Practical Parallel Algorithms for Non-Monotone Submodular Maximization
Submodular maximization has found extensive applications in various domains within the field of artificial intelligence, including but not limited to machine learning, computer vision, and natural language processing. With the increasing size of datasets in these domains, there is a pressing need to...
Saved in:
| Published in: | The Journal of artificial intelligence research Vol. 82; pp. 39 - 75 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
06.01.2025
|
| ISSN: | 1076-9757, 1076-9757 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Submodular maximization has found extensive applications in various domains within the field of artificial intelligence, including but not limited to machine learning, computer vision, and natural language processing. With the increasing size of datasets in these domains, there is a pressing need to develop efficient and parallelizable algorithms for submodular maximization. One measure of the parallelizability of a submodular maximization algorithm is its adaptive complexity, which indicates the number of sequential rounds where a polynomial number of queries to the objective function can be executed in parallel. In this paper, we study the problem of non-monotone submodular maximization subject to a knapsack constraint, and propose a low-adaptivity algorithm achieving an (1/8 − ϵ)- approximation with practical Õ(n) query complexity. Moreover, we also propose the first algorithm with both provable approximation ratio and sublinear adaptive complexity for the problem of non-monotone submodular maximization subject to a k-system constraint. As a by-product, we show that our two algorithms can also be applied to the special case of submodular maximization subject to a cardinality constraint, and achieve performance bounds comparable with those of state-of-the-art algorithms. Finally, the effectiveness of our algorithms is demonstrated by extensive experiments on real-world applications. |
|---|---|
| AbstractList | Submodular maximization has found extensive applications in various domains within the field of artificial intelligence, including but not limited to machine learning, computer vision, and natural language processing. With the increasing size of datasets in these domains, there is a pressing need to develop efficient and parallelizable algorithms for submodular maximization. One measure of the parallelizability of a submodular maximization algorithm is its adaptive complexity, which indicates the number of sequential rounds where a polynomial number of queries to the objective function can be executed in parallel. In this paper, we study the problem of non-monotone submodular maximization subject to a knapsack constraint, and propose a low-adaptivity algorithm achieving an (1/8 − ϵ)- approximation with practical Õ(n) query complexity. Moreover, we also propose the first algorithm with both provable approximation ratio and sublinear adaptive complexity for the problem of non-monotone submodular maximization subject to a k-system constraint. As a by-product, we show that our two algorithms can also be applied to the special case of submodular maximization subject to a cardinality constraint, and achieve performance bounds comparable with those of state-of-the-art algorithms. Finally, the effectiveness of our algorithms is demonstrated by extensive experiments on real-world applications. |
| Author | Li, Xueying Li, Hanxiao Han, Kai Tang, Jing Zhiyuli, Aakas Cui, Shuang |
| Author_xml | – sequence: 1 givenname: Shuang surname: Cui fullname: Cui, Shuang – sequence: 2 givenname: Kai surname: Han fullname: Han, Kai – sequence: 3 givenname: Jing surname: Tang fullname: Tang, Jing – sequence: 4 givenname: Xueying surname: Li fullname: Li, Xueying – sequence: 5 givenname: Aakas surname: Zhiyuli fullname: Zhiyuli, Aakas – sequence: 6 givenname: Hanxiao surname: Li fullname: Li, Hanxiao |
| BookMark | eNpNkMtKAzEYhYNUsK3ufIA8gFPzJ2MysyzFqtAbqOuQifk1JTORZArq0ztVF27OZXMOfBMy6mLnCLkENgMJ4npvfJrBkCsGJ2QMTMmiVjdq9C-fkUnOe8agLnk1JstdMrb31gS6M8mE4AKdh9eYfP_WZoox0U3sinXsYj-c0cdD08aXQzCJrs2Hb_2X6X3szskpmpDdxZ9PyfPy9mlxX6y2dw-L-aqwXLC-EMhriVDWdhClnFVWMuASeQNVoxwbmmwaJThijchciSBAVYAGODIQU3L1u2tTzDk51O_JtyZ9amD6yEAfGWjQPwzEN7_nUfo |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1613/jair.1.16801 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1076-9757 |
| EndPage | 75 |
| ExternalDocumentID | 10_1613_jair_1_16801 |
| GroupedDBID | .DC 29J 2WC 5GY 5VS AAKMM AAKPC AALFJ AAYFX AAYXX ACGFO ACM ADBBV ADBSK ADMLS AEFXT AEJOY AENEX AFFHD AFKRA AFWXC AKRVB ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS BCNDV BENPR BGLVJ CCPQU CITATION E3Z EBS EJD F5P FRJ FRP GROUPED_DOAJ GUFHI HCIFZ K7- KQ8 LHSKQ LPJ OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB RNS TR2 XSB |
| ID | FETCH-LOGICAL-c230t-3f296f149cf1477ec7c60126f2b18b7e06016bb732ff9ff0e4f131781fa12f013 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001400274500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1076-9757 |
| IngestDate | Sat Nov 29 05:27:07 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c230t-3f296f149cf1477ec7c60126f2b18b7e06016bb732ff9ff0e4f131781fa12f013 |
| OpenAccessLink | https://jair.org/index.php/jair/article/download/16801/27115 |
| PageCount | 37 |
| ParticipantIDs | crossref_primary_10_1613_jair_1_16801 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-06 |
| PublicationDateYYYYMMDD | 2025-01-06 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationTitle | The Journal of artificial intelligence research |
| PublicationYear | 2025 |
| SSID | ssj0019428 |
| Score | 2.431383 |
| Snippet | Submodular maximization has found extensive applications in various domains within the field of artificial intelligence, including but not limited to machine... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 39 |
| Title | Practical Parallel Algorithms for Non-Monotone Submodular Maximization |
| Volume | 82 |
| WOSCitedRecordID | wos001400274500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: DOA dateStart: 19930101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: K7- dateStart: 19930101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: BENPR dateStart: 19930101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: PIMPY dateStart: 19930101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELa6ZQ97gX2w4rXIh90TCtROGsdHVIFAgqrSslI5RbFjL5EgRaFF5cB_Z_zIYxcOcOBiNZYnrjzT8cx05huEfsYkZ0IpEhCRiyCKwYbjoAgDY0yIJJdKSNdsgo3HyXTKJ73eY10Lc3_NyjJZLvntu7Ia5oDZpnT2DexuXgoT8BmYDiOwHcZXMd4hEJmjn2SV6ZQCPLj-O6uK-ZUDX9gbz8oAfsszg8NtNMfNLLfJqOfZsrjxdZldo7UtH7OGq9nT404UXUBPjxvUxJdHC5sp8Ptqkfnr0Wq60iVxFG3MwCcFF-2qM0s5XaiHetIHJujQBibiji4dsDjgzOFP76sX5rwCdt2HvAZ10Eb-LnZNVZ5peTBBbHeBoton8JT4cMg_YNr_XXJN6qFxeoA-NdQpSS31B7RC2ZCDUlyZnJ5PLpu_oXhEXS2l_9a-cgLoD7q7d2yajnFy8RmteubgQycNX1BPlV_RWt2xA3sF_g0dN8KBa-HArXBgEA7cFQ7cCgfuCsc6-nN8dDE6CXwnjUCCizkPQk15rMEZljAwpiST4IjTWFNBEsGUBeURgoVUa671QEWagGGZEJ0RqsFL-I76JWy7gfBQZyrkYUilGESKJFxFORcZkSwXIgmzTfSrPov01gGmpC-d-dYr122jT61w7aD-vFqoH-ijvJ8Xd9WuDaHserY9AZF3Za8 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+Parallel+Algorithms+for+Non-Monotone+Submodular+Maximization&rft.jtitle=The+Journal+of+artificial+intelligence+research&rft.au=Cui%2C+Shuang&rft.au=Han%2C+Kai&rft.au=Tang%2C+Jing&rft.au=Li%2C+Xueying&rft.date=2025-01-06&rft.issn=1076-9757&rft.eissn=1076-9757&rft.volume=82&rft.spage=39&rft.epage=75&rft_id=info:doi/10.1613%2Fjair.1.16801&rft.externalDBID=n%2Fa&rft.externalDocID=10_1613_jair_1_16801 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-9757&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-9757&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-9757&client=summon |