Enhanced Financial Fraud Detection via SISAE‐METADES: A Supervised Deep Representation and Dynamic Ensemble Approach
Detecting financial reporting fraud is vital for preserving market integrity and protecting investors from substantial losses. Yet, the challenges of high dimensionality and noisy financial data often undermine the effectiveness of existing financial fraud detection systems. To address these issues,...
Uložené v:
| Vydané v: | International journal of intelligent systems Ročník 2025; číslo 1 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
01.01.2025
|
| ISSN: | 0884-8173, 1098-111X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Detecting financial reporting fraud is vital for preserving market integrity and protecting investors from substantial losses. Yet, the challenges of high dimensionality and noisy financial data often undermine the effectiveness of existing financial fraud detection systems. To address these issues, this study proposes SISAE‐METADES, a novel framework that integrates a supervised input‐enhanced stacked autoencoder (SISAE) with a meta‐learning–based dynamic ensemble selection (METADES) strategy. Unlike conventional stacked autoencoders, SISAE concatenates the original input at each encoding stage and incorporates label supervision, thereby learning task‐relevant and class‐discriminative representations. These enriched deep features improve both the diversity and competence of base classifiers and enable METADES to achieve more reliable local competence estimation. We validate the proposed framework using financial statement data from Chinese A‐share listed companies (2005–2023), covering 71 indicators. Experimental results show that SISAE‐METADES significantly outperforms standalone SISAE, traditional METADES, and several state‐of‐the‐art baselines. In particular, it achieves substantial improvements in accuracy, recall, and F1‐score, underscoring the robustness and effectiveness of combining supervised deep representation learning with dynamic ensemble selection for financial fraud detection. These findings highlight the framework’s practical significance in reducing investor losses, strengthening market confidence, and promoting the stability of the financial system. |
|---|---|
| AbstractList | Detecting financial reporting fraud is vital for preserving market integrity and protecting investors from substantial losses. Yet, the challenges of high dimensionality and noisy financial data often undermine the effectiveness of existing financial fraud detection systems. To address these issues, this study proposes SISAE‐METADES, a novel framework that integrates a supervised input‐enhanced stacked autoencoder (SISAE) with a meta‐learning–based dynamic ensemble selection (METADES) strategy. Unlike conventional stacked autoencoders, SISAE concatenates the original input at each encoding stage and incorporates label supervision, thereby learning task‐relevant and class‐discriminative representations. These enriched deep features improve both the diversity and competence of base classifiers and enable METADES to achieve more reliable local competence estimation. We validate the proposed framework using financial statement data from Chinese A‐share listed companies (2005–2023), covering 71 indicators. Experimental results show that SISAE‐METADES significantly outperforms standalone SISAE, traditional METADES, and several state‐of‐the‐art baselines. In particular, it achieves substantial improvements in accuracy, recall, and F1‐score, underscoring the robustness and effectiveness of combining supervised deep representation learning with dynamic ensemble selection for financial fraud detection. These findings highlight the framework’s practical significance in reducing investor losses, strengthening market confidence, and promoting the stability of the financial system. |
| Author | Zhao, Fangsu Mu, Zongmei Fang, Sheng Wang, Chang |
| Author_xml | – sequence: 1 givenname: Chang orcidid: 0000-0003-4933-5349 surname: Wang fullname: Wang, Chang – sequence: 2 givenname: Sheng orcidid: 0000-0002-5807-426X surname: Fang fullname: Fang, Sheng – sequence: 3 givenname: Fangsu orcidid: 0009-0008-7782-2594 surname: Zhao fullname: Zhao, Fangsu – sequence: 4 givenname: Zongmei orcidid: 0009-0000-2334-7099 surname: Mu fullname: Mu, Zongmei |
| BookMark | eNotkLFOwzAYhC1UJNrCxAt4R6F2bScuW9QmUKkIiWRgixznt2rUOpGdRurGI_CMPAktdLrT6e6Gb4JGrnWA0D0lj5QKMbOun0kZLxLJr9CYkoWMKKUfIzQmUvJI0oTdoEkIn4RQmnAxRkPmtsppaHBu3clYtcO5V4cGr6AH3dvW4cEqXKyLNPv5-n7NynSVFU84xcWhAz_YAOcudPgdOg8BXK_-Vsqd8qNTe6tx5gLs6x3gtOt8q_T2Fl0btQtwd9EpKvOsXL5Em7fn9TLdRHrOSB8lMdENzGuhuakbkDXhc5KwxBjOFVcaJNSaMxYvpADJqBZgFNFEUBMbBmyKHv5vtW9D8GCqztu98seKkupMrDoRqy7E2C-SymKe |
| Cites_doi | 10.1016/j.ijforecast.2020.03.001 10.1126/science.1127647 10.1016/j.patcog.2014.12.003 10.1016/j.jaccpubpol.2010.06.006 10.5539/ijef.v7n7p178 10.1016/j.frl.2023.104304 10.1109/34.58871 10.1002/for.2294 10.1016/j.knosys.2015.08.011 10.1002/int.22581 10.1109/AIKE.2019.00044 10.1111/acfi.13159 10.1111/jori.12359 10.1007/978-3-642-41822-8_15 10.3390/jtaer18040103 10.1016/j.irfa.2024.103405 10.1016/j.patcog.2007.10.015 10.1016/j.asoc.2018.01.021 10.1007/s41060-024-00524-x 10.1016/j.cosrev.2021.100402 10.1016/j.eswa.2006.02.016 10.1287/mnsc.1100.1174 10.1109/tdsc.2022.3187973 10.1016/j.frl.2021.102477 10.1162/neco.2006.18.7.1527 10.1016/j.knosys.2018.05.037 10.1002/widm.1249 10.1016/j.accinf.2024.100693 10.1016/j.eswa.2017.08.030 10.1016/j.cose.2015.09.005 10.1016/j.patrec.2018.07.013 10.1016/j.eswa.2021.116429 10.1109/tim.2022.3194863 10.1007/s00521-021-05933-8 10.1016/j.dss.2010.11.006 10.1080/14697688.2019.1683599 10.1016/j.dss.2024.114231 10.2307/41703508 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1155/int/8869784 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1098-111X |
| ExternalDocumentID | 10_1155_int_8869784 |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAMMB AANHP AAONW AASGY AAXRX AAYXX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBWZ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIMD AENEX AFBPY AFFHD AFGKR AFKRA AFZJQ AGQPQ AGXDD AI. AIDQK AIDYY AIQQE AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CITATION CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS EDO EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ I-F IX1 J0M JPC K7- KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O8X O9- OIG P2P P2W P2X P4D PALCI PHGZM PHGZT PIMPY PQGLB PQQKQ PTHSS Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT |
| ID | FETCH-LOGICAL-c230t-760cde2b5c4fbde8b0420737ff44a4ace8ebc4336985e831c5efa0c051f6f3e3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001595142200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0884-8173 |
| IngestDate | Sat Nov 29 07:05:27 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c230t-760cde2b5c4fbde8b0420737ff44a4ace8ebc4336985e831c5efa0c051f6f3e3 |
| ORCID | 0009-0000-2334-7099 0000-0003-4933-5349 0000-0002-5807-426X 0009-0008-7782-2594 |
| OpenAccessLink | https://doi.org/10.1155/int/8869784 |
| ParticipantIDs | crossref_primary_10_1155_int_8869784 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-00 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of intelligent systems |
| PublicationYear | 2025 |
| References | e_1_2_10_22_2 e_1_2_10_23_2 e_1_2_10_20_2 e_1_2_10_21_2 Bishop C. M. (e_1_2_10_30_2) 2006 e_1_2_10_19_2 e_1_2_10_1_2 e_1_2_10_3_2 e_1_2_10_17_2 e_1_2_10_2_2 e_1_2_10_18_2 e_1_2_10_39_2 e_1_2_10_5_2 e_1_2_10_15_2 e_1_2_10_38_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_37_2 e_1_2_10_7_2 e_1_2_10_13_2 e_1_2_10_36_2 e_1_2_10_6_2 e_1_2_10_14_2 e_1_2_10_35_2 e_1_2_10_9_2 e_1_2_10_11_2 e_1_2_10_34_2 e_1_2_10_8_2 e_1_2_10_12_2 e_1_2_10_33_2 e_1_2_10_32_2 e_1_2_10_10_2 e_1_2_10_31_2 e_1_2_10_28_2 e_1_2_10_29_2 e_1_2_10_26_2 e_1_2_10_27_2 e_1_2_10_24_2 e_1_2_10_25_2 |
| References_xml | – ident: e_1_2_10_10_2 doi: 10.1016/j.ijforecast.2020.03.001 – ident: e_1_2_10_8_2 doi: 10.1126/science.1127647 – ident: e_1_2_10_15_2 doi: 10.1016/j.patcog.2014.12.003 – ident: e_1_2_10_3_2 doi: 10.1016/j.jaccpubpol.2010.06.006 – ident: e_1_2_10_5_2 doi: 10.5539/ijef.v7n7p178 – ident: e_1_2_10_12_2 doi: 10.1016/j.frl.2023.104304 – ident: e_1_2_10_28_2 doi: 10.1109/34.58871 – ident: e_1_2_10_33_2 doi: 10.1002/for.2294 – ident: e_1_2_10_18_2 doi: 10.1016/j.knosys.2015.08.011 – volume-title: Pattern Recognition and Machine Learning year: 2006 ident: e_1_2_10_30_2 – ident: e_1_2_10_22_2 doi: 10.1002/int.22581 – ident: e_1_2_10_7_2 doi: 10.1109/AIKE.2019.00044 – ident: e_1_2_10_1_2 doi: 10.1111/acfi.13159 – ident: e_1_2_10_25_2 doi: 10.1111/jori.12359 – ident: e_1_2_10_9_2 doi: 10.1007/978-3-642-41822-8_15 – ident: e_1_2_10_26_2 doi: 10.3390/jtaer18040103 – ident: e_1_2_10_38_2 doi: 10.1016/j.irfa.2024.103405 – ident: e_1_2_10_14_2 doi: 10.1016/j.patcog.2007.10.015 – ident: e_1_2_10_35_2 doi: 10.1016/j.asoc.2018.01.021 – ident: e_1_2_10_27_2 doi: 10.1007/s41060-024-00524-x – ident: e_1_2_10_16_2 doi: 10.1016/j.cosrev.2021.100402 – ident: e_1_2_10_20_2 doi: 10.1016/j.eswa.2006.02.016 – ident: e_1_2_10_6_2 doi: 10.1287/mnsc.1100.1174 – ident: e_1_2_10_23_2 doi: 10.1109/tdsc.2022.3187973 – ident: e_1_2_10_2_2 doi: 10.1016/j.frl.2021.102477 – ident: e_1_2_10_13_2 doi: 10.1162/neco.2006.18.7.1527 – ident: e_1_2_10_34_2 doi: 10.1016/j.knosys.2018.05.037 – ident: e_1_2_10_29_2 doi: 10.1002/widm.1249 – ident: e_1_2_10_32_2 doi: 10.1016/j.accinf.2024.100693 – ident: e_1_2_10_21_2 doi: 10.1016/j.eswa.2017.08.030 – ident: e_1_2_10_17_2 doi: 10.1016/j.cose.2015.09.005 – ident: e_1_2_10_24_2 doi: 10.1016/j.patrec.2018.07.013 – ident: e_1_2_10_4_2 doi: 10.1016/j.eswa.2021.116429 – ident: e_1_2_10_37_2 doi: 10.1109/tim.2022.3194863 – ident: e_1_2_10_11_2 doi: 10.1007/s00521-021-05933-8 – ident: e_1_2_10_19_2 doi: 10.1016/j.dss.2010.11.006 – ident: e_1_2_10_36_2 doi: 10.1080/14697688.2019.1683599 – ident: e_1_2_10_31_2 doi: 10.1016/j.dss.2024.114231 – ident: e_1_2_10_39_2 doi: 10.2307/41703508 |
| SSID | ssj0011745 |
| Score | 2.3993495 |
| Snippet | Detecting financial reporting fraud is vital for preserving market integrity and protecting investors from substantial losses. Yet, the challenges of high... |
| SourceID | crossref |
| SourceType | Index Database |
| Title | Enhanced Financial Fraud Detection via SISAE‐METADES: A Supervised Deep Representation and Dynamic Ensemble Approach |
| Volume | 2025 |
| WOSCitedRecordID | wos001595142200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 issn: 0884-8173 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 issn: 0884-8173 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 issn: 0884-8173 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 issn: 0884-8173 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 issn: 0884-8173 databaseCode: PIMPY dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 issn: 0884-8173 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 issn: 0884-8173 databaseCode: 24P dateStart: 20230101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELbKLgcu_CP-5cPeVmGb2E4cbhWkAmlZIVpExaVKnPG2Eputtmm1Rx6B9-CteBLGseNkC4flwMWq3E4VZT7Nnz3fEHLAJTqhdKgCHYZxwGOpgzTBnEfzxPjfogyLZmrJcXJyImez9ONg8LPthdl-S6pKXl6mq_-qatxDZZvW2X9Qt_9T3MDPqHRcUe24XkvxWbWwp_pjT6aB0enGXDiuwQ4G3y7zw8n7ySjzVx0-ZFNUycT2qU82K2NB1mBkYGWC9K5JyV1etoPsD7NqDWem-WrkuMn7we7VauMOR4XlAa0dlbSP7L-4-nXT9eDB1Ra1F9Btfl3kTZnXfGmnt1jgNMct59XpGSz7JY1I9EoareXjgQztjJNXYC2zIT5Fwzzrm24jvAvSP32CMPQZS0PjMJYyxrSZd86vPfDf8Yn-pmKTIwkxR_G5E75B9qNEpGhC999-Gn8-9odWmNwJm7TYp3ftoCh-hOJHTrwXAPUimeldctulIHRkoXOPDKC6T-604z2os_YPyLZFEvVIog2SqEcSRSTRBkm_vv9wGHpNR7RDEDUIolcRRBFB1CGItgiiLYIekuk4m755F7gxHYHC_LUOknioSogKobguSpAF-gF0HInWnOc8VyChUJyxOJUCJAuVAJ0PFXoDHWsG7BHZq84reEyokKUoI16WjEc8UcM0EjmLQwgZywst2RNy0L66-cqSscz_oqCn1_vZM3KrA99zsldfbOAFuam29XJ98dIp9zchwoDZ |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Financial+Fraud+Detection+via+SISAE%E2%80%90METADES%3A+A+Supervised+Deep+Representation+and+Dynamic+Ensemble+Approach&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Wang%2C+Chang&rft.au=Fang%2C+Sheng&rft.au=Zhao%2C+Fangsu&rft.au=Mu%2C+Zongmei&rft.date=2025-01-01&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=2025&rft.issue=1&rft_id=info:doi/10.1155%2Fint%2F8869784&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_int_8869784 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon |