGQ2qnbjKy_353luSGdJRtMDDGmMhy7necTue73xHy3sla5MqlLNdOwwYlN6yQVcIKUzSprhvHuRuaTajz82I-159DF8froZ2Aattiu9Wr_wo13AOwsXT2L-AeHwo34BpAhzPADuc_An4oqWVdvfCmLFJ-YIB8WLjAVvR9h9EzBtggymbSgeG4DBWZ-Plg1S1_Xtp-4jCtPS5usZnnxi6H4AI21Pap8WMwYQw_f9lsL0a1OwkVIGdd-_1qE9QxRBoEdn1gvtbSh79iCcxNvtFgUnnOkMHFLyjeihZKMsU9C3A0s9KzaN0y2T56sJg6ePspTjvlQuW-r88eFfZXnAzngn1TIjRW1h0KlWkwyIfHH0_nn8Y1WBWZ598OLxfKpXxm3_5Mv3dJdtyM2WPyKOwP6LHH9Qm5Z9un5OEOa-QzMttDmHqEKSBMB4TpbYTpLsIUjoAwjQg_J98-nM5OzlhojsEa-PdrpkViuHR5DT5g5ppE6kQZndsqS60tEqUqxYVJTe0suOzcCJlmmczzptZa1IrLF-Sg7Vr7klCDFEWVsAr3AhlcYnkxTyulXAICskeER_mUTWCOxwYmyzKmCC5KlGmJMi29TI_IZByz8rwpd_46i2Ivg-fnPboStOSOca_-cdxr8uBGwd-Qg3W_sW_J_ebH-uK6fxeU6RfO23wc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+global+and+local+Surrogate-Assisted+optimization+on+polymer+flooding&rft.jtitle=Fuel+%28Guildford%29&rft.au=Zhang%2C+Ruxin&rft.au=Chen%2C+Hongquan&rft.date=2023-06-15&rft.pub=Elsevier+Ltd&rft.issn=0016-2361&rft.eissn=1873-7153&rft.volume=342&rft_id=info:doi/10.1016%2Fj.fuel.2023.127678&rft.externalDocID=S0016236123002910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon