Remora whale optimization-based hybrid deep learning for network intrusion detection using CNN features

•Remora Whale Optimization Based-Hybrid deep model is used for detecting intrusions.•RWO is designed by the combination of ROA and WOA.•In the proposed approach features are selected by holoentropy process.•The developed approach achieves superior performance with testing accuracy of 0.93. Security...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 210; s. 118476
Hlavní autoři: Pingale, Subhash V., Sutar, Sanjay R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 30.12.2022
Témata:
ISSN:0957-4174, 1873-6793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Remora Whale Optimization Based-Hybrid deep model is used for detecting intrusions.•RWO is designed by the combination of ROA and WOA.•In the proposed approach features are selected by holoentropy process.•The developed approach achieves superior performance with testing accuracy of 0.93. Security remains as a key role in this internet world owing to the fast expansion of users on the internet. Numerous existing intrusion detection approaches were introduced by numerous researchers to recognize and identify intruders. Meanwhile, the existing systems failed to achieve satisfactory detection accuracy. Hence, this paper develops a robust intrusion detection model, named Remora Whale Optimization (RWO)-based Hybrid deep model for detecting intrusions. Here, the input data is pre-processed, and thereafter data transformation is done. With the transformed data, effective CNN features are extracted and feature conversion is performed to convert the features into vector form. Moreover, RV-coefficient is accomplished for performing feature selection process and finally, network intrusions are effectively detected using Hybrid deep model where the Deep Maxout Network and Deep Auto Encoder are used. On the other hand, the training procedure of the Hybrid deep model is carried out using the designed optimization algorithm, named RWO, which is the hybridization of the Remora Optimization Algorithm (ROA) and Whale Optimization Algorithm (WOA). Furthermore, the devised technique achieved superior performance using the evaluation metrics, such as testing accuracy, precision, recall, and F1-score with the higher values of 0.938, 0.920, 0.932, and 0.926, respectively.
AbstractList •Remora Whale Optimization Based-Hybrid deep model is used for detecting intrusions.•RWO is designed by the combination of ROA and WOA.•In the proposed approach features are selected by holoentropy process.•The developed approach achieves superior performance with testing accuracy of 0.93. Security remains as a key role in this internet world owing to the fast expansion of users on the internet. Numerous existing intrusion detection approaches were introduced by numerous researchers to recognize and identify intruders. Meanwhile, the existing systems failed to achieve satisfactory detection accuracy. Hence, this paper develops a robust intrusion detection model, named Remora Whale Optimization (RWO)-based Hybrid deep model for detecting intrusions. Here, the input data is pre-processed, and thereafter data transformation is done. With the transformed data, effective CNN features are extracted and feature conversion is performed to convert the features into vector form. Moreover, RV-coefficient is accomplished for performing feature selection process and finally, network intrusions are effectively detected using Hybrid deep model where the Deep Maxout Network and Deep Auto Encoder are used. On the other hand, the training procedure of the Hybrid deep model is carried out using the designed optimization algorithm, named RWO, which is the hybridization of the Remora Optimization Algorithm (ROA) and Whale Optimization Algorithm (WOA). Furthermore, the devised technique achieved superior performance using the evaluation metrics, such as testing accuracy, precision, recall, and F1-score with the higher values of 0.938, 0.920, 0.932, and 0.926, respectively.
ArticleNumber 118476
Author Pingale, Subhash V.
Sutar, Sanjay R.
