Use of dynamic adaptive chemistry and dynamic cell clustering in computational fluid dynamics to accelerate calculation of combustion simulation of diesel engine

•Effects of dynamic adaptive chemistry and dynamic cell clustering has been examined at several working conditions.•The threshold value of DAC should not be too small.•The two parameters of DCC will affect the formation of NOx and soot.•Both DAC and DCC can reduce the time required for calculation a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Fuel (Guildford) Ročník 338; s. 127360
Hlavní autoři: Feng, Shiquan, Zhang, Hongmei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.04.2023
Témata:
ISSN:0016-2361, 1873-7153
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Effects of dynamic adaptive chemistry and dynamic cell clustering has been examined at several working conditions.•The threshold value of DAC should not be too small.•The two parameters of DCC will affect the formation of NOx and soot.•Both DAC and DCC can reduce the time required for calculation and can be applied together. Based on the theory of dynamic adaptive chemistry and dynamic cell clustering, a 3D model for fuel combustion in the cylinder is constructed to study the fast calculation algorithm to accelerate the engine combustion simulation and analyze the impacts of the basic structure and the main parameters of dynamic adaptive chemistry and dynamic cell clustering on diesel engine simulation. It is found that the error threshold value of the dynamic adaptive chemistry algorithm should be set appropriately to ensure the accuracy of the simulation, and the dynamic adaptive chemistry algorithm should employ different initial search species and threshold values to meet different research objectives. Regarding the dynamic cell clustering algorithm, the data accuracy in the overall spatial range can be guaranteed, but the local location information will be missing, which will have a great impact on the prediction of pollutants. Therefore, suitable cell clustering conditions should be selected to meet the requirements of different targets.
AbstractList •Effects of dynamic adaptive chemistry and dynamic cell clustering has been examined at several working conditions.•The threshold value of DAC should not be too small.•The two parameters of DCC will affect the formation of NOx and soot.•Both DAC and DCC can reduce the time required for calculation and can be applied together. Based on the theory of dynamic adaptive chemistry and dynamic cell clustering, a 3D model for fuel combustion in the cylinder is constructed to study the fast calculation algorithm to accelerate the engine combustion simulation and analyze the impacts of the basic structure and the main parameters of dynamic adaptive chemistry and dynamic cell clustering on diesel engine simulation. It is found that the error threshold value of the dynamic adaptive chemistry algorithm should be set appropriately to ensure the accuracy of the simulation, and the dynamic adaptive chemistry algorithm should employ different initial search species and threshold values to meet different research objectives. Regarding the dynamic cell clustering algorithm, the data accuracy in the overall spatial range can be guaranteed, but the local location information will be missing, which will have a great impact on the prediction of pollutants. Therefore, suitable cell clustering conditions should be selected to meet the requirements of different targets.
ArticleNumber 127360
Author Feng, Shiquan
Zhang, Hongmei
Author_xml – sequence: 1
  givenname: Shiquan
  surname: Feng
  fullname: Feng, Shiquan
  email: fengshiquan@outlook.com
– sequence: 2
  givenname: Hongmei
  surname: Zhang
  fullname: Zhang, Hongmei
BookMark eNp9kMFq3DAQhkVJoZu0L9CTXsBbyV7bMvRSQtsUAr00ZzEejdJZZHmR5MA-Tt-0dreE0kNOYpj_-8V81-IqzpGEeK_VXivdfTju_UJhX6u63uu6bzr1Suy06Zuq121zJXZqTVV10-k34jrno1KqN-1hJ349ZJKzl-4cYWKU4OBU-Ikk_qSJc0lnCdE9r5FCkBiWXChxfJQcJc7TaSlQeI4QpA8LP8ezLLMEXCFKUNZOCLiEP9Htz5Uc16Ztyjz9s3BMmYKk-MiR3orXHkKmd3_fG_Hw5fOP27vq_vvXb7ef7iusG1WqFpRv-saZYXCD9-uIw2FUpkNvADoH46Eb_eAQBuNH6h22aGBw3WiUVkPb3Ij60otpzjmRt6fEE6Sz1cpuku3RbpLtJtleJK-Q-Q9CvrgoCTi8jH68oLQe9cSUbEamiOQ4ERbrZn4J_w1rKKAr
CitedBy_id crossref_primary_10_1016_j_fuel_2023_129071
crossref_primary_10_1016_j_fuel_2023_129734
crossref_primary_10_1063_5_0219323
crossref_primary_10_1016_j_fuel_2024_131488
Cites_doi 10.1002/num.21936
10.4271/2010-01-0362
10.1016/0360-1285(95)00013-5
10.1016/j.proci.2004.08.145
10.4271/2011-01-0895
10.4271/2010-01-0178
10.1016/S0082-0784(00)80594-9
10.1016/j.proci.2008.05.073
10.1016/0010-2180(92)90034-M
10.4271/2015-01-0400
10.1080/13647830903154542
10.1016/S0010-2180(71)80166-9
10.1080/13647830903548834
10.1016/j.combustflame.2013.08.018
10.1016/j.jcp.2016.04.057
10.1080/13647830.2012.733825
10.1016/j.jnnfm.2014.06.005
10.1016/S0010-2180(01)00316-9
10.1016/j.jcp.2008.09.015
10.1115/1.4043250
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.fuel.2022.127360
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7153
ExternalDocumentID 10_1016_j_fuel_2022_127360
S0016236122041849
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
VH1
WUQ
XPP
ZY4
~HD
ID FETCH-LOGICAL-c230t-5a0f373d899d9ff5a0c94b086cf8aa6dab46bf9dca98fbe7dc5c8a9d6b8010953
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000923867400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-2361
IngestDate Tue Nov 18 22:32:38 EST 2025
Sat Nov 29 07:28:07 EST 2025
Fri Feb 23 02:37:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Simulation
Fast algorithm
Combustion simulation
Engine
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c230t-5a0f373d899d9ff5a0c94b086cf8aa6dab46bf9dca98fbe7dc5c8a9d6b8010953
ParticipantIDs crossref_primary_10_1016_j_fuel_2022_127360
crossref_citationtrail_10_1016_j_fuel_2022_127360
elsevier_sciencedirect_doi_10_1016_j_fuel_2022_127360
PublicationCentury 2000
PublicationDate 2023-04-15
PublicationDateYYYYMMDD 2023-04-15
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Fuel (Guildford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bukač, Yotov, Zunino (b0075) 2015; 31
Lu, Pope (b0005) 2009; 228
Gicquel, Darabiha, Thévenin (b0035) 2000; 28
Maas, Pope (b0025) 1992; 88
Zhou, Lu, Ren, Lu, Luo (b0050) 2015; 8
Ren, Liu, Lu, Lu, Oluwole, Goldin (b0085) 2014; 161
POPE S B. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation[J], 1997, 21: 102-122.
Givler, Abraham (b0015) 1996; 22
PUDUPPAKKAM K V, LIANG L, SHELBURN A, et al. Predicting emissions using CFD simulations of an e30 gasoline surrogate in an HCCI engine with detailed chemical kinetics[R]. SAE Technical Paper, 2010.
Puduppakkam, Liang, Naik, Meeks, Kokjohn, Reitz (b0100) 2011; 4
Liang, Stevens, Farrell (b0045) 2009; 32
Shi, Liang, Ge, Reitz (b0055) 2010; 14
van Oijen, Lammers, de Goey (b0040) 2001; 127
Kulikov, Vorobyov (b0070) 2016; 317
Yang, Ren, Lu, Goldin (b0090) 2013; 17
Goldin, Ren, Zahirovic (b0010) 2009; 13
Lu, Law (b0060) 2005; 30
LIANG L, NAIK C V, PUDUPPAKKAM K, et al. Efficient simulation of diesel engine combustion using realistic chemical kinetics in CFD[R]. SAE Technical Paper, 2010.
Keck, Gillespie (b0020) 1971; 17
Huilgol, Kefayati (b0080) 2015; 220
Naik, Puduppakkam, Meeks (b0065) 2019; 141
Keck (10.1016/j.fuel.2022.127360_b0020) 1971; 17
Givler (10.1016/j.fuel.2022.127360_b0015) 1996; 22
Puduppakkam (10.1016/j.fuel.2022.127360_b0100) 2011; 4
Shi (10.1016/j.fuel.2022.127360_b0055) 2010; 14
10.1016/j.fuel.2022.127360_b0030
Liang (10.1016/j.fuel.2022.127360_b0045) 2009; 32
van Oijen (10.1016/j.fuel.2022.127360_b0040) 2001; 127
Bukač (10.1016/j.fuel.2022.127360_b0075) 2015; 31
10.1016/j.fuel.2022.127360_b0095
Naik (10.1016/j.fuel.2022.127360_b0065) 2019; 141
Maas (10.1016/j.fuel.2022.127360_b0025) 1992; 88
Kulikov (10.1016/j.fuel.2022.127360_b0070) 2016; 317
Lu (10.1016/j.fuel.2022.127360_b0005) 2009; 228
Lu (10.1016/j.fuel.2022.127360_b0060) 2005; 30
Huilgol (10.1016/j.fuel.2022.127360_b0080) 2015; 220
Yang (10.1016/j.fuel.2022.127360_b0090) 2013; 17
Goldin (10.1016/j.fuel.2022.127360_b0010) 2009; 13
Zhou (10.1016/j.fuel.2022.127360_b0050) 2015; 8
10.1016/j.fuel.2022.127360_b0105
Gicquel (10.1016/j.fuel.2022.127360_b0035) 2000; 28
Ren (10.1016/j.fuel.2022.127360_b0085) 2014; 161
References_xml – reference: PUDUPPAKKAM K V, LIANG L, SHELBURN A, et al. Predicting emissions using CFD simulations of an e30 gasoline surrogate in an HCCI engine with detailed chemical kinetics[R]. SAE Technical Paper, 2010.
– volume: 161
  start-page: 127
  year: 2014
  end-page: 137
  ident: b0085
  article-title: The use of dynamic adaptive chemistry and tabulation in reactive flow simulations[J]
  publication-title: Combust Flame
– volume: 141
  start-page: 1
  year: 2019
  end-page: 44
  ident: b0065
  article-title: A comprehensive kinetics library for simulating the combustion of automotive fuels[J]
  publication-title: J Energy Res Technol
– volume: 17
  start-page: 237
  year: 1971
  end-page: 241
  ident: b0020
  article-title: Rate-controlled partial-equilibrium method for treating reacting gas mixtures[J]
  publication-title: Combust Flame
– volume: 317
  start-page: 318
  year: 2016
  end-page: 346
  ident: b0070
  article-title: Using the PPML approach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows[J]
  publication-title: J Comput Phys
– volume: 28
  start-page: 1901
  year: 2000
  end-page: 1908
  ident: b0035
  article-title: Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion[J]
  publication-title: Proc Combust Inst
– volume: 30
  start-page: 1333
  year: 2005
  end-page: 1341
  ident: b0060
  article-title: A directed relation graph method for mechanism reduction
  publication-title: Proc Combust Inst
– volume: 88
  start-page: 239
  year: 1992
  end-page: 264
  ident: b0025
  article-title: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space[J]
  publication-title: Combust Flame
– volume: 32
  start-page: 527
  year: 2009
  end-page: 534
  ident: b0045
  article-title: A dynamic adaptive chemistry scheme for reactive flow computations
  publication-title: Proc Combust Inst
– volume: 17
  start-page: 167
  year: 2013
  end-page: 183
  ident: b0090
  article-title: Dynamic adaptive chemistry for turbulent flame simulations[J]
  publication-title: Combust Theor Model
– volume: 127
  start-page: 2124
  year: 2001
  end-page: 2134
  ident: b0040
  article-title: Modeling of complex premixed burner systems by using flamelet-generated manifolds[J]
  publication-title: Combust Flame
– reference: POPE S B. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation[J], 1997, 21: 102-122.
– volume: 14
  start-page: 69
  year: 2010
  end-page: 89
  ident: b0055
  article-title: Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes[J]
  publication-title: Combust Theor Model
– volume: 4
  start-page: 1127
  year: 2011
  end-page: 1149
  ident: b0100
  article-title: Use of detailed kinetics and advanced chemistry-solution techniques in CFD to investigate dual-fuel engine concepts[J]
  publication-title: SAE Int J Engines
– volume: 228
  start-page: 361
  year: 2009
  end-page: 386
  ident: b0005
  article-title: An improved algorithm for in situ adaptive tabulation[J]
  publication-title: J Comput Phys
– volume: 22
  start-page: 1
  year: 1996
  end-page: 28
  ident: b0015
  article-title: Supercritical droplet vaporization and combustion studies[J]
  publication-title: Prog Energy Combust Sci
– volume: 13
  start-page: 721
  year: 2009
  end-page: 739
  ident: b0010
  article-title: A cell agglomeration algorithm for accelerating detailed chemistry in CFD[J]
  publication-title: Combust Theor Model
– volume: 31
  start-page: 1054
  year: 2015
  end-page: 1100
  ident: b0075
  article-title: An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure[J]
  publication-title: Numer Methods Partial Differential Equations
– reference: LIANG L, NAIK C V, PUDUPPAKKAM K, et al. Efficient simulation of diesel engine combustion using realistic chemical kinetics in CFD[R]. SAE Technical Paper, 2010.
– volume: 220
  start-page: 22
  year: 2015
  end-page: 32
  ident: b0080
  article-title: Natural convection problem in a Bingham fluid using the operator-splitting method[J]
  publication-title: J Nonnewton Fluid Mech
– volume: 8
  start-page: 447
  year: 2015
  end-page: 454
  ident: b0050
  article-title: Large eddy simulation of an n-heptane spray flame with dynamic adaptive chemistry under different oxygen concentrations[J]
  publication-title: SAE Int J Engines
– volume: 31
  start-page: 1054
  issue: 4
  year: 2015
  ident: 10.1016/j.fuel.2022.127360_b0075
  article-title: An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure[J]
  publication-title: Numer Methods Partial Differential Equations
  doi: 10.1002/num.21936
– ident: 10.1016/j.fuel.2022.127360_b0095
  doi: 10.4271/2010-01-0362
– volume: 22
  start-page: 1
  issue: 1
  year: 1996
  ident: 10.1016/j.fuel.2022.127360_b0015
  article-title: Supercritical droplet vaporization and combustion studies[J]
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/0360-1285(95)00013-5
– volume: 30
  start-page: 1333
  issue: 1
  year: 2005
  ident: 10.1016/j.fuel.2022.127360_b0060
  article-title: A directed relation graph method for mechanism reduction
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2004.08.145
– volume: 4
  start-page: 1127
  issue: 1
  year: 2011
  ident: 10.1016/j.fuel.2022.127360_b0100
  article-title: Use of detailed kinetics and advanced chemistry-solution techniques in CFD to investigate dual-fuel engine concepts[J]
  publication-title: SAE Int J Engines
  doi: 10.4271/2011-01-0895
– ident: 10.1016/j.fuel.2022.127360_b0105
  doi: 10.4271/2010-01-0178
– volume: 28
  start-page: 1901
  issue: 2
  year: 2000
  ident: 10.1016/j.fuel.2022.127360_b0035
  article-title: Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion[J]
  publication-title: Proc Combust Inst
  doi: 10.1016/S0082-0784(00)80594-9
– volume: 32
  start-page: 527
  issue: 1
  year: 2009
  ident: 10.1016/j.fuel.2022.127360_b0045
  article-title: A dynamic adaptive chemistry scheme for reactive flow computations
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2008.05.073
– volume: 88
  start-page: 239
  issue: 3–4
  year: 1992
  ident: 10.1016/j.fuel.2022.127360_b0025
  article-title: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space[J]
  publication-title: Combust Flame
  doi: 10.1016/0010-2180(92)90034-M
– volume: 8
  start-page: 447
  issue: 2
  year: 2015
  ident: 10.1016/j.fuel.2022.127360_b0050
  article-title: Large eddy simulation of an n-heptane spray flame with dynamic adaptive chemistry under different oxygen concentrations[J]
  publication-title: SAE Int J Engines
  doi: 10.4271/2015-01-0400
– volume: 13
  start-page: 721
  issue: 4
  year: 2009
  ident: 10.1016/j.fuel.2022.127360_b0010
  article-title: A cell agglomeration algorithm for accelerating detailed chemistry in CFD[J]
  publication-title: Combust Theor Model
  doi: 10.1080/13647830903154542
– volume: 17
  start-page: 237
  issue: 2
  year: 1971
  ident: 10.1016/j.fuel.2022.127360_b0020
  article-title: Rate-controlled partial-equilibrium method for treating reacting gas mixtures[J]
  publication-title: Combust Flame
  doi: 10.1016/S0010-2180(71)80166-9
– ident: 10.1016/j.fuel.2022.127360_b0030
– volume: 14
  start-page: 69
  issue: 1
  year: 2010
  ident: 10.1016/j.fuel.2022.127360_b0055
  article-title: Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes[J]
  publication-title: Combust Theor Model
  doi: 10.1080/13647830903548834
– volume: 161
  start-page: 127
  issue: 1
  year: 2014
  ident: 10.1016/j.fuel.2022.127360_b0085
  article-title: The use of dynamic adaptive chemistry and tabulation in reactive flow simulations[J]
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2013.08.018
– volume: 317
  start-page: 318
  year: 2016
  ident: 10.1016/j.fuel.2022.127360_b0070
  article-title: Using the PPML approach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows[J]
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2016.04.057
– volume: 17
  start-page: 167
  issue: 1
  year: 2013
  ident: 10.1016/j.fuel.2022.127360_b0090
  article-title: Dynamic adaptive chemistry for turbulent flame simulations[J]
  publication-title: Combust Theor Model
  doi: 10.1080/13647830.2012.733825
– volume: 220
  start-page: 22
  year: 2015
  ident: 10.1016/j.fuel.2022.127360_b0080
  article-title: Natural convection problem in a Bingham fluid using the operator-splitting method[J]
  publication-title: J Nonnewton Fluid Mech
  doi: 10.1016/j.jnnfm.2014.06.005
– volume: 127
  start-page: 2124
  issue: 3
  year: 2001
  ident: 10.1016/j.fuel.2022.127360_b0040
  article-title: Modeling of complex premixed burner systems by using flamelet-generated manifolds[J]
  publication-title: Combust Flame
  doi: 10.1016/S0010-2180(01)00316-9
– volume: 228
  start-page: 361
  issue: 2
  year: 2009
  ident: 10.1016/j.fuel.2022.127360_b0005
  article-title: An improved algorithm for in situ adaptive tabulation[J]
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2008.09.015
– volume: 141
  start-page: 1
  issue: 9
  year: 2019
  ident: 10.1016/j.fuel.2022.127360_b0065
  article-title: A comprehensive kinetics library for simulating the combustion of automotive fuels[J]
  publication-title: J Energy Res Technol
  doi: 10.1115/1.4043250
SSID ssj0007854
Score 2.4316428
Snippet •Effects of dynamic adaptive chemistry and dynamic cell clustering has been examined at several working conditions.•The threshold value of DAC should not be...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 127360
SubjectTerms Combustion simulation
Engine
Fast algorithm
Simulation
Title Use of dynamic adaptive chemistry and dynamic cell clustering in computational fluid dynamics to accelerate calculation of combustion simulation of diesel engine
URI https://dx.doi.org/10.1016/j.fuel.2022.127360
Volume 338
WOSCitedRecordID wos000923867400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGlgMcEKsom3zgNkrVOIvtY4VaFYQqJFo0t8jxAqnSzNCZVP0B_BH-Kc9bEgqqAIlLNPEytvI-28_Pz99D6LUANVVJGN-FYGWSyyxPGDM00YozJajKC0el9Ok9PT5miwX_MJt9i3dhLlvadezqiq_-q6ghDYRtr87-hbiHP4UE-A1ChyeIHZ5_JPhTb51XPtT8XCixcu5BMoZ2c-cFMdsa7uey7S1fQrjeIl2gh2gkNG3fDMUdHYSQUMlyMVuXsVaG-F_BP7220cHgbd2cTzKsq6Ju59qRH0714cMekq2lwkbn9n72g2UCvqo3ZX9pvvYjiAcT99Gy-3yum6ndgmT2CMbf3PTGtHihZvRechN0WiaWD8YvT35OZjRLaOo5heOknXlOmF8WAG-LONs10H3Y_ROym4KC5kMWXCPW_mgbs20RspfDRpffQtuEFhzmxu39tweLd8OKTlnh2bxD58LlK-8neL2l3ys4E6Xl5D66F3YbeN-j5AGa6e4hujvhoHyEvgNe8NLgIGEc8YIHvGDAy5Bt8YJHvOCmwz_hBTu8xOJrvFniES94ghfb5ogXPOLFdcbhBXu8PEanhwcnb46SELcjkbCh3cCw3zMZzRRs5RU3Bl4lz2vYO0vDhCiVqPOyNlxJwZmpNVWykExwVdbMHtQW2RO01S07_RTh3JBUSKNBa61zImpWkILBrGNyDTXqcgel8WNXMpDa29gqbRW9F88qK6DKCqjyAtpB86HOylO63Fi6iDKsglLqlc0KIHdDvWf_WO85ujOOlhdoa3PR65fotrzcNOuLVwGZPwCA8ro3
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+dynamic+adaptive+chemistry+and+dynamic+cell+clustering+in+computational+fluid+dynamics+to+accelerate+calculation+of+combustion+simulation+of+diesel+engine&rft.jtitle=Fuel+%28Guildford%29&rft.au=Feng%2C+Shiquan&rft.au=Zhang%2C+Hongmei&rft.date=2023-04-15&rft.pub=Elsevier+Ltd&rft.issn=0016-2361&rft.eissn=1873-7153&rft.volume=338&rft_id=info:doi/10.1016%2Fj.fuel.2022.127360&rft.externalDocID=S0016236122041849
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon