Scalable Primal Heuristics Using Graph Neural Networks for Combinatorial Optimization
By examining the patterns of solutions obtained for various instances, one can gain insights into the structure and behavior of combinatorial optimization (CO) problems and develop efficient algorithms for solving them. Machine learning techniques, especially Graph Neural Networks (GNNs), have shown...
Saved in:
| Published in: | The Journal of artificial intelligence research Vol. 80; pp. 327 - 376 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.01.2024
|
| ISSN: | 1076-9757, 1076-9757 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | By examining the patterns of solutions obtained for various instances, one can gain insights into the structure and behavior of combinatorial optimization (CO) problems and develop efficient algorithms for solving them. Machine learning techniques, especially Graph Neural Networks (GNNs), have shown promise in parametrizing and automating this laborious design process. The inductive bias of GNNs allows for learning solutions to mixed-integer programming (MIP) formulations of constrained CO problems with a relational representation of decision variables and constraints. The trained GNNs can be leveraged with primal heuristics to construct high-quality feasible solutions to CO problems quickly. However, current GNN-based end-to-end learning approaches have limitations for scalable training and generalization on larger-scale instances; therefore, they have been mostly evaluated over small-scale instances. Addressing this issue, our study builds on supervised learning of optimal solutions to the downscaled instances of given large-scale CO problems. We introduce several improvements on a recent GNN model for CO to generalize on instances of a larger scale than those used in training. We also propose a two-stage primal heuristic strategy based on uncertainty-quantification to automatically configure how solution search relies on the predicted decision values. Our models can generalize on 16x upscaled instances of commonly benchmarked five CO problems. Unlike the regressive performance of existing GNN-based CO approaches as the scale of problems increases, the CO pipelines using our models offer an incremental performance improvement relative to CPLEX. The proposed uncertainty-based primal heuristics provide 6-75% better optimality gap values and 45-99% better primal gap values for the 16x upscaled instances and brings immense speedup to obtain high-quality solutions. All these gains are achieved through a computationally efficient modeling approach without sacrificing solution quality. |
|---|---|
| AbstractList | By examining the patterns of solutions obtained for various instances, one can gain insights into the structure and behavior of combinatorial optimization (CO) problems and develop efficient algorithms for solving them. Machine learning techniques, especially Graph Neural Networks (GNNs), have shown promise in parametrizing and automating this laborious design process. The inductive bias of GNNs allows for learning solutions to mixed-integer programming (MIP) formulations of constrained CO problems with a relational representation of decision variables and constraints. The trained GNNs can be leveraged with primal heuristics to construct high-quality feasible solutions to CO problems quickly. However, current GNN-based end-to-end learning approaches have limitations for scalable training and generalization on larger-scale instances; therefore, they have been mostly evaluated over small-scale instances. Addressing this issue, our study builds on supervised learning of optimal solutions to the downscaled instances of given large-scale CO problems. We introduce several improvements on a recent GNN model for CO to generalize on instances of a larger scale than those used in training. We also propose a two-stage primal heuristic strategy based on uncertainty-quantification to automatically configure how solution search relies on the predicted decision values. Our models can generalize on 16x upscaled instances of commonly benchmarked five CO problems. Unlike the regressive performance of existing GNN-based CO approaches as the scale of problems increases, the CO pipelines using our models offer an incremental performance improvement relative to CPLEX. The proposed uncertainty-based primal heuristics provide 6-75% better optimality gap values and 45-99% better primal gap values for the 16x upscaled instances and brings immense speedup to obtain high-quality solutions. All these gains are achieved through a computationally efficient modeling approach without sacrificing solution quality. |
| Author | Varol, Taha Aydoğan, Reyhan Özener, Okan Örsan Cantürk, Furkan |
| Author_xml | – sequence: 1 givenname: Furkan orcidid: 0000-0003-4937-6538 surname: Cantürk fullname: Cantürk, Furkan – sequence: 2 givenname: Taha orcidid: 0000-0001-8831-2700 surname: Varol fullname: Varol, Taha – sequence: 3 givenname: Reyhan orcidid: 0000-0002-5260-9999 surname: Aydoğan fullname: Aydoğan, Reyhan – sequence: 4 givenname: Okan Örsan orcidid: 0000-0002-9291-1877 surname: Özener fullname: Özener, Okan Örsan |
| BookMark | eNpNkFFLwzAcxINMcJu--QHyAWzNP2mT9lGKbsLYBO1zSdNUM9umJBHRT79WffDpjjs4uN8KLQY7aISugcTAgd0epXExxJDkgp6hJRDBo1ykYvHPX6CV90dCIE9otkTls5KdrDuNn5zpZYe3-sMZH4zyuPRmeMUbJ8c3vJ_iqd3r8Gndu8etdbiwfW0GGawzU3UYg-nNtwzGDpfovJWd11d_ukblw_1LsY12h81jcbeLFGUkREwLIqjMWwKE1UowpqUiIiOcUtmklCmV1cBqaFLNkzZnNdEAbco58CRvgK3Rze-uctZ7p9tqnF-4rwpINSOpZiQVVD9I2AllTVc- |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1613/jair.1.14972 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1076-9757 |
| EndPage | 376 |
| ExternalDocumentID | 10_1613_jair_1_14972 |
| GroupedDBID | .DC 29J 2WC 5GY 5VS AAKMM AAKPC AALFJ AAYFX AAYXX ACGFO ACM ADBBV ADBSK ADMLS AEFXT AEJOY AENEX AFFHD AFKRA AFWXC AKRVB ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS BCNDV BENPR BGLVJ CCPQU CITATION E3Z EBS EJD F5P FRJ FRP GROUPED_DOAJ GUFHI HCIFZ K7- KQ8 LHSKQ LPJ OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB RNS TR2 XSB |
| ID | FETCH-LOGICAL-c230t-3e7072a9f0103bc733eac0780622ad523cc8b13b1d5e64f93b0e11f5661649d13 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001243395300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1076-9757 |
| IngestDate | Sat Nov 29 05:27:07 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c230t-3e7072a9f0103bc733eac0780622ad523cc8b13b1d5e64f93b0e11f5661649d13 |
| ORCID | 0000-0001-8831-2700 0000-0002-9291-1877 0000-0002-5260-9999 0000-0003-4937-6538 |
| OpenAccessLink | https://jair.org/index.php/jair/article/download/14972/27041 |
| PageCount | 50 |
| ParticipantIDs | crossref_primary_10_1613_jair_1_14972 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | The Journal of artificial intelligence research |
| PublicationYear | 2024 |
| SSID | ssj0019428 |
| Score | 2.4178593 |
| Snippet | By examining the patterns of solutions obtained for various instances, one can gain insights into the structure and behavior of combinatorial optimization (CO)... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 327 |
| Title | Scalable Primal Heuristics Using Graph Neural Networks for Combinatorial Optimization |
| Volume | 80 |
| WOSCitedRecordID | wos001243395300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: DOA dateStart: 19930101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: K7- dateStart: 19930101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: BENPR dateStart: 19930101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: PIMPY dateStart: 19930101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwoFLeYvyqHyAU5US29nYPpYVCxJoW4kW9RbZiaOugLQKu1XL_-L_MWM7j0IP5cDFWnnX3ijzaR72zDeEvFLaIeVKljjFTJIpWyda2QoGwYwEA6OsLxT-JBcLdXysDyaTX10tzPk32TTq4kKf_VdRwxwIG0tn_0Hc_aYwAZ9B6DCC2GG8keA_w1v39VAHSCSB1MHrjo055Ae8R47qHWTlgG8XIQ3cszKgcoBAGcNwPEffB23yPZZpjn3YoZrM-7H4CJGGYjnm94w0Qv1x8wxkiNfyb2chO3u-br8O0PyCiScePOaktxR7l9Upert6Hm-r3OXJsAQ30_lPF0t29mG3nTDXdplG8TiDZ6PjjKCBU5knWgbW6l13zVxU26EBVNS7gsuRCRehpcxf1gFcF9-VYNnuMjAROjQNukrC_Ydx7FMWMViC9QWuLljhV98it7mcaswk_CiT_vJKZzxUYManjvUWsPrN-L9HntDIpTm8TzajDOlewNADMnHNQ3Kv6_NBo9p_RI46SNEAKTpAinpIUQ8pGiBFO0hRgBS9Aik6htRjcjR_dzj7kMR2HEkJceoqEU6mkhtdY2sQW0ohwGiDh5nmnJtqykVZKsuEZdXU5VmthU0dYzXECxCS64qJJ2SjOW3cU0IhjmZK2srmUmQZr4xxRqe1NKAatCn5FnndvZriLLCuFNcJ4NkNf_ec3B2w9oJsrNq1e0nulOer5Y9225_DbHsZ_gZK_nnC |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Primal+Heuristics+Using+Graph+Neural+Networks+for+Combinatorial+Optimization&rft.jtitle=The+Journal+of+artificial+intelligence+research&rft.au=Cant%C3%BCrk%2C+Furkan&rft.au=Varol%2C+Taha&rft.au=Aydo%C4%9Fan%2C+Reyhan&rft.au=%C3%96zener%2C+Okan+%C3%96rsan&rft.date=2024-01-01&rft.issn=1076-9757&rft.eissn=1076-9757&rft.volume=80&rft.spage=327&rft.epage=376&rft_id=info:doi/10.1613%2Fjair.1.14972&rft.externalDBID=n%2Fa&rft.externalDocID=10_1613_jair_1_14972 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-9757&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-9757&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-9757&client=summon |