Author_xml – sequence: 1
  givenname: Subhash V.
  surname: Pingale
  fullname: Pingale, Subhash V.
  email: Subhash.pingale@sknscoe.ac.in
– sequence: 2
  givenname: Sanjay R.
  surname: Sutar
  fullname: Sutar, Sanjay R.
  email: srsutar@dbatu.ac.in
BookMark eNp9kM1KAzEUhYNUsK2-gKu8wIzJZDrJgBsp_kGpILoOSeamTZ1mShIt9emdsa5cdHW5cL4D55ugke88IHRNSU4JrW42OcS9ygtSFDmlouTVGRpTwVlW8ZqN0JjUM56VlJcXaBLjhhDKCeFjtHqFbRcU3q9VC7jbJbd13yq5zmdaRWjw-qCDa3ADsMMtqOCdX2HbBewh7bvwgZ1P4TP2QJ9JYAYU93-fmi-X2IJKnwHiJTq3qo1w9Xen6P3h_m3-lC1eHp_nd4vMFIykTJQCuCF1pa3SjGiuZpWtuWJgtDWiYaKfY8ualLwxdqaFMroWttGaKlJrxqZIHHtN6GIMYKVx6XdPCsq1khI5CJMbOQiTgzB5FNajxT90F9xWhcNp6PYIQT_qy0GQ0TjwBhoXehmy6dwp_Afc6IpE
CitedBy_id crossref_primary_10_1007_s10489_024_05872_6
crossref_primary_10_2478_jee_2025_0004
crossref_primary_10_1016_j_asoc_2025_113590
crossref_primary_10_1016_j_neunet_2024_107064
crossref_primary_10_1007_s10586_024_04768_x
crossref_primary_10_1016_j_comcom_2023_02_003
crossref_primary_10_1093_comjnl_bxad105
crossref_primary_10_1016_j_cose_2023_103502
crossref_primary_10_1007_s12083_024_01867_9
crossref_primary_10_1371_journal_pone_0281568
crossref_primary_10_3390_s23218793
crossref_primary_10_3390_sym16091151
crossref_primary_10_1016_j_heliyon_2024_e32087
crossref_primary_10_1016_j_neucom_2025_130754
crossref_primary_10_54392_irjmt25411
crossref_primary_10_1007_s10489_024_05673_x
crossref_primary_10_3390_sym16010042
crossref_primary_10_1109_ACCESS_2024_3353488
crossref_primary_10_4018_IJISP_387079
crossref_primary_10_1038_s41598_025_04638_5
crossref_primary_10_1186_s42400_023_00161_0
crossref_primary_10_1016_j_eij_2025_100669
crossref_primary_10_1007_s12652_023_04571_3
crossref_primary_10_1016_j_compeleceng_2023_108831
crossref_primary_10_1016_j_swevo_2024_101702
crossref_primary_10_1016_j_eswa_2023_121588
crossref_primary_10_1007_s12083_023_01569_8
Cites_doi 10.1007/s00500-020-05017-0
10.1109/ACCESS.2020.2972627
10.1109/ACCESS.2020.3048198
10.1016/j.jisa.2021.102804
10.1016/j.jnca.2017.02.009
10.1007/s10207-020-00508-5
10.1109/ACCESS.2018.2868993
10.1109/COMST.2015.2494502
10.1016/j.eswa.2021.115524
10.1016/j.eswa.2021.115665
10.1016/j.eswa.2005.05.002
10.1155/2018/3029638
10.1016/j.compeleceng.2021.107044
10.1016/j.advengsoft.2016.01.008
10.1016/j.cose.2020.101752
10.3390/s21020626
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2022.118476
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_118476
S0957417422015640
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c230t-848e7c096bfab30b7a56f97a3ecbfc8d38793f49047dcf5b8acb98fdbb1a09b33
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000880668000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Nov 18 22:26:55 EST 2025
Sat Nov 29 07:09:19 EST 2025
Fri Feb 23 02:38:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Remora optimization algorithm
Whale optimization Algorithm
Security
Intrusion detection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c230t-848e7c096bfab30b7a56f97a3ecbfc8d38793f49047dcf5b8acb98fdbb1a09b33
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2022_118476
crossref_primary_10_1016_j_eswa_2022_118476
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_118476
PublicationCentury 2000
PublicationDate 2022-12-30
PublicationDateYYYYMMDD 2022-12-30
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-30
  day: 30
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Buczak, Guven (b0065) 2015; 18
Yao, Wang, Liu, Chen, Sheng (b0085) 2021; 21
Ganapathy, Kulothungan, Muthurajkumar, Vijayalakshmi, Yogesh, Kannan (b0060) 2013; 1
accessed on December 2021.
Jia, Peng, Lang (b0095) 2021; 185
Farahnakian, Heikkonen (b0115) 2018
Su, Sun, Zhu, Wang, Li (b0025) 2020; 8
Thakur, Chakraborty, De, Kumar, Sarkar (b0010) 2021; 91
Riyaz, Ganapathy (b0035) 2020; 24
Liu, Wang, Lin, Liu (b0040) 2020; 9
Mirjalili, Lewis (b0100) 2016; 95
Moustafa and Slay, 2015.UNSWNB15 (2015). dataset taken from
Mighan, Kahani (b0030) 2021; 20
Zarpelao, Miani, Kawakani, de Alvarenga (b0050) 2017; 84
Tavallaee., UNB., NSL KDD dataset. dataset taken from, “https://www.unb.ca/cic/datasets/nsl.html”, accessed on December 2021.
Nguyen, Nguyen, Choi, Kim (b0075) 2018
Staudemeyer (b0080) 2015; 56, 1
Wu, Chen, Li (b0070) 2018; 6
Kasongo, Sun (b0015) 2020; 92
Sun, Su, Wang (b0090) 2018; 278
Diaz Lopez, Blanco Uribe, Santiago Cely, Vega Torres, Moreno Guataquira, Moron Castro, Gómez Mármol (b0045) 2018
CICIDS dataset (2018). dataset taken from
Imrana, Xiang, Ali, Abdul-Rauf (b0020) 2021; 185
Kunang, Nurmaini, Stiawan, Suprapto (b0005) 2021; 58
Depren, Topallar, Anarim, Ciliz (b0055) 2005; 29
Farahnakian (10.1016/j.eswa.2022.118476_b0115) 2018
Ganapathy (10.1016/j.eswa.2022.118476_b0060) 2013; 1
Depren (10.1016/j.eswa.2022.118476_b0055) 2005; 29
Jia (10.1016/j.eswa.2022.118476_b0095) 2021; 185
Su (10.1016/j.eswa.2022.118476_b0025) 2020; 8
Wu (10.1016/j.eswa.2022.118476_b0070) 2018; 6
Yao (10.1016/j.eswa.2022.118476_b0085) 2021; 21
Thakur (10.1016/j.eswa.2022.118476_b0010) 2021; 91
Riyaz (10.1016/j.eswa.2022.118476_b0035) 2020; 24
Buczak (10.1016/j.eswa.2022.118476_b0065) 2015; 18
Mirjalili (10.1016/j.eswa.2022.118476_b0100) 2016; 95
Diaz Lopez (10.1016/j.eswa.2022.118476_b0045) 2018
10.1016/j.eswa.2022.118476_b0105
Zarpelao (10.1016/j.eswa.2022.118476_b0050) 2017; 84
10.1016/j.eswa.2022.118476_b0110
Staudemeyer (10.1016/j.eswa.2022.118476_b0080) 2015; 56, 1
Kasongo (10.1016/j.eswa.2022.118476_b0015) 2020; 92
Liu (10.1016/j.eswa.2022.118476_b0040) 2020; 9
Mighan (10.1016/j.eswa.2022.118476_b0030) 2021; 20
Imrana (10.1016/j.eswa.2022.118476_b0020) 2021; 185
Nguyen (10.1016/j.eswa.2022.118476_b0075) 2018
10.1016/j.eswa.2022.118476_b0120
Sun (10.1016/j.eswa.2022.118476_b0090) 2018; 278
Kunang (10.1016/j.eswa.2022.118476_b0005) 2021; 58
References_xml – volume: 21
  start-page: 626
  year: 2021
  ident: b0085
  article-title: Intrusion detection system in the advanced metering infrastructure: A cross-layer feature-fusion CNN-LSTM-based approach
  publication-title: Sensors
– volume: 185
  year: 2021
  ident: b0095
  article-title: Remora optimization algorithm
  publication-title: Expert Systems with Applications
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0100
  article-title: The whale optimization algorithm
  publication-title: Advances in engineering software
– volume: 8
  start-page: 29575
  year: 2020
  end-page: 29585
  ident: b0025
  article-title: BAT: Deep learning methods on network intrusion detection using NSL-KDD dataset
  publication-title: IEEE Access
– volume: 20
  start-page: 387
  year: 2021
  end-page: 403
  ident: b0030
  article-title: A novel scalable intrusion detection system based on deep learning
  publication-title: International Journal of Information Security
– volume: 18
  start-page: 1153
  year: 2015
  end-page: 1176
  ident: b0065
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Communications surveys & tutorials
– reference: CICIDS dataset (2018). dataset taken from “
– reference: .” accessed on December 2021.
– volume: 1
  start-page: 1
  year: 2013
  end-page: 16
  ident: b0060
  article-title: Intelligent feature selection and classification techniques for intrusion detection in networks: A survey
  publication-title: EURASIP Journal on Wireless Communications and Networking
– start-page: 34
  year: 2018
  end-page: 38
  ident: b0075
  article-title: Design and implementation of intrusion detection system using convolutional neural network for DoS detection
  publication-title: In Proceedings of the 2nd international conference on machine learning and soft computing
– reference: Tavallaee., UNB., NSL KDD dataset. dataset taken from, “https://www.unb.ca/cic/datasets/nsl.html”, accessed on December 2021.
– volume: 6
  start-page: 50850
  year: 2018
  end-page: 50859
  ident: b0070
  article-title: A novel intrusion detection model for a massive network using convolutional neural networks
  publication-title: IEEE Access
– volume: 91
  year: 2021
  ident: b0010
  article-title: Intrusion detection in cyber physical systems using a generic and domain specific deep autoencoder model
  publication-title: Computers & Electrical Engineering
– volume: 58
  year: 2021
  ident: b0005
  article-title: Attack classification of an intrusion detection system using deep learning and hyperparameter optimization
  publication-title: Journal of Information Security and Applications
– year: 2018
  ident: b0045
  article-title: Shielding IoT against cyber-attacks: An event-based approach using SIEM
  publication-title: Wireless Communications and Mobile Computing
– volume: 29
  start-page: 713
  year: 2005
  end-page: 722
  ident: b0055
  article-title: An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks
  publication-title: Expert systems with Applications
– volume: 84
  start-page: 25
  year: 2017
  end-page: 37
  ident: b0050
  article-title: A survey of intrusion detection in Internet of Things
  publication-title: Journal of Network and Computer Applications
– volume: 24
  start-page: 17265
  year: 2020
  end-page: 17278
  ident: b0035
  article-title: A deep learning approach for effective intrusion detection in wireless networks using CNN
  publication-title: Soft Computing
– volume: 185
  year: 2021
  ident: b0020
  article-title: A bidirectional LSTM deep learning approach for intrusion detection
  publication-title: Expert Systems with Applications
– start-page: 178
  year: 2018
  end-page: 183
  ident: b0115
  article-title: A deep auto-encoder based approach for intrusion detection system
  publication-title: In proceedings of 2018 20th International Conference on Advanced Communication Technology (ICACT)
– reference: Moustafa and Slay, 2015.UNSWNB15 (2015). dataset taken from
– volume: 9
  start-page: 7550
  year: 2020
  end-page: 7563
  ident: b0040
  article-title: Intrusion detection of imbalanced network traffic based on machine learning and deep learning
  publication-title: IEEE Access
– reference: accessed on December 2021.
– volume: 56, 1
  start-page: 136
  year: 2015
  end-page: 154
  ident: b0080
  article-title: Applying long short-term memory recurrent neural networks to intrusion detection
  publication-title: South African Computer Journal
– volume: 92
  year: 2020
  ident: b0015
  article-title: A deep learning method with wrapper based feature extraction for wireless intrusion detection system
  publication-title: Computers & Security
– volume: 278
  start-page: 34
  year: 2018
  end-page: 40
  ident: b0090
  article-title: Improving deep neural networks with multi-layer maxout networks and a novel initialization method
  publication-title: Neuro Computing
– start-page: 178
  year: 2018
  ident: 10.1016/j.eswa.2022.118476_b0115
  article-title: A deep auto-encoder based approach for intrusion detection system
– ident: 10.1016/j.eswa.2022.118476_b0120
– volume: 24
  start-page: 17265
  year: 2020
  ident: 10.1016/j.eswa.2022.118476_b0035
  article-title: A deep learning approach for effective intrusion detection in wireless networks using CNN
  publication-title: Soft Computing
  doi: 10.1007/s00500-020-05017-0
– volume: 8
  start-page: 29575
  year: 2020
  ident: 10.1016/j.eswa.2022.118476_b0025
  article-title: BAT: Deep learning methods on network intrusion detection using NSL-KDD dataset
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972627
– volume: 9
  start-page: 7550
  year: 2020
  ident: 10.1016/j.eswa.2022.118476_b0040
  article-title: Intrusion detection of imbalanced network traffic based on machine learning and deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3048198
– volume: 58
  year: 2021
  ident: 10.1016/j.eswa.2022.118476_b0005
  article-title: Attack classification of an intrusion detection system using deep learning and hyperparameter optimization
  publication-title: Journal of Information Security and Applications
  doi: 10.1016/j.jisa.2021.102804
– start-page: 34
  year: 2018
  ident: 10.1016/j.eswa.2022.118476_b0075
  article-title: Design and implementation of intrusion detection system using convolutional neural network for DoS detection
– volume: 84
  start-page: 25
  year: 2017
  ident: 10.1016/j.eswa.2022.118476_b0050
  article-title: A survey of intrusion detection in Internet of Things
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2017.02.009
– volume: 20
  start-page: 387
  issue: 3
  year: 2021
  ident: 10.1016/j.eswa.2022.118476_b0030
  article-title: A novel scalable intrusion detection system based on deep learning
  publication-title: International Journal of Information Security
  doi: 10.1007/s10207-020-00508-5
– volume: 1
  start-page: 1
  year: 2013
  ident: 10.1016/j.eswa.2022.118476_b0060
  article-title: Intelligent feature selection and classification techniques for intrusion detection in networks: A survey
  publication-title: EURASIP Journal on Wireless Communications and Networking
– volume: 278
  start-page: 34
  year: 2018
  ident: 10.1016/j.eswa.2022.118476_b0090
  article-title: Improving deep neural networks with multi-layer maxout networks and a novel initialization method
  publication-title: Neuro Computing
– volume: 6
  start-page: 50850
  year: 2018
  ident: 10.1016/j.eswa.2022.118476_b0070
  article-title: A novel intrusion detection model for a massive network using convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2868993
– volume: 18
  start-page: 1153
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2022.118476_b0065
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Communications surveys & tutorials
  doi: 10.1109/COMST.2015.2494502
– volume: 56, 1
  start-page: 136
  year: 2015
  ident: 10.1016/j.eswa.2022.118476_b0080
  article-title: Applying long short-term memory recurrent neural networks to intrusion detection
  publication-title: South African Computer Journal
– ident: 10.1016/j.eswa.2022.118476_b0110
– volume: 185
  year: 2021
  ident: 10.1016/j.eswa.2022.118476_b0020
  article-title: A bidirectional LSTM deep learning approach for intrusion detection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115524
– volume: 185
  year: 2021
  ident: 10.1016/j.eswa.2022.118476_b0095
  article-title: Remora optimization algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115665
– volume: 29
  start-page: 713
  issue: 4
  year: 2005
  ident: 10.1016/j.eswa.2022.118476_b0055
  article-title: An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks
  publication-title: Expert systems with Applications
  doi: 10.1016/j.eswa.2005.05.002
– year: 2018
  ident: 10.1016/j.eswa.2022.118476_b0045
  article-title: Shielding IoT against cyber-attacks: An event-based approach using SIEM
  publication-title: Wireless Communications and Mobile Computing
  doi: 10.1155/2018/3029638
– ident: 10.1016/j.eswa.2022.118476_b0105
– volume: 91
  year: 2021
  ident: 10.1016/j.eswa.2022.118476_b0010
  article-title: Intrusion detection in cyber physical systems using a generic and domain specific deep autoencoder model
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2021.107044
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.eswa.2022.118476_b0100
  article-title: The whale optimization algorithm
  publication-title: Advances in engineering software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 92
  year: 2020
  ident: 10.1016/j.eswa.2022.118476_b0015
  article-title: A deep learning method with wrapper based feature extraction for wireless intrusion detection system
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2020.101752
– volume: 21
  start-page: 626
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2022.118476_b0085
  article-title: Intrusion detection system in the advanced metering infrastructure: A cross-layer feature-fusion CNN-LSTM-based approach
  publication-title: Sensors
  doi: 10.3390/s21020626
SSID ssj0017007
Score 2.523788
Snippet •Remora Whale Optimization Based-Hybrid deep model is used for detecting intrusions.•RWO is designed by the combination of ROA and WOA.•In the proposed...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 118476
SubjectTerms Deep learning
Intrusion detection
Remora optimization algorithm
Security
Whale optimization Algorithm
Title Remora whale optimization-based hybrid deep learning for network intrusion detection using CNN features
URI https://dx.doi.org/10.1016/j.eswa.2022.118476
Volume 210
WOSCitedRecordID wos000880668000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWbQ9coFAQBVr50FvkVd62jxUqajmsEG3R3iLbsVlWS1h10wf_nnFsZ7cPqvbAJYoix4k8n8b2-Jv5ENoXRQ3TVlwQmN00yRWlRJaKEypjUyepqoURndgEHY_ZZMK_DgYm5MJczmnTsOtrvvivpoZnYGybOvsEc_edwgO4B6PDFcwO10cZ_pvlzoroaiosbxA8wi-faknsjFVH0z82SSuqtV4EzQjHpWwcI9xWkDi_sEE0aNNqJyV-4fgB43FkdFcKdHkjpG_rJbe-KnTIl1s7Ge_9r9Xfnns2kJyK5TT6PlodS7WO7H0impmArcFoPSKRduIo_nAlhBYpyROnvhO8bOrZq85PwrYmd7ovd1y4iybMRnp5ZetCpelo1fhmvexb81jPLgzEtVll-6hsH5Xr4xnaSGnB2RBtHBwfTr705000don14c99epVjAt7-k_uXMGvLktMt9MLvJ_CBw8ErNNDNa_QyaHVg77q30Q8HC9zBAt-FBXawwBYWOMACAyywhwXuYYF7WOAOFhhggQMs3qCzz4enn46IF9kgCnafLWE501TBRlYaIbNYUlGUhlORaSWNYnXGwIObnMc5rZUpJBNKcmZqKRMRc5llb9Gw-d3odwgbo5NSc2HKROdaCVkWCTQomB02zrIdlIRxq5SvQG-FUObVvy22g6L-nYWrv_Jg6yKYo_IrSLcyrABdD7z3_klf-YCer2D_EQ1h9PUu2lSX7c_l-Z6H1l9hJpdf
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remora+whale+optimization-based+hybrid+deep+learning+for+network+intrusion+detection+using+CNN+features&rft.jtitle=Expert+systems+with+applications&rft.au=Pingale%2C+Subhash+V.&rft.au=Sutar%2C+Sanjay+R.&rft.date=2022-12-30&rft.issn=0957-4174&rft.volume=210&rft.spage=118476&rft_id=info:doi/10.1016%2Fj.eswa.2022.118476&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_118476
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon