Hyper-parameter tuned light gradient boosting machine using memetic firefly algorithm for hand gesture recognition

Hand gesture is considered as one of the natural ways to interact with computers. The utility of hand gesture-based application is a recent trend and is an effective method for human–computer interaction. Though many static and other intelligent approaches using Machine learning (ML) are developed,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied soft computing Ročník 107; s. 107478
Hlavní autori: Nayak, Janmenjoy, Naik, Bighnaraj, Dash, Pandit Byomakesha, Souri, Alireza, Shanmuganathan, Vimal
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.08.2021
Predmet:
ISSN:1568-4946, 1872-9681
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Hand gesture is considered as one of the natural ways to interact with computers. The utility of hand gesture-based application is a recent trend and is an effective method for human–computer interaction. Though many static and other intelligent approaches using Machine learning (ML) are developed, still there is a marginal tradeoff between the computational cost and accuracy. In this paper, a Lightboost based Gradient boosting machine (LightGBM) is proposed for efficient hand gesture recognition. The hyper-parameters of the LightGBM are optimized with an improved memetic firefly algorithm. We have introduced a perturbation operator and incorporated it in the proposed memetic firefly algorithm for avoiding the local optimal solution in the traditional firefly algorithm. With comparative analysis among the proposed method and other competitive ML methods, the performance of the proposed method is found to be better in terms of various performance metrics such as accuracy, precision, recall, F1 score, and ROC–AUC. The proposed memetic firefly-based boosting approach is dominant over all the other considered methods with an accuracy of 99.36% and is robust for accurate hand gesture recognition. •Ensembled LightGBM is proposed for identification of hand gesture recognition.•Improved memetic firefly algorithm is proposed to tune the hyper-parameters.•A new perturbation operator is used in MFA for avoiding the local optimal solution.•Proved best outfit model as compared to other state-of-the-art models.
AbstractList Hand gesture is considered as one of the natural ways to interact with computers. The utility of hand gesture-based application is a recent trend and is an effective method for human–computer interaction. Though many static and other intelligent approaches using Machine learning (ML) are developed, still there is a marginal tradeoff between the computational cost and accuracy. In this paper, a Lightboost based Gradient boosting machine (LightGBM) is proposed for efficient hand gesture recognition. The hyper-parameters of the LightGBM are optimized with an improved memetic firefly algorithm. We have introduced a perturbation operator and incorporated it in the proposed memetic firefly algorithm for avoiding the local optimal solution in the traditional firefly algorithm. With comparative analysis among the proposed method and other competitive ML methods, the performance of the proposed method is found to be better in terms of various performance metrics such as accuracy, precision, recall, F1 score, and ROC–AUC. The proposed memetic firefly-based boosting approach is dominant over all the other considered methods with an accuracy of 99.36% and is robust for accurate hand gesture recognition. •Ensembled LightGBM is proposed for identification of hand gesture recognition.•Improved memetic firefly algorithm is proposed to tune the hyper-parameters.•A new perturbation operator is used in MFA for avoiding the local optimal solution.•Proved best outfit model as compared to other state-of-the-art models.
ArticleNumber 107478
Author Shanmuganathan, Vimal
Souri, Alireza
Naik, Bighnaraj
Dash, Pandit Byomakesha
Nayak, Janmenjoy
Author_xml – sequence: 1
  givenname: Janmenjoy
  orcidid: 0000-0002-9746-6557
  surname: Nayak
  fullname: Nayak, Janmenjoy
  email: jnayak@ieee.org
  organization: Department of Computer Science and Engineering, Aditya Institute of Technology and Management (AITAM), Tekkali, 532201, India
– sequence: 2
  givenname: Bighnaraj
  surname: Naik
  fullname: Naik, Bighnaraj
  email: bnaik_mca@vssut.ac.in
  organization: Department of Computer Application, Veer Surendra Sai University of Technology, Burla, 768018, India
– sequence: 3
  givenname: Pandit Byomakesha
  surname: Dash
  fullname: Dash, Pandit Byomakesha
  email: byomakeshdash2000@gmail.com
  organization: Department of Computer Application, Veer Surendra Sai University of Technology, Burla, 768018, India
– sequence: 4
  givenname: Alireza
  surname: Souri
  fullname: Souri, Alireza
  email: a.souri@srbiau.ac.ir
  organization: Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
– sequence: 5
  givenname: Vimal
  orcidid: 0000-0002-1467-1206
  surname: Shanmuganathan
  fullname: Shanmuganathan, Vimal
  email: svimalphd@gmail.com
  organization: Department of Computer Science and Engineering, Ramco Institute of Technology, Rajapalayam, Tamilnadu, India
BookMark eNp9kMtqwzAQRUVJoUnaH-hKP-BUVixbhm5K6AsC3bRrIckjW8GRgqQU8veVm666yGoecIY7Z4FmzjtA6L4kq5KU9cNuJaPXK0pomRdN1fArNC95Q4u25uUs96zmRdVW9Q1axLgjGWopn6PwdjpAKA4yyD0kCDgdHXR4tP2QcB9kZ8ElrLyPyboe76UerAN8jL8TZMZqbGwAM56wHHsfbBr22PiAB-k63ENMxwA4gPa9s8l6d4uujRwj3P3VJfp6ef7cvBXbj9f3zdO20HRNUlFrY8pWUcZ026ra8I6winJeUdWqRtak4boxLV_XFFilNAOiDWOqUaRTTHbrJeLnuzr4GHNCoW2SU4IUpB1FScTkTuzE5E5M7sTZXUbpP_QQ7F6G02Xo8QxBfurbQhBRZ3sauqxHJ9F5ewn_AXq8jcY
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3412930
crossref_primary_10_1177_17442591251333144
crossref_primary_10_1007_s44290_025_00254_4
crossref_primary_10_1016_j_asoc_2021_107928
crossref_primary_10_1016_j_tws_2022_109424
crossref_primary_10_1007_s13042_025_02719_5
crossref_primary_10_1109_ACCESS_2024_3421992
crossref_primary_10_3390_molecules28052326
crossref_primary_10_1177_1063293X251349113
crossref_primary_10_1016_j_buildenv_2023_110252
crossref_primary_10_1049_rpg2_12294
crossref_primary_10_1007_s11042_023_15397_8
crossref_primary_10_3390_electronics12071520
crossref_primary_10_1088_1742_6596_2383_1_012081
crossref_primary_10_3354_cr01723
crossref_primary_10_1016_j_compbiomed_2021_104867
crossref_primary_10_1080_21681163_2023_2227735
crossref_primary_10_3390_rs15215202
crossref_primary_10_1016_j_eswa_2024_125929
crossref_primary_10_1016_j_knosys_2023_110828
crossref_primary_10_1038_s41598_025_05935_9
crossref_primary_10_1016_j_engappai_2024_109868
crossref_primary_10_3390_buildings13122914
crossref_primary_10_1016_j_isatra_2021_10_019
crossref_primary_10_1080_00051144_2023_2251229
crossref_primary_10_1016_j_jksuci_2023_101737
crossref_primary_10_1016_j_procs_2025_04_468
crossref_primary_10_1007_s44174_023_00079_8
crossref_primary_10_1016_j_eswa_2023_121121
crossref_primary_10_1016_j_asoc_2022_109243
crossref_primary_10_1016_j_jhydrol_2023_129307
crossref_primary_10_1016_j_measurement_2021_110260
Cites_doi 10.1016/j.aei.2020.101201
10.1016/j.cviu.2015.08.004
10.3389/fnbot.2017.00007
10.1007/978-3-540-89985-3_38
10.1109/SMC.2014.6973901
10.3390/s20092467
10.3390/s16081341
10.1214/aos/1013203451
10.1016/S1050-6411(97)00010-2
10.1109/TBCAS.2019.2953998
10.1145/2939672.2939785
10.1016/j.neucom.2020.03.009
10.1109/TNSRE.2013.2247631
10.1109/TNSRE.2019.2961706
10.1109/ACCESS.2019.2962974
10.1007/s41060-016-0008-z
10.1016/j.agwat.2019.105758
10.1002/wics.1275
10.3390/app10020722
10.1145/1502650.1502708
10.1504/IJBIC.2010.032124
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2021.107478
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2021_107478
S1568494621004014
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c230t-6cff19b255c99b6f8d05428842b9b7a6078c7f98362e54bc5e0cf55b7b0db5ad3
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663739100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:01:06 EST 2025
Tue Nov 18 21:45:57 EST 2025
Fri Feb 23 02:44:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Memetic firefly algorithm
Ensemble learning
Light gradient boosting machine
Hand gesture recognition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c230t-6cff19b255c99b6f8d05428842b9b7a6078c7f98362e54bc5e0cf55b7b0db5ad3
ORCID 0000-0002-9746-6557
0000-0002-1467-1206
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2021_107478
crossref_primary_10_1016_j_asoc_2021_107478
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107478
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References I. Fister, Jr., I. Fister, J. Brest, X.S. Yang, Memetic firefly algorithm for combinatorial optimisation, in: B. Filipič, J. Silc (Eds.), Bioinspired Optimisation Methods and their Applications, BIOMA2012, 24–25 May 2012, Bohinj, Slovenia, 2012, pp. 75–86.
Tsai, Huang, Zhang (b6) 2015
Friedman (b28) 2001; 29
Tran (b1) 2020; 10
Erözen (b43) 2020; 4
Jaramillo-Yánez, Benalcázar, Mena-Maldonado (b11) 2020; 20
Wahid, Tafreshi, Langari (b32) 2019; 28
Starner, Pentland (b4) 1997
Vujaklija (b48) 2017; 11
Yang, Pan, Li (b40) 2017
Song (b21) 2019; 13
Badi (b56) 2016; 1
Palermo (b19) 2017
Dhieb (b22) 2019
Tran (b41) 2020; 10
Ke (b30) 2017
A. Gardner, C.A. Duncan, J. Kanno, R. Selmic, 3D hand posture recognition from small unlabeled point sets, in: 2014 IEEE International Conference on Systems, Man and Cybernetics, SMC, 2014, pp. 164–169.
Moschetti (b9) 2016; 16
.
Glaser, Holobar, Zazula (b46) 2013; 21
Tianqi Chen, Carlos Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd ACMSIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.
Pujan Ziaie, et al. Using a Naive bayes classifier-based on K-nearest neighbors with distance-weighting for static hand-gesture recognition in a human-robot dialog system, in: CSICC, 2008.
PanditByomakesha Dash, et al. Model based IoT security framework using multiclass adaptive boosting with SMOTE, in: Security and Privacy
Malima, Özgür, Çetin (b2) 2006
Chakraborty (b24) 2020; 46
Sugiyama, Yamada, du Plessis (b13) 2013; 5
Gallo, Placitelli, Ciampi (b5) 2011
Caceres (b14) 2014
Donovan (b52) 2017
Li (b44) 2017
Ding (b35) 2020
Benatti (b51) 2017
Vo, Nguyen, Le (b34) 2019; 8
Snow (b39) 2020
Benalcázar (b50) 2017
Jiménez, Benalcázar, Sotomayor (b8) 2017
Jia (b33) 2020
Guo Dong, Yonghua Yan, M. Xie, Vision-based hand gesture recognition for human-vehicle interaction, in: Proc. of the International Conference on Control, Automation and Computer Vision, Vol. 1, 1998.
Merletti, Conte (b12) 1997; 7
Fan (b23) 2019; 225
Freund, Schapire (b27) 1996
Moschetti (b45) 2016; 16
Wang, Zhang, Zhuang (b20) 2012; 2012
Ortiz-Catalan (b47) 2015
Kumar, Saerbeck (b7) 2015; 141
Nagashree (b17) 2005; 4
Trigueiros, Ribeiro, Reis (b15) 2012
Eshitha, Jose (b18) 2018
Shah, Shah, Shah, Bhowmick (b55) 2020
De Andrade (b31) 2019
Matoušek, Tihelka (b36) 2019
Feng (b42) 2019
Benalcázar (b49) 2017
Machado, Karray, de Sousa (b38) 2019
Yang (b26) 2010; 2
Xu Zhang, et al. Hand gesture recognition and virtual game control based on 3D accelerometer and EMG sensors, in: Proceedings of the 14th International Conference on Intelligent User Interfaces, 2009.
Rafi (b37) 2020; 1
Eshitha (10.1016/j.asoc.2021.107478_b18) 2018
Moschetti (10.1016/j.asoc.2021.107478_b9) 2016; 16
Benalcázar (10.1016/j.asoc.2021.107478_b50) 2017
10.1016/j.asoc.2021.107478_b16
Fan (10.1016/j.asoc.2021.107478_b23) 2019; 225
Tran (10.1016/j.asoc.2021.107478_b41) 2020; 10
Machado (10.1016/j.asoc.2021.107478_b38) 2019
10.1016/j.asoc.2021.107478_b10
Jaramillo-Yánez (10.1016/j.asoc.2021.107478_b11) 2020; 20
10.1016/j.asoc.2021.107478_b54
Tsai (10.1016/j.asoc.2021.107478_b6) 2015
Palermo (10.1016/j.asoc.2021.107478_b19) 2017
10.1016/j.asoc.2021.107478_b53
Ortiz-Catalan (10.1016/j.asoc.2021.107478_b47) 2015
Ke (10.1016/j.asoc.2021.107478_b30) 2017
Friedman (10.1016/j.asoc.2021.107478_b28) 2001; 29
Glaser (10.1016/j.asoc.2021.107478_b46) 2013; 21
Sugiyama (10.1016/j.asoc.2021.107478_b13) 2013; 5
Kumar (10.1016/j.asoc.2021.107478_b7) 2015; 141
Moschetti (10.1016/j.asoc.2021.107478_b45) 2016; 16
Vujaklija (10.1016/j.asoc.2021.107478_b48) 2017; 11
Wahid (10.1016/j.asoc.2021.107478_b32) 2019; 28
Yang (10.1016/j.asoc.2021.107478_b40) 2017
Dhieb (10.1016/j.asoc.2021.107478_b22) 2019
Li (10.1016/j.asoc.2021.107478_b44) 2017
Feng (10.1016/j.asoc.2021.107478_b42) 2019
Erözen (10.1016/j.asoc.2021.107478_b43) 2020; 4
10.1016/j.asoc.2021.107478_b3
Merletti (10.1016/j.asoc.2021.107478_b12) 1997; 7
Rafi (10.1016/j.asoc.2021.107478_b37) 2020; 1
Donovan (10.1016/j.asoc.2021.107478_b52) 2017
Jia (10.1016/j.asoc.2021.107478_b33) 2020
Shah (10.1016/j.asoc.2021.107478_b55) 2020
Vo (10.1016/j.asoc.2021.107478_b34) 2019; 8
Benatti (10.1016/j.asoc.2021.107478_b51) 2017
Starner (10.1016/j.asoc.2021.107478_b4) 1997
Benalcázar (10.1016/j.asoc.2021.107478_b49) 2017
Nagashree (10.1016/j.asoc.2021.107478_b17) 2005; 4
Freund (10.1016/j.asoc.2021.107478_b27) 1996
Snow (10.1016/j.asoc.2021.107478_b39) 2020
10.1016/j.asoc.2021.107478_b25
De Andrade (10.1016/j.asoc.2021.107478_b31) 2019
Badi (10.1016/j.asoc.2021.107478_b56) 2016; 1
Gallo (10.1016/j.asoc.2021.107478_b5) 2011
Tran (10.1016/j.asoc.2021.107478_b1) 2020; 10
Matoušek (10.1016/j.asoc.2021.107478_b36) 2019
Wang (10.1016/j.asoc.2021.107478_b20) 2012; 2012
Malima (10.1016/j.asoc.2021.107478_b2) 2006
Yang (10.1016/j.asoc.2021.107478_b26) 2010; 2
Caceres (10.1016/j.asoc.2021.107478_b14) 2014
Trigueiros (10.1016/j.asoc.2021.107478_b15) 2012
Chakraborty (10.1016/j.asoc.2021.107478_b24) 2020; 46
Ding (10.1016/j.asoc.2021.107478_b35) 2020
Jiménez (10.1016/j.asoc.2021.107478_b8) 2017
10.1016/j.asoc.2021.107478_b29
Song (10.1016/j.asoc.2021.107478_b21) 2019; 13
References_xml – volume: 10
  start-page: 722
  year: 2020
  ident: b1
  article-title: Real-time hand gesture spotting and recognition using RGB-D camera and 3D convolutional neural network
  publication-title: Appl. Sci.
– reference: Xu Zhang, et al. Hand gesture recognition and virtual game control based on 3D accelerometer and EMG sensors, in: Proceedings of the 14th International Conference on Intelligent User Interfaces, 2009.
– year: 2020
  ident: b39
  article-title: FairPut: A light framework for machine learning fairness with LightGBM
– reference: Guo Dong, Yonghua Yan, M. Xie, Vision-based hand gesture recognition for human-vehicle interaction, in: Proc. of the International Conference on Control, Automation and Computer Vision, Vol. 1, 1998.
– start-page: 227
  year: 1997
  end-page: 243
  ident: b4
  article-title: Real-time american sign language recognition from video using hidden markov models
  publication-title: Motion-Based Recognition
– volume: 20
  start-page: 2467
  year: 2020
  ident: b11
  article-title: Real-time hand gesture recognition using surface electromyography and machine learning: A systematic literature review
  publication-title: Sensors
– year: 2020
  ident: b55
  article-title: Comparative analysis of hand gesture recognition techniques: A review
  publication-title: Advanced Computing Technologies and Applications
– volume: 5
  start-page: 465
  year: 2013
  end-page: 477
  ident: b13
  article-title: Learning under nonstationarity: covariate shift and class-balance change
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
– year: 2014
  ident: b14
  article-title: Machine Learning Techniques for Gesture Recognition
– volume: 2
  start-page: 78
  year: 2010
  end-page: 84
  ident: b26
  article-title: Firefly algorithm, stochastic test functions and design optimisation
  publication-title: Int. J. Bio-Inspir. Comput.
– volume: 16
  year: 2016
  ident: b45
  article-title: Recognition of daily gestures withwearable inertial rings and bracelets
  publication-title: Sensors
– year: 2017
  ident: b50
  article-title: Real-time hand gesture recognition using the Myo armband and muscle activity detection
  publication-title: 2017 IEEE Second Ecuador Technical Chapters Meeting
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: b28
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Statist.
– volume: 1
  start-page: 77
  year: 2016
  end-page: 87
  ident: b56
  article-title: Recent methods in vision-based hand gesture recognition
  publication-title: Int. J. Data Sci. Anal.
– reference: I. Fister, Jr., I. Fister, J. Brest, X.S. Yang, Memetic firefly algorithm for combinatorial optimisation, in: B. Filipič, J. Silc (Eds.), Bioinspired Optimisation Methods and their Applications, BIOMA2012, 24–25 May 2012, Bohinj, Slovenia, 2012, pp. 75–86.
– start-page: 1
  year: 2006
  end-page: 4
  ident: b2
  article-title: A fast algorithm for vision-based hand gesture recognition for robot control
– volume: 10
  start-page: 722
  year: 2020
  ident: b41
  article-title: Real-time hand gesture spotting and recognition using RGB-D camera and 3D convolutional neural network
  publication-title: Appl. Sci.
– volume: 2012
  year: 2012
  ident: b20
  article-title: An application of classifier combination methods in hand gesture recognition
  publication-title: Math. Probl. Eng.
– start-page: 148
  year: 1996
  end-page: 156
  ident: b27
  article-title: Experiments with a new boosting algorithm
  publication-title: Proceedings of the Thirteenth International Conference on Machine Learning Theory
– year: 2017
  ident: b40
  article-title: sEMG-based continuous hand gesture recognition using GMM-HMM and threshold model
  publication-title: 2017 IEEE International Conference on Robotics and Biomimetics
– year: 2017
  ident: b44
  article-title: Hand gesture recognition for post-stroke rehabilitation using leap motion
  publication-title: 2017 International Conference on Applied System Innovation
– start-page: 233
  year: 2017
  end-page: 236
  ident: b8
  article-title: Gesture recognition and machine learning applied to sign language translation
  publication-title: VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th–28th, 2016
– year: 2017
  ident: b19
  article-title: Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data
  publication-title: 2017 International Conference on Rehabilitation Robotics
– year: 2020
  ident: b35
  article-title: A new method of human gesture recognition using Wi-Fi signals based on XGBoost
  publication-title: 2020 IEEE/CIC International Conference on Communications in China
– volume: 141
  start-page: 152
  year: 2015
  end-page: 165
  ident: b7
  article-title: Recent methods and databases in vision-based hand gesture recognition: A review
  publication-title: Comput. Vis. Image Underst.
– year: 2018
  ident: b18
  article-title: Hand gesture recognition using artificial neural network
  publication-title: 2018 International Conference on Circuits and Systems in Digital Enterprise Technology
– year: 2015
  ident: b6
  article-title: Embedded virtual mouse system by using hand gesture recognition
  publication-title: 2015 IEEE International Conference on Consumer Electronics-Taiwan
– year: 2019
  ident: b38
  article-title: LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry
  publication-title: 2019 14th International Conference on Computer Science & Education
– volume: 225
  year: 2019
  ident: b23
  article-title: Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data
  publication-title: Agricult. Water Manag.
– volume: 11
  start-page: 7
  year: 2017
  ident: b48
  article-title: Translating research on myoelectric control into clinics—Are the performance assessment methods adequate?
  publication-title: Front. Neurorobotics
– year: 2015
  ident: b47
  article-title: Offline accuracy: a potentially misleading metric in myoelectric pattern recognition for prosthetic control
  publication-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– year: 2017
  ident: b49
  article-title: Hand gesture recognition using machine learning and the Myo armband
  publication-title: 2017 25th European Signal Processing Conference
– volume: 28
  start-page: 427
  year: 2019
  end-page: 436
  ident: b32
  article-title: A multi-window majority voting strategy to improve hand gesture recognition accuracies using electromyography signal
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– year: 2019
  ident: b42
  article-title: Hand gesture recognition with ensemble time-frequency signatures using enhanced deep convolutional neural network
  publication-title: 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference
– year: 2019
  ident: b36
  article-title: Using extreme gradient boosting to detect glottal closure instants in speech signal
  publication-title: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing
– year: 2020
  ident: b33
  article-title: Classification of electromyographic hand gesture signals using machine learning techniques
  publication-title: Neurocomputing
– reference: A. Gardner, C.A. Duncan, J. Kanno, R. Selmic, 3D hand posture recognition from small unlabeled point sets, in: 2014 IEEE International Conference on Systems, Man and Cybernetics, SMC, 2014, pp. 164–169.
– volume: 46
  year: 2020
  ident: b24
  article-title: A novel construction cost prediction model using hybrid natural and light gradient boosting
  publication-title: Adv. Eng. Inform.
– reference: Pujan Ziaie, et al. Using a Naive bayes classifier-based on K-nearest neighbors with distance-weighting for static hand-gesture recognition in a human-robot dialog system, in: CSICC, 2008.
– reference: PanditByomakesha Dash, et al. Model based IoT security framework using multiclass adaptive boosting with SMOTE, in: Security and Privacy,
– year: 2017
  ident: b52
  article-title: Simple space-domain features for low-resolution sEMG pattern recognition
  publication-title: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 1
  start-page: 1
  year: 2020
  end-page: 19
  ident: b37
  article-title: Electroencephalogram (EEG) brainwave signal-based emotion recognition using extreme gradient boosting algorithm
  publication-title: Ann. Eng.
– volume: 21
  start-page: 949
  year: 2013
  end-page: 958
  ident: b46
  article-title: Real-time motor unit identification from high-density surface EMG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 16
  start-page: 1341
  year: 2016
  ident: b9
  article-title: Recognition of daily gestures with wearable inertial rings and bracelets
  publication-title: Sensors
– volume: 4
  start-page: 42
  year: 2005
  end-page: 46
  ident: b17
  article-title: Hand gesture recognition using support vector machine
  publication-title: Int. J. Eng. Sci.
– year: 2017
  ident: b30
  article-title: Lightgbm: A highly efficient gradient boosting decision tree
  publication-title: Advances in Neural Information Processing Systems
– year: 2017
  ident: b51
  article-title: A sub-10 mW real-time implementation for EMG hand gesture recognition based on a multi-core biomedical SoC
  publication-title: 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces
– year: 2019
  ident: b31
  article-title: Improving sEMG-based hand gesture recognition using maximal overlap discrete wavelet transform and an autoencoder neural network
  publication-title: XXVI Brazilian Congress on Biomedical Engineering
– reference: .
– year: 2019
  ident: b22
  article-title: Extreme gradient boosting machine learning algorithm for safe auto insurance operations
  publication-title: 2019 IEEE International Conference of Vehicular Electronics and Safety
– reference: Tianqi Chen, Carlos Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd ACMSIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.
– year: 2012
  ident: b15
  article-title: A comparison of machine learning algorithms applied to hand gesture recognition
  publication-title: 7th Iberian Conference on Information Systems and Technologies
– volume: 13
  start-page: 1563
  year: 2019
  end-page: 1574
  ident: b21
  article-title: Design of a flexible wearable smart sEMG recorder integrated gradient boosting decision tree based hand gesture recognition
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– volume: 4
  start-page: 44
  year: 2020
  end-page: 55
  ident: b43
  article-title: A new CNN approach for hand gesture classification using sEMG data
  publication-title: J. Innov. Sci. Eng.
– volume: 7
  start-page: 241
  year: 1997
  end-page: 250
  ident: b12
  article-title: Surface EMG signal processing during isometric contractions
  publication-title: J. Electromyography Kinesiol.
– year: 2011
  ident: b5
  article-title: Controller-free exploration of medical image data: Experiencing the kinect
  publication-title: 2011 24th International Symposium on Computer-Based Medical Systems
– volume: 8
  start-page: 3687
  year: 2019
  end-page: 3694
  ident: b34
  article-title: Robust head pose estimation using extreme gradient boosting machine on stacked autoencoders neural network
  publication-title: IEEE Access
– volume: 46
  year: 2020
  ident: 10.1016/j.asoc.2021.107478_b24
  article-title: A novel construction cost prediction model using hybrid natural and light gradient boosting
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2020.101201
– volume: 141
  start-page: 152
  year: 2015
  ident: 10.1016/j.asoc.2021.107478_b7
  article-title: Recent methods and databases in vision-based hand gesture recognition: A review
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2015.08.004
– year: 2011
  ident: 10.1016/j.asoc.2021.107478_b5
  article-title: Controller-free exploration of medical image data: Experiencing the kinect
– year: 2015
  ident: 10.1016/j.asoc.2021.107478_b6
  article-title: Embedded virtual mouse system by using hand gesture recognition
– volume: 11
  start-page: 7
  year: 2017
  ident: 10.1016/j.asoc.2021.107478_b48
  article-title: Translating research on myoelectric control into clinics—Are the performance assessment methods adequate?
  publication-title: Front. Neurorobotics
  doi: 10.3389/fnbot.2017.00007
– volume: 1
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2021.107478_b37
  article-title: Electroencephalogram (EEG) brainwave signal-based emotion recognition using extreme gradient boosting algorithm
  publication-title: Ann. Eng.
– volume: 2012
  year: 2012
  ident: 10.1016/j.asoc.2021.107478_b20
  article-title: An application of classifier combination methods in hand gesture recognition
  publication-title: Math. Probl. Eng.
– volume: 4
  start-page: 44
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2021.107478_b43
  article-title: A new CNN approach for hand gesture classification using sEMG data
  publication-title: J. Innov. Sci. Eng.
– ident: 10.1016/j.asoc.2021.107478_b16
  doi: 10.1007/978-3-540-89985-3_38
– ident: 10.1016/j.asoc.2021.107478_b53
  doi: 10.1109/SMC.2014.6973901
– start-page: 227
  year: 1997
  ident: 10.1016/j.asoc.2021.107478_b4
  article-title: Real-time american sign language recognition from video using hidden markov models
– volume: 20
  start-page: 2467
  issue: 9
  year: 2020
  ident: 10.1016/j.asoc.2021.107478_b11
  article-title: Real-time hand gesture recognition using surface electromyography and machine learning: A systematic literature review
  publication-title: Sensors
  doi: 10.3390/s20092467
– start-page: 233
  year: 2017
  ident: 10.1016/j.asoc.2021.107478_b8
  article-title: Gesture recognition and machine learning applied to sign language translation
– year: 2019
  ident: 10.1016/j.asoc.2021.107478_b42
  article-title: Hand gesture recognition with ensemble time-frequency signatures using enhanced deep convolutional neural network
– year: 2015
  ident: 10.1016/j.asoc.2021.107478_b47
  article-title: Offline accuracy: a potentially misleading metric in myoelectric pattern recognition for prosthetic control
– year: 2017
  ident: 10.1016/j.asoc.2021.107478_b51
  article-title: A sub-10 mW real-time implementation for EMG hand gesture recognition based on a multi-core biomedical SoC
– start-page: 1
  year: 2006
  ident: 10.1016/j.asoc.2021.107478_b2
– volume: 16
  start-page: 1341
  issue: 8
  year: 2016
  ident: 10.1016/j.asoc.2021.107478_b9
  article-title: Recognition of daily gestures with wearable inertial rings and bracelets
  publication-title: Sensors
  doi: 10.3390/s16081341
– volume: 29
  start-page: 1189
  year: 2001
  ident: 10.1016/j.asoc.2021.107478_b28
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1013203451
– year: 2017
  ident: 10.1016/j.asoc.2021.107478_b52
  article-title: Simple space-domain features for low-resolution sEMG pattern recognition
– year: 2017
  ident: 10.1016/j.asoc.2021.107478_b19
  article-title: Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data
– volume: 7
  start-page: 241
  issue: 4
  year: 1997
  ident: 10.1016/j.asoc.2021.107478_b12
  article-title: Surface EMG signal processing during isometric contractions
  publication-title: J. Electromyography Kinesiol.
  doi: 10.1016/S1050-6411(97)00010-2
– year: 2012
  ident: 10.1016/j.asoc.2021.107478_b15
  article-title: A comparison of machine learning algorithms applied to hand gesture recognition
– volume: 13
  start-page: 1563
  issue: 6
  year: 2019
  ident: 10.1016/j.asoc.2021.107478_b21
  article-title: Design of a flexible wearable smart sEMG recorder integrated gradient boosting decision tree based hand gesture recognition
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2019.2953998
– year: 2017
  ident: 10.1016/j.asoc.2021.107478_b30
  article-title: Lightgbm: A highly efficient gradient boosting decision tree
– volume: 16
  issue: 8
  year: 2016
  ident: 10.1016/j.asoc.2021.107478_b45
  article-title: Recognition of daily gestures withwearable inertial rings and bracelets
  publication-title: Sensors
  doi: 10.3390/s16081341
– ident: 10.1016/j.asoc.2021.107478_b29
  doi: 10.1145/2939672.2939785
– year: 2020
  ident: 10.1016/j.asoc.2021.107478_b33
  article-title: Classification of electromyographic hand gesture signals using machine learning techniques
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.03.009
– year: 2020
  ident: 10.1016/j.asoc.2021.107478_b35
  article-title: A new method of human gesture recognition using Wi-Fi signals based on XGBoost
– volume: 21
  start-page: 949
  issue: 6
  year: 2013
  ident: 10.1016/j.asoc.2021.107478_b46
  article-title: Real-time motor unit identification from high-density surface EMG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2247631
– start-page: 148
  year: 1996
  ident: 10.1016/j.asoc.2021.107478_b27
  article-title: Experiments with a new boosting algorithm
– year: 2017
  ident: 10.1016/j.asoc.2021.107478_b50
  article-title: Real-time hand gesture recognition using the Myo armband and muscle activity detection
– volume: 28
  start-page: 427
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2021.107478_b32
  article-title: A multi-window majority voting strategy to improve hand gesture recognition accuracies using electromyography signal
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2961706
– year: 2019
  ident: 10.1016/j.asoc.2021.107478_b36
  article-title: Using extreme gradient boosting to detect glottal closure instants in speech signal
– ident: 10.1016/j.asoc.2021.107478_b25
– year: 2017
  ident: 10.1016/j.asoc.2021.107478_b40
  article-title: sEMG-based continuous hand gesture recognition using GMM-HMM and threshold model
– ident: 10.1016/j.asoc.2021.107478_b3
– volume: 8
  start-page: 3687
  year: 2019
  ident: 10.1016/j.asoc.2021.107478_b34
  article-title: Robust head pose estimation using extreme gradient boosting machine on stacked autoencoders neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962974
– volume: 1
  start-page: 77
  year: 2016
  ident: 10.1016/j.asoc.2021.107478_b56
  article-title: Recent methods in vision-based hand gesture recognition
  publication-title: Int. J. Data Sci. Anal.
  doi: 10.1007/s41060-016-0008-z
– volume: 225
  year: 2019
  ident: 10.1016/j.asoc.2021.107478_b23
  article-title: Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data
  publication-title: Agricult. Water Manag.
  doi: 10.1016/j.agwat.2019.105758
– volume: 5
  start-page: 465
  issue: 6
  year: 2013
  ident: 10.1016/j.asoc.2021.107478_b13
  article-title: Learning under nonstationarity: covariate shift and class-balance change
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.1275
– year: 2017
  ident: 10.1016/j.asoc.2021.107478_b49
  article-title: Hand gesture recognition using machine learning and the Myo armband
– year: 2019
  ident: 10.1016/j.asoc.2021.107478_b22
  article-title: Extreme gradient boosting machine learning algorithm for safe auto insurance operations
– year: 2020
  ident: 10.1016/j.asoc.2021.107478_b39
– ident: 10.1016/j.asoc.2021.107478_b54
– year: 2014
  ident: 10.1016/j.asoc.2021.107478_b14
– year: 2019
  ident: 10.1016/j.asoc.2021.107478_b31
  article-title: Improving sEMG-based hand gesture recognition using maximal overlap discrete wavelet transform and an autoencoder neural network
– volume: 10
  start-page: 722
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2021.107478_b41
  article-title: Real-time hand gesture spotting and recognition using RGB-D camera and 3D convolutional neural network
  publication-title: Appl. Sci.
  doi: 10.3390/app10020722
– volume: 10
  start-page: 722
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2021.107478_b1
  article-title: Real-time hand gesture spotting and recognition using RGB-D camera and 3D convolutional neural network
  publication-title: Appl. Sci.
  doi: 10.3390/app10020722
– year: 2017
  ident: 10.1016/j.asoc.2021.107478_b44
  article-title: Hand gesture recognition for post-stroke rehabilitation using leap motion
– year: 2018
  ident: 10.1016/j.asoc.2021.107478_b18
  article-title: Hand gesture recognition using artificial neural network
– ident: 10.1016/j.asoc.2021.107478_b10
  doi: 10.1145/1502650.1502708
– year: 2019
  ident: 10.1016/j.asoc.2021.107478_b38
  article-title: LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry
– volume: 4
  start-page: 42
  issue: 6
  year: 2005
  ident: 10.1016/j.asoc.2021.107478_b17
  article-title: Hand gesture recognition using support vector machine
  publication-title: Int. J. Eng. Sci.
– year: 2020
  ident: 10.1016/j.asoc.2021.107478_b55
  article-title: Comparative analysis of hand gesture recognition techniques: A review
– volume: 2
  start-page: 78
  issue: 2
  year: 2010
  ident: 10.1016/j.asoc.2021.107478_b26
  article-title: Firefly algorithm, stochastic test functions and design optimisation
  publication-title: Int. J. Bio-Inspir. Comput.
  doi: 10.1504/IJBIC.2010.032124
SSID ssj0016928
Score 2.4785945
Snippet Hand gesture is considered as one of the natural ways to interact with computers. The utility of hand gesture-based application is a recent trend and is an...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107478
SubjectTerms Ensemble learning
Hand gesture recognition
Light gradient boosting machine
Memetic firefly algorithm
Title Hyper-parameter tuned light gradient boosting machine using memetic firefly algorithm for hand gesture recognition
URI https://dx.doi.org/10.1016/j.asoc.2021.107478
Volume 107
WOSCitedRecordID wos000663739100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECZcp0OXvoukL3DoJsiwZFEix6RIkRZF0CEFvAkkRaZ2JDmQ5SDOb8mP7ZEiZddIg2boIhh6nAnf59M9Pt4h9CmTlNFIyZAKQsIkS4qQR4RDqCLjRGU6nUjbZ_Z7dnpKp1P2YzC49Xthrsqsrun1Nbv8r6qGc6Bss3X2AeruhcIJ-AxKhyOoHY7_pPgTiCyb0LT0rgzVJWhXYEmD0gThwXljGV5tAL710hKeK0umVMHK5gwqVZlNjYEGQ6jLdcDL80Uza39Vlo1ok-ymHmWKDj3zyOnVd7J1Xu0SzLvlq69a_3I0KWe-5hcdOdewEOaL9ebKzF44gnXWsPb5JoW-dBRGU1wPjtaLil-YOlWfGzJlhG6vDqz6hm_nMeKoZ9H1pjelYcJcQtLb5m4krrOuke32f6fh73IQ8xEHTI-M-NHm5j-7bO-8_XpOoqe7zXMjIzcy8k7GI7QXZ4TRIdo7_Ho8_dZXqVJmZ_f2K3ebsjr-4O5K7nZ8tpyZs-foqYtC8GGHnhdooOqX6Jmf8IGdwX-Fmh0wYQsmbMGEPZiwBxN2YMIWTNiBCTsw4R5MGMCEDZiwAxPeAtNr9PPL8dnnk9BN6QglhK9tmEqtIyYgNJWMiVTTAqKAmNIkFkxkPAUfVGaaUfCUFEmEJGosNSEiE-NCEF5M3qBhvajVPsLjOC2olpqmdJyoBKyI0gkTKppwOhaMHaDI_4S5dC3szSSVMv-78g5Q0D9z2TVwufdu4jWTOxe0cy1zANo9z7190Le8Q082_4D3aNg2K_UBPZZX7WzZfHQo-w0Z563z
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyper-parameter+tuned+light+gradient+boosting+machine+using+memetic+firefly+algorithm+for+hand+gesture+recognition&rft.jtitle=Applied+soft+computing&rft.au=Nayak%2C+Janmenjoy&rft.au=Naik%2C+Bighnaraj&rft.au=Dash%2C+Pandit+Byomakesha&rft.au=Souri%2C+Alireza&rft.date=2021-08-01&rft.issn=1568-4946&rft.volume=107&rft.spage=107478&rft_id=info:doi/10.1016%2Fj.asoc.2021.107478&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2021_107478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon