Use of dynamic adaptive chemistry and dynamic cell clustering in computational fluid dynamics to accelerate calculation of combustion simulation of diesel engine
•Effects of dynamic adaptive chemistry and dynamic cell clustering has been examined at several working conditions.•The threshold value of DAC should not be too small.•The two parameters of DCC will affect the formation of NOx and soot.•Both DAC and DCC can reduce the time required for calculation a...
Uloženo v:
| Vydáno v: | Fuel (Guildford) Ročník 338; s. 127360 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.04.2023
|
| Témata: | |
| ISSN: | 0016-2361, 1873-7153 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Effects of dynamic adaptive chemistry and dynamic cell clustering has been examined at several working conditions.•The threshold value of DAC should not be too small.•The two parameters of DCC will affect the formation of NOx and soot.•Both DAC and DCC can reduce the time required for calculation and can be applied together.
Based on the theory of dynamic adaptive chemistry and dynamic cell clustering, a 3D model for fuel combustion in the cylinder is constructed to study the fast calculation algorithm to accelerate the engine combustion simulation and analyze the impacts of the basic structure and the main parameters of dynamic adaptive chemistry and dynamic cell clustering on diesel engine simulation. It is found that the error threshold value of the dynamic adaptive chemistry algorithm should be set appropriately to ensure the accuracy of the simulation, and the dynamic adaptive chemistry algorithm should employ different initial search species and threshold values to meet different research objectives. Regarding the dynamic cell clustering algorithm, the data accuracy in the overall spatial range can be guaranteed, but the local location information will be missing, which will have a great impact on the prediction of pollutants. Therefore, suitable cell clustering conditions should be selected to meet the requirements of different targets. |
|---|---|
| AbstractList | •Effects of dynamic adaptive chemistry and dynamic cell clustering has been examined at several working conditions.•The threshold value of DAC should not be too small.•The two parameters of DCC will affect the formation of NOx and soot.•Both DAC and DCC can reduce the time required for calculation and can be applied together.
Based on the theory of dynamic adaptive chemistry and dynamic cell clustering, a 3D model for fuel combustion in the cylinder is constructed to study the fast calculation algorithm to accelerate the engine combustion simulation and analyze the impacts of the basic structure and the main parameters of dynamic adaptive chemistry and dynamic cell clustering on diesel engine simulation. It is found that the error threshold value of the dynamic adaptive chemistry algorithm should be set appropriately to ensure the accuracy of the simulation, and the dynamic adaptive chemistry algorithm should employ different initial search species and threshold values to meet different research objectives. Regarding the dynamic cell clustering algorithm, the data accuracy in the overall spatial range can be guaranteed, but the local location information will be missing, which will have a great impact on the prediction of pollutants. Therefore, suitable cell clustering conditions should be selected to meet the requirements of different targets. |
| ArticleNumber | 127360 |
| Author | Feng, Shiquan Zhang, Hongmei |
| Author_xml | – sequence: 1 givenname: Shiquan surname: Feng fullname: Feng, Shiquan email: fengshiquan@outlook.com – sequence: 2 givenname: Hongmei surname: Zhang fullname: Zhang, Hongmei |
| BookMark | eNp9kMFq3DAQhkVJoZu0L9CTXsBbyV7bMvRSQtsUAr00ZzEejdJZZHmR5MA-Tt-0dreE0kNOYpj_-8V81-IqzpGEeK_VXivdfTju_UJhX6u63uu6bzr1Suy06Zuq121zJXZqTVV10-k34jrno1KqN-1hJ349ZJKzl-4cYWKU4OBU-Ikk_qSJc0lnCdE9r5FCkBiWXChxfJQcJc7TaSlQeI4QpA8LP8ezLLMEXCFKUNZOCLiEP9Htz5Uc16Ztyjz9s3BMmYKk-MiR3orXHkKmd3_fG_Hw5fOP27vq_vvXb7ef7iusG1WqFpRv-saZYXCD9-uIw2FUpkNvADoH46Eb_eAQBuNH6h22aGBw3WiUVkPb3Ij60otpzjmRt6fEE6Sz1cpuku3RbpLtJtleJK-Q-Q9CvrgoCTi8jH68oLQe9cSUbEamiOQ4ERbrZn4J_w1rKKAr |
| CitedBy_id | crossref_primary_10_1016_j_fuel_2023_129071 crossref_primary_10_1016_j_fuel_2023_129734 crossref_primary_10_1063_5_0219323 crossref_primary_10_1016_j_fuel_2024_131488 |
| Cites_doi | 10.1002/num.21936 10.4271/2010-01-0362 10.1016/0360-1285(95)00013-5 10.1016/j.proci.2004.08.145 10.4271/2011-01-0895 10.4271/2010-01-0178 10.1016/S0082-0784(00)80594-9 10.1016/j.proci.2008.05.073 10.1016/0010-2180(92)90034-M 10.4271/2015-01-0400 10.1080/13647830903154542 10.1016/S0010-2180(71)80166-9 10.1080/13647830903548834 10.1016/j.combustflame.2013.08.018 10.1016/j.jcp.2016.04.057 10.1080/13647830.2012.733825 10.1016/j.jnnfm.2014.06.005 10.1016/S0010-2180(01)00316-9 10.1016/j.jcp.2008.09.015 10.1115/1.4043250 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.fuel.2022.127360 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7153 |
| ExternalDocumentID | 10_1016_j_fuel_2022_127360 S0016236122041849 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ WH7 ZMT ~02 ~G- 29H 8WZ 9DU A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SCB VH1 WUQ XPP ZY4 ~HD |
| ID | FETCH-LOGICAL-c230t-5a0f373d899d9ff5a0c94b086cf8aa6dab46bf9dca98fbe7dc5c8a9d6b8010953 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000923867400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0016-2361 |
| IngestDate | Tue Nov 18 22:32:38 EST 2025 Sat Nov 29 07:28:07 EST 2025 Fri Feb 23 02:37:52 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Simulation Fast algorithm Combustion simulation Engine |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c230t-5a0f373d899d9ff5a0c94b086cf8aa6dab46bf9dca98fbe7dc5c8a9d6b8010953 |
| ParticipantIDs | crossref_primary_10_1016_j_fuel_2022_127360 crossref_citationtrail_10_1016_j_fuel_2022_127360 elsevier_sciencedirect_doi_10_1016_j_fuel_2022_127360 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-15 |
| PublicationDateYYYYMMDD | 2023-04-15 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Fuel (Guildford) |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Bukač, Yotov, Zunino (b0075) 2015; 31 Lu, Pope (b0005) 2009; 228 Gicquel, Darabiha, Thévenin (b0035) 2000; 28 Maas, Pope (b0025) 1992; 88 Zhou, Lu, Ren, Lu, Luo (b0050) 2015; 8 Ren, Liu, Lu, Lu, Oluwole, Goldin (b0085) 2014; 161 POPE S B. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation[J], 1997, 21: 102-122. Givler, Abraham (b0015) 1996; 22 PUDUPPAKKAM K V, LIANG L, SHELBURN A, et al. Predicting emissions using CFD simulations of an e30 gasoline surrogate in an HCCI engine with detailed chemical kinetics[R]. SAE Technical Paper, 2010. Puduppakkam, Liang, Naik, Meeks, Kokjohn, Reitz (b0100) 2011; 4 Liang, Stevens, Farrell (b0045) 2009; 32 Shi, Liang, Ge, Reitz (b0055) 2010; 14 van Oijen, Lammers, de Goey (b0040) 2001; 127 Kulikov, Vorobyov (b0070) 2016; 317 Yang, Ren, Lu, Goldin (b0090) 2013; 17 Goldin, Ren, Zahirovic (b0010) 2009; 13 Lu, Law (b0060) 2005; 30 LIANG L, NAIK C V, PUDUPPAKKAM K, et al. Efficient simulation of diesel engine combustion using realistic chemical kinetics in CFD[R]. SAE Technical Paper, 2010. Keck, Gillespie (b0020) 1971; 17 Huilgol, Kefayati (b0080) 2015; 220 Naik, Puduppakkam, Meeks (b0065) 2019; 141 Keck (10.1016/j.fuel.2022.127360_b0020) 1971; 17 Givler (10.1016/j.fuel.2022.127360_b0015) 1996; 22 Puduppakkam (10.1016/j.fuel.2022.127360_b0100) 2011; 4 Shi (10.1016/j.fuel.2022.127360_b0055) 2010; 14 10.1016/j.fuel.2022.127360_b0030 Liang (10.1016/j.fuel.2022.127360_b0045) 2009; 32 van Oijen (10.1016/j.fuel.2022.127360_b0040) 2001; 127 Bukač (10.1016/j.fuel.2022.127360_b0075) 2015; 31 10.1016/j.fuel.2022.127360_b0095 Naik (10.1016/j.fuel.2022.127360_b0065) 2019; 141 Maas (10.1016/j.fuel.2022.127360_b0025) 1992; 88 Kulikov (10.1016/j.fuel.2022.127360_b0070) 2016; 317 Lu (10.1016/j.fuel.2022.127360_b0005) 2009; 228 Lu (10.1016/j.fuel.2022.127360_b0060) 2005; 30 Huilgol (10.1016/j.fuel.2022.127360_b0080) 2015; 220 Yang (10.1016/j.fuel.2022.127360_b0090) 2013; 17 Goldin (10.1016/j.fuel.2022.127360_b0010) 2009; 13 Zhou (10.1016/j.fuel.2022.127360_b0050) 2015; 8 10.1016/j.fuel.2022.127360_b0105 Gicquel (10.1016/j.fuel.2022.127360_b0035) 2000; 28 Ren (10.1016/j.fuel.2022.127360_b0085) 2014; 161 |
| References_xml | – reference: PUDUPPAKKAM K V, LIANG L, SHELBURN A, et al. Predicting emissions using CFD simulations of an e30 gasoline surrogate in an HCCI engine with detailed chemical kinetics[R]. SAE Technical Paper, 2010. – volume: 161 start-page: 127 year: 2014 end-page: 137 ident: b0085 article-title: The use of dynamic adaptive chemistry and tabulation in reactive flow simulations[J] publication-title: Combust Flame – volume: 141 start-page: 1 year: 2019 end-page: 44 ident: b0065 article-title: A comprehensive kinetics library for simulating the combustion of automotive fuels[J] publication-title: J Energy Res Technol – volume: 17 start-page: 237 year: 1971 end-page: 241 ident: b0020 article-title: Rate-controlled partial-equilibrium method for treating reacting gas mixtures[J] publication-title: Combust Flame – volume: 317 start-page: 318 year: 2016 end-page: 346 ident: b0070 article-title: Using the PPML approach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows[J] publication-title: J Comput Phys – volume: 28 start-page: 1901 year: 2000 end-page: 1908 ident: b0035 article-title: Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion[J] publication-title: Proc Combust Inst – volume: 30 start-page: 1333 year: 2005 end-page: 1341 ident: b0060 article-title: A directed relation graph method for mechanism reduction publication-title: Proc Combust Inst – volume: 88 start-page: 239 year: 1992 end-page: 264 ident: b0025 article-title: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space[J] publication-title: Combust Flame – volume: 32 start-page: 527 year: 2009 end-page: 534 ident: b0045 article-title: A dynamic adaptive chemistry scheme for reactive flow computations publication-title: Proc Combust Inst – volume: 17 start-page: 167 year: 2013 end-page: 183 ident: b0090 article-title: Dynamic adaptive chemistry for turbulent flame simulations[J] publication-title: Combust Theor Model – volume: 127 start-page: 2124 year: 2001 end-page: 2134 ident: b0040 article-title: Modeling of complex premixed burner systems by using flamelet-generated manifolds[J] publication-title: Combust Flame – reference: POPE S B. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation[J], 1997, 21: 102-122. – volume: 14 start-page: 69 year: 2010 end-page: 89 ident: b0055 article-title: Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes[J] publication-title: Combust Theor Model – volume: 4 start-page: 1127 year: 2011 end-page: 1149 ident: b0100 article-title: Use of detailed kinetics and advanced chemistry-solution techniques in CFD to investigate dual-fuel engine concepts[J] publication-title: SAE Int J Engines – volume: 228 start-page: 361 year: 2009 end-page: 386 ident: b0005 article-title: An improved algorithm for in situ adaptive tabulation[J] publication-title: J Comput Phys – volume: 22 start-page: 1 year: 1996 end-page: 28 ident: b0015 article-title: Supercritical droplet vaporization and combustion studies[J] publication-title: Prog Energy Combust Sci – volume: 13 start-page: 721 year: 2009 end-page: 739 ident: b0010 article-title: A cell agglomeration algorithm for accelerating detailed chemistry in CFD[J] publication-title: Combust Theor Model – volume: 31 start-page: 1054 year: 2015 end-page: 1100 ident: b0075 article-title: An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure[J] publication-title: Numer Methods Partial Differential Equations – reference: LIANG L, NAIK C V, PUDUPPAKKAM K, et al. Efficient simulation of diesel engine combustion using realistic chemical kinetics in CFD[R]. SAE Technical Paper, 2010. – volume: 220 start-page: 22 year: 2015 end-page: 32 ident: b0080 article-title: Natural convection problem in a Bingham fluid using the operator-splitting method[J] publication-title: J Nonnewton Fluid Mech – volume: 8 start-page: 447 year: 2015 end-page: 454 ident: b0050 article-title: Large eddy simulation of an n-heptane spray flame with dynamic adaptive chemistry under different oxygen concentrations[J] publication-title: SAE Int J Engines – volume: 31 start-page: 1054 issue: 4 year: 2015 ident: 10.1016/j.fuel.2022.127360_b0075 article-title: An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure[J] publication-title: Numer Methods Partial Differential Equations doi: 10.1002/num.21936 – ident: 10.1016/j.fuel.2022.127360_b0095 doi: 10.4271/2010-01-0362 – volume: 22 start-page: 1 issue: 1 year: 1996 ident: 10.1016/j.fuel.2022.127360_b0015 article-title: Supercritical droplet vaporization and combustion studies[J] publication-title: Prog Energy Combust Sci doi: 10.1016/0360-1285(95)00013-5 – volume: 30 start-page: 1333 issue: 1 year: 2005 ident: 10.1016/j.fuel.2022.127360_b0060 article-title: A directed relation graph method for mechanism reduction publication-title: Proc Combust Inst doi: 10.1016/j.proci.2004.08.145 – volume: 4 start-page: 1127 issue: 1 year: 2011 ident: 10.1016/j.fuel.2022.127360_b0100 article-title: Use of detailed kinetics and advanced chemistry-solution techniques in CFD to investigate dual-fuel engine concepts[J] publication-title: SAE Int J Engines doi: 10.4271/2011-01-0895 – ident: 10.1016/j.fuel.2022.127360_b0105 doi: 10.4271/2010-01-0178 – volume: 28 start-page: 1901 issue: 2 year: 2000 ident: 10.1016/j.fuel.2022.127360_b0035 article-title: Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion[J] publication-title: Proc Combust Inst doi: 10.1016/S0082-0784(00)80594-9 – volume: 32 start-page: 527 issue: 1 year: 2009 ident: 10.1016/j.fuel.2022.127360_b0045 article-title: A dynamic adaptive chemistry scheme for reactive flow computations publication-title: Proc Combust Inst doi: 10.1016/j.proci.2008.05.073 – volume: 88 start-page: 239 issue: 3–4 year: 1992 ident: 10.1016/j.fuel.2022.127360_b0025 article-title: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space[J] publication-title: Combust Flame doi: 10.1016/0010-2180(92)90034-M – volume: 8 start-page: 447 issue: 2 year: 2015 ident: 10.1016/j.fuel.2022.127360_b0050 article-title: Large eddy simulation of an n-heptane spray flame with dynamic adaptive chemistry under different oxygen concentrations[J] publication-title: SAE Int J Engines doi: 10.4271/2015-01-0400 – volume: 13 start-page: 721 issue: 4 year: 2009 ident: 10.1016/j.fuel.2022.127360_b0010 article-title: A cell agglomeration algorithm for accelerating detailed chemistry in CFD[J] publication-title: Combust Theor Model doi: 10.1080/13647830903154542 – volume: 17 start-page: 237 issue: 2 year: 1971 ident: 10.1016/j.fuel.2022.127360_b0020 article-title: Rate-controlled partial-equilibrium method for treating reacting gas mixtures[J] publication-title: Combust Flame doi: 10.1016/S0010-2180(71)80166-9 – ident: 10.1016/j.fuel.2022.127360_b0030 – volume: 14 start-page: 69 issue: 1 year: 2010 ident: 10.1016/j.fuel.2022.127360_b0055 article-title: Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes[J] publication-title: Combust Theor Model doi: 10.1080/13647830903548834 – volume: 161 start-page: 127 issue: 1 year: 2014 ident: 10.1016/j.fuel.2022.127360_b0085 article-title: The use of dynamic adaptive chemistry and tabulation in reactive flow simulations[J] publication-title: Combust Flame doi: 10.1016/j.combustflame.2013.08.018 – volume: 317 start-page: 318 year: 2016 ident: 10.1016/j.fuel.2022.127360_b0070 article-title: Using the PPML approach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows[J] publication-title: J Comput Phys doi: 10.1016/j.jcp.2016.04.057 – volume: 17 start-page: 167 issue: 1 year: 2013 ident: 10.1016/j.fuel.2022.127360_b0090 article-title: Dynamic adaptive chemistry for turbulent flame simulations[J] publication-title: Combust Theor Model doi: 10.1080/13647830.2012.733825 – volume: 220 start-page: 22 year: 2015 ident: 10.1016/j.fuel.2022.127360_b0080 article-title: Natural convection problem in a Bingham fluid using the operator-splitting method[J] publication-title: J Nonnewton Fluid Mech doi: 10.1016/j.jnnfm.2014.06.005 – volume: 127 start-page: 2124 issue: 3 year: 2001 ident: 10.1016/j.fuel.2022.127360_b0040 article-title: Modeling of complex premixed burner systems by using flamelet-generated manifolds[J] publication-title: Combust Flame doi: 10.1016/S0010-2180(01)00316-9 – volume: 228 start-page: 361 issue: 2 year: 2009 ident: 10.1016/j.fuel.2022.127360_b0005 article-title: An improved algorithm for in situ adaptive tabulation[J] publication-title: J Comput Phys doi: 10.1016/j.jcp.2008.09.015 – volume: 141 start-page: 1 issue: 9 year: 2019 ident: 10.1016/j.fuel.2022.127360_b0065 article-title: A comprehensive kinetics library for simulating the combustion of automotive fuels[J] publication-title: J Energy Res Technol doi: 10.1115/1.4043250 |
| SSID | ssj0007854 |
| Score | 2.4316428 |
| Snippet | •Effects of dynamic adaptive chemistry and dynamic cell clustering has been examined at several working conditions.•The threshold value of DAC should not be... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 127360 |
| SubjectTerms | Combustion simulation Engine Fast algorithm Simulation |
| Title | Use of dynamic adaptive chemistry and dynamic cell clustering in computational fluid dynamics to accelerate calculation of combustion simulation of diesel engine |
| URI | https://dx.doi.org/10.1016/j.fuel.2022.127360 |
| Volume | 338 |
| WOSCitedRecordID | wos000923867400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGlgMcEKsom3zgNkrVOIvtY4VaFYQqJFo0t8jxAqnSzNCZVP0B_BH-Kc9bEgqqAIlLNPEytvI-28_Pz99D6LUANVVJGN-FYGWSyyxPGDM00YozJajKC0el9Ok9PT5miwX_MJt9i3dhLlvadezqiq_-q6ghDYRtr87-hbiHP4UE-A1ChyeIHZ5_JPhTb51XPtT8XCixcu5BMoZ2c-cFMdsa7uey7S1fQrjeIl2gh2gkNG3fDMUdHYSQUMlyMVuXsVaG-F_BP7220cHgbd2cTzKsq6Ju59qRH0714cMekq2lwkbn9n72g2UCvqo3ZX9pvvYjiAcT99Gy-3yum6ndgmT2CMbf3PTGtHihZvRechN0WiaWD8YvT35OZjRLaOo5heOknXlOmF8WAG-LONs10H3Y_ROym4KC5kMWXCPW_mgbs20RspfDRpffQtuEFhzmxu39tweLd8OKTlnh2bxD58LlK-8neL2l3ys4E6Xl5D66F3YbeN-j5AGa6e4hujvhoHyEvgNe8NLgIGEc8YIHvGDAy5Bt8YJHvOCmwz_hBTu8xOJrvFniES94ghfb5ogXPOLFdcbhBXu8PEanhwcnb46SELcjkbCh3cCw3zMZzRRs5RU3Bl4lz2vYO0vDhCiVqPOyNlxJwZmpNVWykExwVdbMHtQW2RO01S07_RTh3JBUSKNBa61zImpWkILBrGNyDTXqcgel8WNXMpDa29gqbRW9F88qK6DKCqjyAtpB86HOylO63Fi6iDKsglLqlc0KIHdDvWf_WO85ujOOlhdoa3PR65fotrzcNOuLVwGZPwCA8ro3 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+dynamic+adaptive+chemistry+and+dynamic+cell+clustering+in+computational+fluid+dynamics+to+accelerate+calculation+of+combustion+simulation+of+diesel+engine&rft.jtitle=Fuel+%28Guildford%29&rft.au=Feng%2C+Shiquan&rft.au=Zhang%2C+Hongmei&rft.date=2023-04-15&rft.pub=Elsevier+Ltd&rft.issn=0016-2361&rft.eissn=1873-7153&rft.volume=338&rft_id=info:doi/10.1016%2Fj.fuel.2022.127360&rft.externalDocID=S0016236122041849 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |