Hyper-parameter tuned light gradient boosting machine using memetic firefly algorithm for hand gesture recognition
Hand gesture is considered as one of the natural ways to interact with computers. The utility of hand gesture-based application is a recent trend and is an effective method for human–computer interaction. Though many static and other intelligent approaches using Machine learning (ML) are developed,...
Uložené v:
| Vydané v: | Applied soft computing Ročník 107; s. 107478 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.08.2021
|
| Predmet: | |
| ISSN: | 1568-4946, 1872-9681 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Hand gesture is considered as one of the natural ways to interact with computers. The utility of hand gesture-based application is a recent trend and is an effective method for human–computer interaction. Though many static and other intelligent approaches using Machine learning (ML) are developed, still there is a marginal tradeoff between the computational cost and accuracy. In this paper, a Lightboost based Gradient boosting machine (LightGBM) is proposed for efficient hand gesture recognition. The hyper-parameters of the LightGBM are optimized with an improved memetic firefly algorithm. We have introduced a perturbation operator and incorporated it in the proposed memetic firefly algorithm for avoiding the local optimal solution in the traditional firefly algorithm. With comparative analysis among the proposed method and other competitive ML methods, the performance of the proposed method is found to be better in terms of various performance metrics such as accuracy, precision, recall, F1 score, and ROC–AUC. The proposed memetic firefly-based boosting approach is dominant over all the other considered methods with an accuracy of 99.36% and is robust for accurate hand gesture recognition.
•Ensembled LightGBM is proposed for identification of hand gesture recognition.•Improved memetic firefly algorithm is proposed to tune the hyper-parameters.•A new perturbation operator is used in MFA for avoiding the local optimal solution.•Proved best outfit model as compared to other state-of-the-art models. |
|---|---|
| AbstractList | Hand gesture is considered as one of the natural ways to interact with computers. The utility of hand gesture-based application is a recent trend and is an effective method for human–computer interaction. Though many static and other intelligent approaches using Machine learning (ML) are developed, still there is a marginal tradeoff between the computational cost and accuracy. In this paper, a Lightboost based Gradient boosting machine (LightGBM) is proposed for efficient hand gesture recognition. The hyper-parameters of the LightGBM are optimized with an improved memetic firefly algorithm. We have introduced a perturbation operator and incorporated it in the proposed memetic firefly algorithm for avoiding the local optimal solution in the traditional firefly algorithm. With comparative analysis among the proposed method and other competitive ML methods, the performance of the proposed method is found to be better in terms of various performance metrics such as accuracy, precision, recall, F1 score, and ROC–AUC. The proposed memetic firefly-based boosting approach is dominant over all the other considered methods with an accuracy of 99.36% and is robust for accurate hand gesture recognition.
•Ensembled LightGBM is proposed for identification of hand gesture recognition.•Improved memetic firefly algorithm is proposed to tune the hyper-parameters.•A new perturbation operator is used in MFA for avoiding the local optimal solution.•Proved best outfit model as compared to other state-of-the-art models. |
| ArticleNumber | 107478 |
| Author | Shanmuganathan, Vimal Souri, Alireza Naik, Bighnaraj Dash, Pandit Byomakesha Nayak, Janmenjoy |
| Author_xml | – sequence: 1 givenname: Janmenjoy orcidid: 0000-0002-9746-6557 surname: Nayak fullname: Nayak, Janmenjoy email: jnayak@ieee.org organization: Department of Computer Science and Engineering, Aditya Institute of Technology and Management (AITAM), Tekkali, 532201, India – sequence: 2 givenname: Bighnaraj surname: Naik fullname: Naik, Bighnaraj email: bnaik_mca@vssut.ac.in organization: Department of Computer Application, Veer Surendra Sai University of Technology, Burla, 768018, India – sequence: 3 givenname: Pandit Byomakesha surname: Dash fullname: Dash, Pandit Byomakesha email: byomakeshdash2000@gmail.com organization: Department of Computer Application, Veer Surendra Sai University of Technology, Burla, 768018, India – sequence: 4 givenname: Alireza surname: Souri fullname: Souri, Alireza email: a.souri@srbiau.ac.ir organization: Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran – sequence: 5 givenname: Vimal orcidid: 0000-0002-1467-1206 surname: Shanmuganathan fullname: Shanmuganathan, Vimal email: svimalphd@gmail.com organization: Department of Computer Science and Engineering, Ramco Institute of Technology, Rajapalayam, Tamilnadu, India |
| BookMark | eNp9kMtqwzAQRUVJoUnaH-hKP-BUVixbhm5K6AsC3bRrIckjW8GRgqQU8veVm666yGoecIY7Z4FmzjtA6L4kq5KU9cNuJaPXK0pomRdN1fArNC95Q4u25uUs96zmRdVW9Q1axLgjGWopn6PwdjpAKA4yyD0kCDgdHXR4tP2QcB9kZ8ElrLyPyboe76UerAN8jL8TZMZqbGwAM56wHHsfbBr22PiAB-k63ENMxwA4gPa9s8l6d4uujRwj3P3VJfp6ef7cvBXbj9f3zdO20HRNUlFrY8pWUcZ026ra8I6winJeUdWqRtak4boxLV_XFFilNAOiDWOqUaRTTHbrJeLnuzr4GHNCoW2SU4IUpB1FScTkTuzE5E5M7sTZXUbpP_QQ7F6G02Xo8QxBfurbQhBRZ3sauqxHJ9F5ewn_AXq8jcY |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3412930 crossref_primary_10_1177_17442591251333144 crossref_primary_10_1007_s44290_025_00254_4 crossref_primary_10_1016_j_asoc_2021_107928 crossref_primary_10_1016_j_tws_2022_109424 crossref_primary_10_1007_s13042_025_02719_5 crossref_primary_10_1109_ACCESS_2024_3421992 crossref_primary_10_3390_molecules28052326 crossref_primary_10_1177_1063293X251349113 crossref_primary_10_1016_j_buildenv_2023_110252 crossref_primary_10_1049_rpg2_12294 crossref_primary_10_1007_s11042_023_15397_8 crossref_primary_10_3390_electronics12071520 crossref_primary_10_1088_1742_6596_2383_1_012081 crossref_primary_10_3354_cr01723 crossref_primary_10_1016_j_compbiomed_2021_104867 crossref_primary_10_1080_21681163_2023_2227735 crossref_primary_10_3390_rs15215202 crossref_primary_10_1016_j_eswa_2024_125929 crossref_primary_10_1016_j_knosys_2023_110828 crossref_primary_10_1038_s41598_025_05935_9 crossref_primary_10_1016_j_engappai_2024_109868 crossref_primary_10_3390_buildings13122914 crossref_primary_10_1016_j_isatra_2021_10_019 crossref_primary_10_1080_00051144_2023_2251229 crossref_primary_10_1016_j_jksuci_2023_101737 crossref_primary_10_1016_j_procs_2025_04_468 crossref_primary_10_1007_s44174_023_00079_8 crossref_primary_10_1016_j_eswa_2023_121121 crossref_primary_10_1016_j_asoc_2022_109243 crossref_primary_10_1016_j_jhydrol_2023_129307 crossref_primary_10_1016_j_measurement_2021_110260 |
| Cites_doi | 10.1016/j.aei.2020.101201 10.1016/j.cviu.2015.08.004 10.3389/fnbot.2017.00007 10.1007/978-3-540-89985-3_38 10.1109/SMC.2014.6973901 10.3390/s20092467 10.3390/s16081341 10.1214/aos/1013203451 10.1016/S1050-6411(97)00010-2 10.1109/TBCAS.2019.2953998 10.1145/2939672.2939785 10.1016/j.neucom.2020.03.009 10.1109/TNSRE.2013.2247631 10.1109/TNSRE.2019.2961706 10.1109/ACCESS.2019.2962974 10.1007/s41060-016-0008-z 10.1016/j.agwat.2019.105758 10.1002/wics.1275 10.3390/app10020722 10.1145/1502650.1502708 10.1504/IJBIC.2010.032124 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2021.107478 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2021_107478 S1568494621004014 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c230t-6cff19b255c99b6f8d05428842b9b7a6078c7f98362e54bc5e0cf55b7b0db5ad3 |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663739100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Sat Nov 29 07:01:06 EST 2025 Tue Nov 18 21:45:57 EST 2025 Fri Feb 23 02:44:22 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Memetic firefly algorithm Ensemble learning Light gradient boosting machine Hand gesture recognition |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c230t-6cff19b255c99b6f8d05428842b9b7a6078c7f98362e54bc5e0cf55b7b0db5ad3 |
| ORCID | 0000-0002-9746-6557 0000-0002-1467-1206 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2021_107478 crossref_primary_10_1016_j_asoc_2021_107478 elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107478 |
| PublicationCentury | 2000 |
| PublicationDate | August 2021 2021-08-00 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | I. Fister, Jr., I. Fister, J. Brest, X.S. Yang, Memetic firefly algorithm for combinatorial optimisation, in: B. Filipič, J. Silc (Eds.), Bioinspired Optimisation Methods and their Applications, BIOMA2012, 24–25 May 2012, Bohinj, Slovenia, 2012, pp. 75–86. Tsai, Huang, Zhang (b6) 2015 Friedman (b28) 2001; 29 Tran (b1) 2020; 10 Erözen (b43) 2020; 4 Jaramillo-Yánez, Benalcázar, Mena-Maldonado (b11) 2020; 20 Wahid, Tafreshi, Langari (b32) 2019; 28 Starner, Pentland (b4) 1997 Vujaklija (b48) 2017; 11 Yang, Pan, Li (b40) 2017 Song (b21) 2019; 13 Badi (b56) 2016; 1 Palermo (b19) 2017 Dhieb (b22) 2019 Tran (b41) 2020; 10 Ke (b30) 2017 A. Gardner, C.A. Duncan, J. Kanno, R. Selmic, 3D hand posture recognition from small unlabeled point sets, in: 2014 IEEE International Conference on Systems, Man and Cybernetics, SMC, 2014, pp. 164–169. Moschetti (b9) 2016; 16 . Glaser, Holobar, Zazula (b46) 2013; 21 Tianqi Chen, Carlos Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd ACMSIGKDD International Conference on Knowledge Discovery and Data Mining, 2016. Pujan Ziaie, et al. Using a Naive bayes classifier-based on K-nearest neighbors with distance-weighting for static hand-gesture recognition in a human-robot dialog system, in: CSICC, 2008. PanditByomakesha Dash, et al. Model based IoT security framework using multiclass adaptive boosting with SMOTE, in: Security and Privacy Malima, Özgür, Çetin (b2) 2006 Chakraborty (b24) 2020; 46 Sugiyama, Yamada, du Plessis (b13) 2013; 5 Gallo, Placitelli, Ciampi (b5) 2011 Caceres (b14) 2014 Donovan (b52) 2017 Li (b44) 2017 Ding (b35) 2020 Benatti (b51) 2017 Vo, Nguyen, Le (b34) 2019; 8 Snow (b39) 2020 Benalcázar (b50) 2017 Jiménez, Benalcázar, Sotomayor (b8) 2017 Jia (b33) 2020 Guo Dong, Yonghua Yan, M. Xie, Vision-based hand gesture recognition for human-vehicle interaction, in: Proc. of the International Conference on Control, Automation and Computer Vision, Vol. 1, 1998. Merletti, Conte (b12) 1997; 7 Fan (b23) 2019; 225 Freund, Schapire (b27) 1996 Moschetti (b45) 2016; 16 Wang, Zhang, Zhuang (b20) 2012; 2012 Ortiz-Catalan (b47) 2015 Kumar, Saerbeck (b7) 2015; 141 Nagashree (b17) 2005; 4 Trigueiros, Ribeiro, Reis (b15) 2012 Eshitha, Jose (b18) 2018 Shah, Shah, Shah, Bhowmick (b55) 2020 De Andrade (b31) 2019 Matoušek, Tihelka (b36) 2019 Feng (b42) 2019 Benalcázar (b49) 2017 Machado, Karray, de Sousa (b38) 2019 Yang (b26) 2010; 2 Xu Zhang, et al. Hand gesture recognition and virtual game control based on 3D accelerometer and EMG sensors, in: Proceedings of the 14th International Conference on Intelligent User Interfaces, 2009. Rafi (b37) 2020; 1 Eshitha (10.1016/j.asoc.2021.107478_b18) 2018 Moschetti (10.1016/j.asoc.2021.107478_b9) 2016; 16 Benalcázar (10.1016/j.asoc.2021.107478_b50) 2017 10.1016/j.asoc.2021.107478_b16 Fan (10.1016/j.asoc.2021.107478_b23) 2019; 225 Tran (10.1016/j.asoc.2021.107478_b41) 2020; 10 Machado (10.1016/j.asoc.2021.107478_b38) 2019 10.1016/j.asoc.2021.107478_b10 Jaramillo-Yánez (10.1016/j.asoc.2021.107478_b11) 2020; 20 10.1016/j.asoc.2021.107478_b54 Tsai (10.1016/j.asoc.2021.107478_b6) 2015 Palermo (10.1016/j.asoc.2021.107478_b19) 2017 10.1016/j.asoc.2021.107478_b53 Ortiz-Catalan (10.1016/j.asoc.2021.107478_b47) 2015 Ke (10.1016/j.asoc.2021.107478_b30) 2017 Friedman (10.1016/j.asoc.2021.107478_b28) 2001; 29 Glaser (10.1016/j.asoc.2021.107478_b46) 2013; 21 Sugiyama (10.1016/j.asoc.2021.107478_b13) 2013; 5 Kumar (10.1016/j.asoc.2021.107478_b7) 2015; 141 Moschetti (10.1016/j.asoc.2021.107478_b45) 2016; 16 Vujaklija (10.1016/j.asoc.2021.107478_b48) 2017; 11 Wahid (10.1016/j.asoc.2021.107478_b32) 2019; 28 Yang (10.1016/j.asoc.2021.107478_b40) 2017 Dhieb (10.1016/j.asoc.2021.107478_b22) 2019 Li (10.1016/j.asoc.2021.107478_b44) 2017 Feng (10.1016/j.asoc.2021.107478_b42) 2019 Erözen (10.1016/j.asoc.2021.107478_b43) 2020; 4 10.1016/j.asoc.2021.107478_b3 Merletti (10.1016/j.asoc.2021.107478_b12) 1997; 7 Rafi (10.1016/j.asoc.2021.107478_b37) 2020; 1 Donovan (10.1016/j.asoc.2021.107478_b52) 2017 Jia (10.1016/j.asoc.2021.107478_b33) 2020 Shah (10.1016/j.asoc.2021.107478_b55) 2020 Vo (10.1016/j.asoc.2021.107478_b34) 2019; 8 Benatti (10.1016/j.asoc.2021.107478_b51) 2017 Starner (10.1016/j.asoc.2021.107478_b4) 1997 Benalcázar (10.1016/j.asoc.2021.107478_b49) 2017 Nagashree (10.1016/j.asoc.2021.107478_b17) 2005; 4 Freund (10.1016/j.asoc.2021.107478_b27) 1996 Snow (10.1016/j.asoc.2021.107478_b39) 2020 10.1016/j.asoc.2021.107478_b25 De Andrade (10.1016/j.asoc.2021.107478_b31) 2019 Badi (10.1016/j.asoc.2021.107478_b56) 2016; 1 Gallo (10.1016/j.asoc.2021.107478_b5) 2011 Tran (10.1016/j.asoc.2021.107478_b1) 2020; 10 Matoušek (10.1016/j.asoc.2021.107478_b36) 2019 Wang (10.1016/j.asoc.2021.107478_b20) 2012; 2012 Malima (10.1016/j.asoc.2021.107478_b2) 2006 Yang (10.1016/j.asoc.2021.107478_b26) 2010; 2 Caceres (10.1016/j.asoc.2021.107478_b14) 2014 Trigueiros (10.1016/j.asoc.2021.107478_b15) 2012 Chakraborty (10.1016/j.asoc.2021.107478_b24) 2020; 46 Ding (10.1016/j.asoc.2021.107478_b35) 2020 Jiménez (10.1016/j.asoc.2021.107478_b8) 2017 10.1016/j.asoc.2021.107478_b29 Song (10.1016/j.asoc.2021.107478_b21) 2019; 13 |
| References_xml | – volume: 10 start-page: 722 year: 2020 ident: b1 article-title: Real-time hand gesture spotting and recognition using RGB-D camera and 3D convolutional neural network publication-title: Appl. Sci. – reference: Xu Zhang, et al. Hand gesture recognition and virtual game control based on 3D accelerometer and EMG sensors, in: Proceedings of the 14th International Conference on Intelligent User Interfaces, 2009. – year: 2020 ident: b39 article-title: FairPut: A light framework for machine learning fairness with LightGBM – reference: Guo Dong, Yonghua Yan, M. Xie, Vision-based hand gesture recognition for human-vehicle interaction, in: Proc. of the International Conference on Control, Automation and Computer Vision, Vol. 1, 1998. – start-page: 227 year: 1997 end-page: 243 ident: b4 article-title: Real-time american sign language recognition from video using hidden markov models publication-title: Motion-Based Recognition – volume: 20 start-page: 2467 year: 2020 ident: b11 article-title: Real-time hand gesture recognition using surface electromyography and machine learning: A systematic literature review publication-title: Sensors – year: 2020 ident: b55 article-title: Comparative analysis of hand gesture recognition techniques: A review publication-title: Advanced Computing Technologies and Applications – volume: 5 start-page: 465 year: 2013 end-page: 477 ident: b13 article-title: Learning under nonstationarity: covariate shift and class-balance change publication-title: Wiley Interdiscip. Rev. Comput. Stat. – year: 2014 ident: b14 article-title: Machine Learning Techniques for Gesture Recognition – volume: 2 start-page: 78 year: 2010 end-page: 84 ident: b26 article-title: Firefly algorithm, stochastic test functions and design optimisation publication-title: Int. J. Bio-Inspir. Comput. – volume: 16 year: 2016 ident: b45 article-title: Recognition of daily gestures withwearable inertial rings and bracelets publication-title: Sensors – year: 2017 ident: b50 article-title: Real-time hand gesture recognition using the Myo armband and muscle activity detection publication-title: 2017 IEEE Second Ecuador Technical Chapters Meeting – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: b28 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Statist. – volume: 1 start-page: 77 year: 2016 end-page: 87 ident: b56 article-title: Recent methods in vision-based hand gesture recognition publication-title: Int. J. Data Sci. Anal. – reference: I. Fister, Jr., I. Fister, J. Brest, X.S. Yang, Memetic firefly algorithm for combinatorial optimisation, in: B. Filipič, J. Silc (Eds.), Bioinspired Optimisation Methods and their Applications, BIOMA2012, 24–25 May 2012, Bohinj, Slovenia, 2012, pp. 75–86. – start-page: 1 year: 2006 end-page: 4 ident: b2 article-title: A fast algorithm for vision-based hand gesture recognition for robot control – volume: 10 start-page: 722 year: 2020 ident: b41 article-title: Real-time hand gesture spotting and recognition using RGB-D camera and 3D convolutional neural network publication-title: Appl. Sci. – volume: 2012 year: 2012 ident: b20 article-title: An application of classifier combination methods in hand gesture recognition publication-title: Math. Probl. Eng. – start-page: 148 year: 1996 end-page: 156 ident: b27 article-title: Experiments with a new boosting algorithm publication-title: Proceedings of the Thirteenth International Conference on Machine Learning Theory – year: 2017 ident: b40 article-title: sEMG-based continuous hand gesture recognition using GMM-HMM and threshold model publication-title: 2017 IEEE International Conference on Robotics and Biomimetics – year: 2017 ident: b44 article-title: Hand gesture recognition for post-stroke rehabilitation using leap motion publication-title: 2017 International Conference on Applied System Innovation – start-page: 233 year: 2017 end-page: 236 ident: b8 article-title: Gesture recognition and machine learning applied to sign language translation publication-title: VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th–28th, 2016 – year: 2017 ident: b19 article-title: Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data publication-title: 2017 International Conference on Rehabilitation Robotics – year: 2020 ident: b35 article-title: A new method of human gesture recognition using Wi-Fi signals based on XGBoost publication-title: 2020 IEEE/CIC International Conference on Communications in China – volume: 141 start-page: 152 year: 2015 end-page: 165 ident: b7 article-title: Recent methods and databases in vision-based hand gesture recognition: A review publication-title: Comput. Vis. Image Underst. – year: 2018 ident: b18 article-title: Hand gesture recognition using artificial neural network publication-title: 2018 International Conference on Circuits and Systems in Digital Enterprise Technology – year: 2015 ident: b6 article-title: Embedded virtual mouse system by using hand gesture recognition publication-title: 2015 IEEE International Conference on Consumer Electronics-Taiwan – year: 2019 ident: b38 article-title: LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry publication-title: 2019 14th International Conference on Computer Science & Education – volume: 225 year: 2019 ident: b23 article-title: Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data publication-title: Agricult. Water Manag. – volume: 11 start-page: 7 year: 2017 ident: b48 article-title: Translating research on myoelectric control into clinics—Are the performance assessment methods adequate? publication-title: Front. Neurorobotics – year: 2015 ident: b47 article-title: Offline accuracy: a potentially misleading metric in myoelectric pattern recognition for prosthetic control publication-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – year: 2017 ident: b49 article-title: Hand gesture recognition using machine learning and the Myo armband publication-title: 2017 25th European Signal Processing Conference – volume: 28 start-page: 427 year: 2019 end-page: 436 ident: b32 article-title: A multi-window majority voting strategy to improve hand gesture recognition accuracies using electromyography signal publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – year: 2019 ident: b42 article-title: Hand gesture recognition with ensemble time-frequency signatures using enhanced deep convolutional neural network publication-title: 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference – year: 2019 ident: b36 article-title: Using extreme gradient boosting to detect glottal closure instants in speech signal publication-title: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing – year: 2020 ident: b33 article-title: Classification of electromyographic hand gesture signals using machine learning techniques publication-title: Neurocomputing – reference: A. Gardner, C.A. Duncan, J. Kanno, R. Selmic, 3D hand posture recognition from small unlabeled point sets, in: 2014 IEEE International Conference on Systems, Man and Cybernetics, SMC, 2014, pp. 164–169. – volume: 46 year: 2020 ident: b24 article-title: A novel construction cost prediction model using hybrid natural and light gradient boosting publication-title: Adv. Eng. Inform. – reference: Pujan Ziaie, et al. Using a Naive bayes classifier-based on K-nearest neighbors with distance-weighting for static hand-gesture recognition in a human-robot dialog system, in: CSICC, 2008. – reference: PanditByomakesha Dash, et al. Model based IoT security framework using multiclass adaptive boosting with SMOTE, in: Security and Privacy, – year: 2017 ident: b52 article-title: Simple space-domain features for low-resolution sEMG pattern recognition publication-title: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 1 start-page: 1 year: 2020 end-page: 19 ident: b37 article-title: Electroencephalogram (EEG) brainwave signal-based emotion recognition using extreme gradient boosting algorithm publication-title: Ann. Eng. – volume: 21 start-page: 949 year: 2013 end-page: 958 ident: b46 article-title: Real-time motor unit identification from high-density surface EMG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 16 start-page: 1341 year: 2016 ident: b9 article-title: Recognition of daily gestures with wearable inertial rings and bracelets publication-title: Sensors – volume: 4 start-page: 42 year: 2005 end-page: 46 ident: b17 article-title: Hand gesture recognition using support vector machine publication-title: Int. J. Eng. Sci. – year: 2017 ident: b30 article-title: Lightgbm: A highly efficient gradient boosting decision tree publication-title: Advances in Neural Information Processing Systems – year: 2017 ident: b51 article-title: A sub-10 mW real-time implementation for EMG hand gesture recognition based on a multi-core biomedical SoC publication-title: 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces – year: 2019 ident: b31 article-title: Improving sEMG-based hand gesture recognition using maximal overlap discrete wavelet transform and an autoencoder neural network publication-title: XXVI Brazilian Congress on Biomedical Engineering – reference: . – year: 2019 ident: b22 article-title: Extreme gradient boosting machine learning algorithm for safe auto insurance operations publication-title: 2019 IEEE International Conference of Vehicular Electronics and Safety – reference: Tianqi Chen, Carlos Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd ACMSIGKDD International Conference on Knowledge Discovery and Data Mining, 2016. – year: 2012 ident: b15 article-title: A comparison of machine learning algorithms applied to hand gesture recognition publication-title: 7th Iberian Conference on Information Systems and Technologies – volume: 13 start-page: 1563 year: 2019 end-page: 1574 ident: b21 article-title: Design of a flexible wearable smart sEMG recorder integrated gradient boosting decision tree based hand gesture recognition publication-title: IEEE Trans. Biomed. Circuits Syst. – volume: 4 start-page: 44 year: 2020 end-page: 55 ident: b43 article-title: A new CNN approach for hand gesture classification using sEMG data publication-title: J. Innov. Sci. Eng. – volume: 7 start-page: 241 year: 1997 end-page: 250 ident: b12 article-title: Surface EMG signal processing during isometric contractions publication-title: J. Electromyography Kinesiol. – year: 2011 ident: b5 article-title: Controller-free exploration of medical image data: Experiencing the kinect publication-title: 2011 24th International Symposium on Computer-Based Medical Systems – volume: 8 start-page: 3687 year: 2019 end-page: 3694 ident: b34 article-title: Robust head pose estimation using extreme gradient boosting machine on stacked autoencoders neural network publication-title: IEEE Access – volume: 46 year: 2020 ident: 10.1016/j.asoc.2021.107478_b24 article-title: A novel construction cost prediction model using hybrid natural and light gradient boosting publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2020.101201 – volume: 141 start-page: 152 year: 2015 ident: 10.1016/j.asoc.2021.107478_b7 article-title: Recent methods and databases in vision-based hand gesture recognition: A review publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2015.08.004 – year: 2011 ident: 10.1016/j.asoc.2021.107478_b5 article-title: Controller-free exploration of medical image data: Experiencing the kinect – year: 2015 ident: 10.1016/j.asoc.2021.107478_b6 article-title: Embedded virtual mouse system by using hand gesture recognition – volume: 11 start-page: 7 year: 2017 ident: 10.1016/j.asoc.2021.107478_b48 article-title: Translating research on myoelectric control into clinics—Are the performance assessment methods adequate? publication-title: Front. Neurorobotics doi: 10.3389/fnbot.2017.00007 – volume: 1 start-page: 1 issue: 2 year: 2020 ident: 10.1016/j.asoc.2021.107478_b37 article-title: Electroencephalogram (EEG) brainwave signal-based emotion recognition using extreme gradient boosting algorithm publication-title: Ann. Eng. – volume: 2012 year: 2012 ident: 10.1016/j.asoc.2021.107478_b20 article-title: An application of classifier combination methods in hand gesture recognition publication-title: Math. Probl. Eng. – volume: 4 start-page: 44 issue: 1 year: 2020 ident: 10.1016/j.asoc.2021.107478_b43 article-title: A new CNN approach for hand gesture classification using sEMG data publication-title: J. Innov. Sci. Eng. – ident: 10.1016/j.asoc.2021.107478_b16 doi: 10.1007/978-3-540-89985-3_38 – ident: 10.1016/j.asoc.2021.107478_b53 doi: 10.1109/SMC.2014.6973901 – start-page: 227 year: 1997 ident: 10.1016/j.asoc.2021.107478_b4 article-title: Real-time american sign language recognition from video using hidden markov models – volume: 20 start-page: 2467 issue: 9 year: 2020 ident: 10.1016/j.asoc.2021.107478_b11 article-title: Real-time hand gesture recognition using surface electromyography and machine learning: A systematic literature review publication-title: Sensors doi: 10.3390/s20092467 – start-page: 233 year: 2017 ident: 10.1016/j.asoc.2021.107478_b8 article-title: Gesture recognition and machine learning applied to sign language translation – year: 2019 ident: 10.1016/j.asoc.2021.107478_b42 article-title: Hand gesture recognition with ensemble time-frequency signatures using enhanced deep convolutional neural network – year: 2015 ident: 10.1016/j.asoc.2021.107478_b47 article-title: Offline accuracy: a potentially misleading metric in myoelectric pattern recognition for prosthetic control – year: 2017 ident: 10.1016/j.asoc.2021.107478_b51 article-title: A sub-10 mW real-time implementation for EMG hand gesture recognition based on a multi-core biomedical SoC – start-page: 1 year: 2006 ident: 10.1016/j.asoc.2021.107478_b2 – volume: 16 start-page: 1341 issue: 8 year: 2016 ident: 10.1016/j.asoc.2021.107478_b9 article-title: Recognition of daily gestures with wearable inertial rings and bracelets publication-title: Sensors doi: 10.3390/s16081341 – volume: 29 start-page: 1189 year: 2001 ident: 10.1016/j.asoc.2021.107478_b28 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Statist. doi: 10.1214/aos/1013203451 – year: 2017 ident: 10.1016/j.asoc.2021.107478_b52 article-title: Simple space-domain features for low-resolution sEMG pattern recognition – year: 2017 ident: 10.1016/j.asoc.2021.107478_b19 article-title: Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data – volume: 7 start-page: 241 issue: 4 year: 1997 ident: 10.1016/j.asoc.2021.107478_b12 article-title: Surface EMG signal processing during isometric contractions publication-title: J. Electromyography Kinesiol. doi: 10.1016/S1050-6411(97)00010-2 – year: 2012 ident: 10.1016/j.asoc.2021.107478_b15 article-title: A comparison of machine learning algorithms applied to hand gesture recognition – volume: 13 start-page: 1563 issue: 6 year: 2019 ident: 10.1016/j.asoc.2021.107478_b21 article-title: Design of a flexible wearable smart sEMG recorder integrated gradient boosting decision tree based hand gesture recognition publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2019.2953998 – year: 2017 ident: 10.1016/j.asoc.2021.107478_b30 article-title: Lightgbm: A highly efficient gradient boosting decision tree – volume: 16 issue: 8 year: 2016 ident: 10.1016/j.asoc.2021.107478_b45 article-title: Recognition of daily gestures withwearable inertial rings and bracelets publication-title: Sensors doi: 10.3390/s16081341 – ident: 10.1016/j.asoc.2021.107478_b29 doi: 10.1145/2939672.2939785 – year: 2020 ident: 10.1016/j.asoc.2021.107478_b33 article-title: Classification of electromyographic hand gesture signals using machine learning techniques publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.03.009 – year: 2020 ident: 10.1016/j.asoc.2021.107478_b35 article-title: A new method of human gesture recognition using Wi-Fi signals based on XGBoost – volume: 21 start-page: 949 issue: 6 year: 2013 ident: 10.1016/j.asoc.2021.107478_b46 article-title: Real-time motor unit identification from high-density surface EMG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2247631 – start-page: 148 year: 1996 ident: 10.1016/j.asoc.2021.107478_b27 article-title: Experiments with a new boosting algorithm – year: 2017 ident: 10.1016/j.asoc.2021.107478_b50 article-title: Real-time hand gesture recognition using the Myo armband and muscle activity detection – volume: 28 start-page: 427 issue: 2 year: 2019 ident: 10.1016/j.asoc.2021.107478_b32 article-title: A multi-window majority voting strategy to improve hand gesture recognition accuracies using electromyography signal publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2961706 – year: 2019 ident: 10.1016/j.asoc.2021.107478_b36 article-title: Using extreme gradient boosting to detect glottal closure instants in speech signal – ident: 10.1016/j.asoc.2021.107478_b25 – year: 2017 ident: 10.1016/j.asoc.2021.107478_b40 article-title: sEMG-based continuous hand gesture recognition using GMM-HMM and threshold model – ident: 10.1016/j.asoc.2021.107478_b3 – volume: 8 start-page: 3687 year: 2019 ident: 10.1016/j.asoc.2021.107478_b34 article-title: Robust head pose estimation using extreme gradient boosting machine on stacked autoencoders neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2962974 – volume: 1 start-page: 77 year: 2016 ident: 10.1016/j.asoc.2021.107478_b56 article-title: Recent methods in vision-based hand gesture recognition publication-title: Int. J. Data Sci. Anal. doi: 10.1007/s41060-016-0008-z – volume: 225 year: 2019 ident: 10.1016/j.asoc.2021.107478_b23 article-title: Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data publication-title: Agricult. Water Manag. doi: 10.1016/j.agwat.2019.105758 – volume: 5 start-page: 465 issue: 6 year: 2013 ident: 10.1016/j.asoc.2021.107478_b13 article-title: Learning under nonstationarity: covariate shift and class-balance change publication-title: Wiley Interdiscip. Rev. Comput. Stat. doi: 10.1002/wics.1275 – year: 2017 ident: 10.1016/j.asoc.2021.107478_b49 article-title: Hand gesture recognition using machine learning and the Myo armband – year: 2019 ident: 10.1016/j.asoc.2021.107478_b22 article-title: Extreme gradient boosting machine learning algorithm for safe auto insurance operations – year: 2020 ident: 10.1016/j.asoc.2021.107478_b39 – ident: 10.1016/j.asoc.2021.107478_b54 – year: 2014 ident: 10.1016/j.asoc.2021.107478_b14 – year: 2019 ident: 10.1016/j.asoc.2021.107478_b31 article-title: Improving sEMG-based hand gesture recognition using maximal overlap discrete wavelet transform and an autoencoder neural network – volume: 10 start-page: 722 issue: 2 year: 2020 ident: 10.1016/j.asoc.2021.107478_b41 article-title: Real-time hand gesture spotting and recognition using RGB-D camera and 3D convolutional neural network publication-title: Appl. Sci. doi: 10.3390/app10020722 – volume: 10 start-page: 722 issue: 2 year: 2020 ident: 10.1016/j.asoc.2021.107478_b1 article-title: Real-time hand gesture spotting and recognition using RGB-D camera and 3D convolutional neural network publication-title: Appl. Sci. doi: 10.3390/app10020722 – year: 2017 ident: 10.1016/j.asoc.2021.107478_b44 article-title: Hand gesture recognition for post-stroke rehabilitation using leap motion – year: 2018 ident: 10.1016/j.asoc.2021.107478_b18 article-title: Hand gesture recognition using artificial neural network – ident: 10.1016/j.asoc.2021.107478_b10 doi: 10.1145/1502650.1502708 – year: 2019 ident: 10.1016/j.asoc.2021.107478_b38 article-title: LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry – volume: 4 start-page: 42 issue: 6 year: 2005 ident: 10.1016/j.asoc.2021.107478_b17 article-title: Hand gesture recognition using support vector machine publication-title: Int. J. Eng. Sci. – year: 2020 ident: 10.1016/j.asoc.2021.107478_b55 article-title: Comparative analysis of hand gesture recognition techniques: A review – volume: 2 start-page: 78 issue: 2 year: 2010 ident: 10.1016/j.asoc.2021.107478_b26 article-title: Firefly algorithm, stochastic test functions and design optimisation publication-title: Int. J. Bio-Inspir. Comput. doi: 10.1504/IJBIC.2010.032124 |
| SSID | ssj0016928 |
| Score | 2.4785945 |
| Snippet | Hand gesture is considered as one of the natural ways to interact with computers. The utility of hand gesture-based application is a recent trend and is an... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107478 |
| SubjectTerms | Ensemble learning Hand gesture recognition Light gradient boosting machine Memetic firefly algorithm |
| Title | Hyper-parameter tuned light gradient boosting machine using memetic firefly algorithm for hand gesture recognition |
| URI | https://dx.doi.org/10.1016/j.asoc.2021.107478 |
| Volume | 107 |
| WOSCitedRecordID | wos000663739100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECZcp0OXvoukL3DoJsiwZFEix6RIkRZF0CEFvAkkRaZ2JDmQ5SDOb8mP7ZEiZddIg2boIhh6nAnf59M9Pt4h9CmTlNFIyZAKQsIkS4qQR4RDqCLjRGU6nUjbZ_Z7dnpKp1P2YzC49Xthrsqsrun1Nbv8r6qGc6Bss3X2AeruhcIJ-AxKhyOoHY7_pPgTiCyb0LT0rgzVJWhXYEmD0gThwXljGV5tAL710hKeK0umVMHK5gwqVZlNjYEGQ6jLdcDL80Uza39Vlo1ok-ymHmWKDj3zyOnVd7J1Xu0SzLvlq69a_3I0KWe-5hcdOdewEOaL9ebKzF44gnXWsPb5JoW-dBRGU1wPjtaLil-YOlWfGzJlhG6vDqz6hm_nMeKoZ9H1pjelYcJcQtLb5m4krrOuke32f6fh73IQ8xEHTI-M-NHm5j-7bO-8_XpOoqe7zXMjIzcy8k7GI7QXZ4TRIdo7_Ho8_dZXqVJmZ_f2K3ebsjr-4O5K7nZ8tpyZs-foqYtC8GGHnhdooOqX6Jmf8IGdwX-Fmh0wYQsmbMGEPZiwBxN2YMIWTNiBCTsw4R5MGMCEDZiwAxPeAtNr9PPL8dnnk9BN6QglhK9tmEqtIyYgNJWMiVTTAqKAmNIkFkxkPAUfVGaaUfCUFEmEJGosNSEiE-NCEF5M3qBhvajVPsLjOC2olpqmdJyoBKyI0gkTKppwOhaMHaDI_4S5dC3szSSVMv-78g5Q0D9z2TVwufdu4jWTOxe0cy1zANo9z7190Le8Q082_4D3aNg2K_UBPZZX7WzZfHQo-w0Z563z |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyper-parameter+tuned+light+gradient+boosting+machine+using+memetic+firefly+algorithm+for+hand+gesture+recognition&rft.jtitle=Applied+soft+computing&rft.au=Nayak%2C+Janmenjoy&rft.au=Naik%2C+Bighnaraj&rft.au=Dash%2C+Pandit+Byomakesha&rft.au=Souri%2C+Alireza&rft.date=2021-08-01&rft.issn=1568-4946&rft.volume=107&rft.spage=107478&rft_id=info:doi/10.1016%2Fj.asoc.2021.107478&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2021_107478 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |