A new robust fuzzy clustering framework considering different data weights in different clusters

•A whole new data weighting method for fuzzy clustering is proposed.•l2-Norm regularization terms of the data weights and the feature weights are introduced.•Synthetic and benchmark datasets corroborate the effectiveness of the method. In conventional fuzzy C-means clustering algorithms, each data a...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 206; p. 117728
Main Authors: Wu, Ziheng, Wang, Bing, Li, Cong
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.11.2022
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A whole new data weighting method for fuzzy clustering is proposed.•l2-Norm regularization terms of the data weights and the feature weights are introduced.•Synthetic and benchmark datasets corroborate the effectiveness of the method. In conventional fuzzy C-means clustering algorithms, each data and each feature are treated equally, the clustering performance is sensitive to the noise points; in existing weighting clustering algorithms, few studies have focus on data weighting and feature weighting simultaneously, besides, the same data in different clusters is treated equally. To address this issue, in this paper, taking the different data weights in different clusters and the different feature weights in different clusters into consideration, we present a new robust fuzzy C-means clustering framework. For the first time, we propose a whole new idea that the same data in different clusters should have different importance, the different data in a cluster should have different importance, as well; By the new data weighting method, the proposed clustering algorithm can weaken the impact of noise points on the formation of each clustering center, which could enhance the robustness of clustering; to stimulate more data and more features to take part in the process of clustering and to avoid overfitting, we add l2-norm regularization of the data weights and l2-norm regularization of the feature weights to the objective function. Then, based on the presented objective function, we get the scientific update rules of the different data weights in different clusters, the different feature weights in different clusters, the membership degrees, and the cluster centers, during each iteration. To assess the performance of the new fuzzy C-means framework, experimental verifications on synthetic dataset and real-world datasets are conducted, experimental results have shown that the new algorithm can achieve better clustering performances in comparison to other related clustering methods.
AbstractList •A whole new data weighting method for fuzzy clustering is proposed.•l2-Norm regularization terms of the data weights and the feature weights are introduced.•Synthetic and benchmark datasets corroborate the effectiveness of the method. In conventional fuzzy C-means clustering algorithms, each data and each feature are treated equally, the clustering performance is sensitive to the noise points; in existing weighting clustering algorithms, few studies have focus on data weighting and feature weighting simultaneously, besides, the same data in different clusters is treated equally. To address this issue, in this paper, taking the different data weights in different clusters and the different feature weights in different clusters into consideration, we present a new robust fuzzy C-means clustering framework. For the first time, we propose a whole new idea that the same data in different clusters should have different importance, the different data in a cluster should have different importance, as well; By the new data weighting method, the proposed clustering algorithm can weaken the impact of noise points on the formation of each clustering center, which could enhance the robustness of clustering; to stimulate more data and more features to take part in the process of clustering and to avoid overfitting, we add l2-norm regularization of the data weights and l2-norm regularization of the feature weights to the objective function. Then, based on the presented objective function, we get the scientific update rules of the different data weights in different clusters, the different feature weights in different clusters, the membership degrees, and the cluster centers, during each iteration. To assess the performance of the new fuzzy C-means framework, experimental verifications on synthetic dataset and real-world datasets are conducted, experimental results have shown that the new algorithm can achieve better clustering performances in comparison to other related clustering methods.
ArticleNumber 117728
Author Wu, Ziheng
Wang, Bing
Li, Cong
Author_xml – sequence: 1
  givenname: Ziheng
  surname: Wu
  fullname: Wu, Ziheng
  email: wziheng@ahut.edu.cn
  organization: Anhui Province Key Laboratory of Special and Heavy Load Robot, AnHui University of Technology, Maanshan 243032, China
– sequence: 2
  givenname: Bing
  surname: Wang
  fullname: Wang, Bing
  email: wangbing@ustc.edu
  organization: Anhui Province Key Laboratory of Special and Heavy Load Robot, AnHui University of Technology, Maanshan 243032, China
– sequence: 3
  givenname: Cong
  surname: Li
  fullname: Li, Cong
  email: licong@ahut.edu.cn
  organization: Anhui Province Key Laboratory of Special and Heavy Load Robot, AnHui University of Technology, Maanshan 243032, China
BookMark eNp9kE1LAzEQhoNUsK3-AU_5A1snm93NLngpxS8oeNFzTJNJTW2zkqQu7a-3ZXsQDz3NMC_PC_OMyMC3Hgm5ZTBhwKq71QRjpyY55PmEMSHy-oIMWS14VomGD8gQmlJkBRPFFRnFuAJgAkAMyceUeuxoaBfbmKjd7vc7qteHHYPzS2qD2mDXhi-qWx-d6a_GWYsBfaJGJUU7dMvPFKnzf5JTSbwml1atI96c5pi8Pz68zZ6z-evTy2w6z3TOIWW8Mtyi0HohaiiwEroxpWGwwKbhjVKc2YojqKIRZW14nRdGcChLU5aFRgZ8TOq-V4c2xoBWapdUcq1PQbm1ZCCPpuRKHk3JoynZmzqg-T_0O7iNCrvz0H0P4eGpH4dBRu3QazQuoE7StO4c_gvUQ4Z7
CitedBy_id crossref_primary_10_1109_TKDE_2024_3508057
crossref_primary_10_1109_TKDE_2024_3386401
crossref_primary_10_1016_j_ins_2025_122381
crossref_primary_10_1155_2023_7217818
crossref_primary_10_1016_j_ins_2025_122427
crossref_primary_10_1016_j_asoc_2023_110395
crossref_primary_10_1016_j_ins_2023_119283
crossref_primary_10_3390_app122211342
Cites_doi 10.1016/j.eswa.2016.03.034
10.1109/TPAMI.2005.95
10.1016/j.eswa.2010.09.040
10.1016/j.eswa.2015.12.023
10.1109/TIP.2015.2456505
10.1109/TKDE.2007.1048
10.1016/j.asoc.2019.105610
10.1109/TFUZZ.2014.2306434
10.1016/j.future.2016.03.004
10.1007/s40815-020-01015-4
10.1016/j.asoc.2015.05.038
10.3724/SP.J.1004.2010.01544
10.1016/j.eswa.2015.04.032
10.1016/j.eswa.2013.11.013
10.1007/s00521-016-2786-6
10.1016/j.knosys.2018.03.028
10.1007/s00500-020-04924-6
10.1080/01969727308546046
10.1093/bioinformatics/btw006
10.1109/TFUZZ.2020.2991306
10.1016/j.asoc.2019.105928
10.1016/j.asoc.2015.12.022
10.1016/j.neucom.2016.08.042
10.1016/j.tcs.2021.06.035
10.1007/s10044-020-00932-2
10.1016/j.neucom.2015.09.127
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2022.117728
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_117728
S0957417422010107
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c230t-36d3fe7ccb7804e67c9d5d10be9939aa31f63e0a49758d3824d73055d554ce103
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000968569700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Nov 18 22:43:31 EST 2025
Sat Nov 29 07:08:25 EST 2025
Fri Feb 23 02:40:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fuzzy C-means clustering algorithm
l2-Norm regularization
Feature weights
Data weights
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c230t-36d3fe7ccb7804e67c9d5d10be9939aa31f63e0a49758d3824d73055d554ce103
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2022_117728
crossref_primary_10_1016_j_eswa_2022_117728
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_117728
PublicationCentury 2000
PublicationDate 2022-11-15
PublicationDateYYYYMMDD 2022-11-15
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ramathilagam, Huang (b0100) 2011; 38
Maria, Martin, Johannes (b0085) 2016; 32
Dunn (b0025) 1973; 3
Lin, Chen (b0065) 2021; 29
Filho, Pimentel, Souza, Oliveira (b0035) 2015; 42
Shieh, Chang (b0105) 2010
Verma, Agrawal, Sharan (b0120) 2016; 46
Zhou, Chen, Chen, Zhang, Li (b0150) 2016; 198
Liu, Liu, Li, Zhou (b0075) 2021; 885
Jing, Ng, Huang (b0055) 2007; 19
Wang, Wang, Wang (b0125) 2010; 25
Xiu, Song, Fan, Ouyang, Khan (b0140) 2016; 65
Pimentel, Souza (b0090) 2014; 41
Fazendeiro, De Oliveira (b0030) 2015; 23
Ban, Ban, Tuse (b0010) 2016; 50
Bezdek (b0015) 1981
Xu, Zhao, Feng, Ni, Ou (b0145) 2021; 23
Adhikari, Sing, Basu, Nasipuri (b0005) 2015; 34
Wu, Wu, Zhang (b0135) 2017; 28
Wu, Wang (b0130) 2019; 37
Liu, Hou, Miao, Liu, Liu (b0070) 2021; 24
Radhika, Rangarajan (b0095) 2019; 83
Tang, Ren, Pedrycz (b0110) 2020; 87
Huang, Ng, Rong, Li (b0045) 2005; 27
Liu, Zhang, Wang (b0080) 2015; 24
Kesemen, Tezel, Ozkul (b0060) 2016; 58
Chang-Chien, Nataliani, Yang (b0020) 2021; 25
Haldar, Khan, Ali, Abbas (b0040) 2017; 220
Tang, Wang (b0115) 2010; 36
Huang, Yang, Zhao, Xiong, Ye (b0050) 2018; 151
Huang (10.1016/j.eswa.2022.117728_b0045) 2005; 27
Verma (10.1016/j.eswa.2022.117728_b0120) 2016; 46
Kesemen (10.1016/j.eswa.2022.117728_b0060) 2016; 58
Zhou (10.1016/j.eswa.2022.117728_b0150) 2016; 198
Tang (10.1016/j.eswa.2022.117728_b0110) 2020; 87
Chang-Chien (10.1016/j.eswa.2022.117728_b0020) 2021; 25
Radhika (10.1016/j.eswa.2022.117728_b0095) 2019; 83
Jing (10.1016/j.eswa.2022.117728_b0055) 2007; 19
Tang (10.1016/j.eswa.2022.117728_b0115) 2010; 36
Pimentel (10.1016/j.eswa.2022.117728_b0090) 2014; 41
Lin (10.1016/j.eswa.2022.117728_b0065) 2021; 29
Maria (10.1016/j.eswa.2022.117728_b0085) 2016; 32
Liu (10.1016/j.eswa.2022.117728_b0080) 2015; 24
Xu (10.1016/j.eswa.2022.117728_b0145) 2021; 23
Liu (10.1016/j.eswa.2022.117728_b0070) 2021; 24
Bezdek (10.1016/j.eswa.2022.117728_b0015) 1981
Adhikari (10.1016/j.eswa.2022.117728_b0005) 2015; 34
Ban (10.1016/j.eswa.2022.117728_b0010) 2016; 50
Fazendeiro (10.1016/j.eswa.2022.117728_b0030) 2015; 23
Wu (10.1016/j.eswa.2022.117728_b0135) 2017; 28
Ramathilagam (10.1016/j.eswa.2022.117728_b0100) 2011; 38
Dunn (10.1016/j.eswa.2022.117728_b0025) 1973; 3
Liu (10.1016/j.eswa.2022.117728_b0075) 2021; 885
Shieh (10.1016/j.eswa.2022.117728_b0105) 2010
Haldar (10.1016/j.eswa.2022.117728_b0040) 2017; 220
Huang (10.1016/j.eswa.2022.117728_b0050) 2018; 151
Xiu (10.1016/j.eswa.2022.117728_b0140) 2016; 65
Wu (10.1016/j.eswa.2022.117728_b0130) 2019; 37
Wang (10.1016/j.eswa.2022.117728_b0125) 2010; 25
Filho (10.1016/j.eswa.2022.117728_b0035) 2015; 42
References_xml – volume: 58
  start-page: 76
  year: 2016
  end-page: 82
  ident: b0060
  article-title: Fuzzy C-means clustering algorithm for directional data (FCM4DD)
  publication-title: Expert Systems with Applications
– volume: 34
  start-page: 758
  year: 2015
  end-page: 769
  ident: b0005
  article-title: Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images
  publication-title: Applied Soft Computing
– volume: 151
  start-page: 165
  year: 2018
  end-page: 179
  ident: b0050
  article-title: A new weighting
  publication-title: Knowledge-based Systems
– start-page: 767
  year: 2010
  end-page: 771
  ident: b0105
  article-title: A new robust validity index for fuzzy clustering algorithm
  publication-title: Proceedings of 2010 IEEE International Conference on Industrial Engineering and Engineering Management
– volume: 23
  start-page: 816
  year: 2021
  end-page: 832
  ident: b0145
  article-title: A fuzzy C-means clustering algorithm based on spatial context model for image segmentation
  publication-title: International Journal of Fuzzy Systems
– volume: 3
  start-page: 32
  year: 1973
  end-page: 57
  ident: b0025
  article-title: A Fuzzy Relative of the ISODATA Process and its Use in detecting compact well-separated clusters
  publication-title: Journal of Cybernetics
– volume: 25
  start-page: 1699
  year: 2021
  end-page: 1716
  ident: b0020
  article-title: Gaussian-kernel c-means clustering algorithms
  publication-title: Soft Computing
– volume: 220
  start-page: 221
  year: 2017
  end-page: 235
  ident: b0040
  article-title: Arrhythmia classification using mahalanobis distance based improved fuzzy C-means clustering for mobile health monitoring systems
  publication-title: Neurocomputing
– volume: 83
  year: 2019
  ident: b0095
  article-title: On improving the lifespan of wireless sensor networks with fuzzy based clustering and machine learning based data reduction
  publication-title: Applied Soft Computing Journal
– volume: 198
  start-page: 125
  year: 2016
  end-page: 134
  ident: b0150
  article-title: Fuzzy clustering with the entropy of attribute weights
  publication-title: Neurocomputing
– volume: 23
  start-page: 85
  year: 2015
  end-page: 97
  ident: b0030
  article-title: Observer-biased fuzzy clustering
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 25
  start-page: 1207
  year: 2010
  end-page: 1210
  ident: b0125
  article-title: Double-indices fuzzy subspace clustering algorithm based on feature weighted distance
  publication-title: Control and Decision
– volume: 29
  start-page: 2006
  year: 2021
  end-page: 2017
  ident: b0065
  article-title: A centroid auto-fused hierarchical fuzzy C-means clustering
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 87
  year: 2020
  ident: b0110
  article-title: Fuzzy C-means clustering through SSIM and patch for image segmentation
  publication-title: Applied Soft Computing
– volume: 24
  start-page: 611
  year: 2021
  end-page: 623
  ident: b0070
  article-title: IM-c-means: A new clustering algorithm for clusters with skewed distributions
  publication-title: Pattern Analysis and Applications
– volume: 36
  start-page: 1544
  year: 2010
  end-page: 1556
  ident: b0115
  article-title: Adaptive fuzzy clustering model based on internal connectivity of all data points
  publication-title: Acta Automatica Sinica
– volume: 41
  start-page: 3223
  year: 2014
  end-page: 3236
  ident: b0090
  article-title: A weighted multivariate fuzzy C-means method in interval-valued scientific production data
  publication-title: Expert Systems with Applications
– volume: 50
  start-page: 9
  year: 2016
  end-page: 16
  ident: b0010
  article-title: Importance-performance analysis by fuzzy C-means algorithm
  publication-title: Expert Systems with Applications
– volume: 46
  start-page: 543
  year: 2016
  end-page: 557
  ident: b0120
  article-title: An improved intuitionistic fuzzy C-means clustering algorithm incorporating local information for brain image segmentation
  publication-title: Applied Soft Computing
– volume: 885
  start-page: 146
  year: 2021
  end-page: 158
  ident: b0075
  article-title: Approximation algorithms for fuzzy C-means problem based on seeding method
  publication-title: Theoretical Computer Science
– volume: 28
  start-page: 3113
  year: 2017
  end-page: 3118
  ident: b0135
  article-title: An improved FCM algorithm with adaptive weights based on SA-PSO
  publication-title: Neural Computing and Applications
– volume: 65
  start-page: 90
  year: 2016
  end-page: 101
  ident: b0140
  article-title: Mapreducebased fast fuzzy C-means algorithm for large-scale underwater image segmentation
  publication-title: Future Generation Computer Systems
– volume: 24
  start-page: 3990
  year: 2015
  end-page: 4000
  ident: b0080
  article-title: Incorporating adaptive local information into fuzzy clustering for image segmentation
  publication-title: IEEE Transactions on Image Processing
– volume: 42
  start-page: 6315
  year: 2015
  end-page: 6328
  ident: b0035
  article-title: Hybrid methods for fuzzy clustering based on fuzzy C-means and improved particle swarm optimization
  publication-title: Expert Systems with Applications
– volume: 32
  start-page: 1323
  year: 2016
  end-page: 1330
  ident: b0085
  article-title: Mmseqs software suite for fast and deep clustering and searching of large protein sequence sets
  publication-title: Bioinformatics
– volume: 27
  start-page: 657
  year: 2005
  end-page: 668
  ident: b0045
  article-title: Automated variable weighting in k-means type clustering
  publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence
– volume: 38
  start-page: 3793
  year: 2011
  end-page: 3805
  ident: b0100
  article-title: Extended Gaussian kernel version of fuzzy C-means in the problem of data analyzing
  publication-title: Expert Systems with Applications
– volume: 37
  start-page: 4339
  year: 2019
  end-page: 4347
  ident: b0130
  article-title: DwfwFcm: An effective fuzzy c-means clustering framework considering the different data weights and feature weights
  publication-title: Journal of Intelligent & Fuzzy Systems
– year: 1981
  ident: b0015
  article-title: Pattern recognition with fuzzy objective function algorithms
– volume: 19
  start-page: 1026
  year: 2007
  end-page: 1041
  ident: b0055
  article-title: An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data
  publication-title: IEEE Transactions on Knowledge & Data Engineering
– volume: 58
  start-page: 76
  year: 2016
  ident: 10.1016/j.eswa.2022.117728_b0060
  article-title: Fuzzy C-means clustering algorithm for directional data (FCM4DD)
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.03.034
– volume: 37
  start-page: 4339
  issue: 3
  year: 2019
  ident: 10.1016/j.eswa.2022.117728_b0130
  article-title: DwfwFcm: An effective fuzzy c-means clustering framework considering the different data weights and feature weights
  publication-title: Journal of Intelligent & Fuzzy Systems
– start-page: 767
  year: 2010
  ident: 10.1016/j.eswa.2022.117728_b0105
  article-title: A new robust validity index for fuzzy clustering algorithm
– volume: 27
  start-page: 657
  issue: 5
  year: 2005
  ident: 10.1016/j.eswa.2022.117728_b0045
  article-title: Automated variable weighting in k-means type clustering
  publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence
  doi: 10.1109/TPAMI.2005.95
– volume: 38
  start-page: 3793
  year: 2011
  ident: 10.1016/j.eswa.2022.117728_b0100
  article-title: Extended Gaussian kernel version of fuzzy C-means in the problem of data analyzing
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.09.040
– volume: 50
  start-page: 9
  year: 2016
  ident: 10.1016/j.eswa.2022.117728_b0010
  article-title: Importance-performance analysis by fuzzy C-means algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.12.023
– volume: 24
  start-page: 3990
  issue: 11
  year: 2015
  ident: 10.1016/j.eswa.2022.117728_b0080
  article-title: Incorporating adaptive local information into fuzzy clustering for image segmentation
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2015.2456505
– year: 1981
  ident: 10.1016/j.eswa.2022.117728_b0015
– volume: 19
  start-page: 1026
  issue: 8
  year: 2007
  ident: 10.1016/j.eswa.2022.117728_b0055
  article-title: An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data
  publication-title: IEEE Transactions on Knowledge & Data Engineering
  doi: 10.1109/TKDE.2007.1048
– volume: 83
  year: 2019
  ident: 10.1016/j.eswa.2022.117728_b0095
  article-title: On improving the lifespan of wireless sensor networks with fuzzy based clustering and machine learning based data reduction
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2019.105610
– volume: 23
  start-page: 85
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2022.117728_b0030
  article-title: Observer-biased fuzzy clustering
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2014.2306434
– volume: 65
  start-page: 90
  year: 2016
  ident: 10.1016/j.eswa.2022.117728_b0140
  article-title: Mapreducebased fast fuzzy C-means algorithm for large-scale underwater image segmentation
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2016.03.004
– volume: 23
  start-page: 816
  year: 2021
  ident: 10.1016/j.eswa.2022.117728_b0145
  article-title: A fuzzy C-means clustering algorithm based on spatial context model for image segmentation
  publication-title: International Journal of Fuzzy Systems
  doi: 10.1007/s40815-020-01015-4
– volume: 34
  start-page: 758
  year: 2015
  ident: 10.1016/j.eswa.2022.117728_b0005
  article-title: Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.05.038
– volume: 36
  start-page: 1544
  issue: 11
  year: 2010
  ident: 10.1016/j.eswa.2022.117728_b0115
  article-title: Adaptive fuzzy clustering model based on internal connectivity of all data points
  publication-title: Acta Automatica Sinica
  doi: 10.3724/SP.J.1004.2010.01544
– volume: 42
  start-page: 6315
  year: 2015
  ident: 10.1016/j.eswa.2022.117728_b0035
  article-title: Hybrid methods for fuzzy clustering based on fuzzy C-means and improved particle swarm optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.04.032
– volume: 41
  start-page: 3223
  issue: 7
  year: 2014
  ident: 10.1016/j.eswa.2022.117728_b0090
  article-title: A weighted multivariate fuzzy C-means method in interval-valued scientific production data
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.11.013
– volume: 25
  start-page: 1207
  issue: 8
  year: 2010
  ident: 10.1016/j.eswa.2022.117728_b0125
  article-title: Double-indices fuzzy subspace clustering algorithm based on feature weighted distance
  publication-title: Control and Decision
– volume: 28
  start-page: 3113
  year: 2017
  ident: 10.1016/j.eswa.2022.117728_b0135
  article-title: An improved FCM algorithm with adaptive weights based on SA-PSO
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-016-2786-6
– volume: 151
  start-page: 165
  year: 2018
  ident: 10.1016/j.eswa.2022.117728_b0050
  article-title: A new weighting k-means type clustering framework with an l2-norm regularization
  publication-title: Knowledge-based Systems
  doi: 10.1016/j.knosys.2018.03.028
– volume: 25
  start-page: 1699
  year: 2021
  ident: 10.1016/j.eswa.2022.117728_b0020
  article-title: Gaussian-kernel c-means clustering algorithms
  publication-title: Soft Computing
  doi: 10.1007/s00500-020-04924-6
– volume: 3
  start-page: 32
  year: 1973
  ident: 10.1016/j.eswa.2022.117728_b0025
  article-title: A Fuzzy Relative of the ISODATA Process and its Use in detecting compact well-separated clusters
  publication-title: Journal of Cybernetics
  doi: 10.1080/01969727308546046
– volume: 32
  start-page: 1323
  issue: 9
  year: 2016
  ident: 10.1016/j.eswa.2022.117728_b0085
  article-title: Mmseqs software suite for fast and deep clustering and searching of large protein sequence sets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw006
– volume: 29
  start-page: 2006
  year: 2021
  ident: 10.1016/j.eswa.2022.117728_b0065
  article-title: A centroid auto-fused hierarchical fuzzy C-means clustering
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2020.2991306
– volume: 87
  year: 2020
  ident: 10.1016/j.eswa.2022.117728_b0110
  article-title: Fuzzy C-means clustering through SSIM and patch for image segmentation
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105928
– volume: 46
  start-page: 543
  year: 2016
  ident: 10.1016/j.eswa.2022.117728_b0120
  article-title: An improved intuitionistic fuzzy C-means clustering algorithm incorporating local information for brain image segmentation
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.12.022
– volume: 220
  start-page: 221
  year: 2017
  ident: 10.1016/j.eswa.2022.117728_b0040
  article-title: Arrhythmia classification using mahalanobis distance based improved fuzzy C-means clustering for mobile health monitoring systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.08.042
– volume: 885
  start-page: 146
  year: 2021
  ident: 10.1016/j.eswa.2022.117728_b0075
  article-title: Approximation algorithms for fuzzy C-means problem based on seeding method
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2021.06.035
– volume: 24
  start-page: 611
  year: 2021
  ident: 10.1016/j.eswa.2022.117728_b0070
  article-title: IM-c-means: A new clustering algorithm for clusters with skewed distributions
  publication-title: Pattern Analysis and Applications
  doi: 10.1007/s10044-020-00932-2
– volume: 198
  start-page: 125
  year: 2016
  ident: 10.1016/j.eswa.2022.117728_b0150
  article-title: Fuzzy clustering with the entropy of attribute weights
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.127
SSID ssj0017007
Score 2.4382844
Snippet •A whole new data weighting method for fuzzy clustering is proposed.•l2-Norm regularization terms of the data weights and the feature weights are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117728
SubjectTerms Data weights
Feature weights
Fuzzy C-means clustering algorithm
l2-Norm regularization
Title A new robust fuzzy clustering framework considering different data weights in different clusters
URI https://dx.doi.org/10.1016/j.eswa.2022.117728
Volume 206
WOSCitedRecordID wos000968569700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKy4FLgQJqgSIfuEWpnDheJ8elKioIVT0UaW8hjm2xVZWtNklb-usZf2WzhVb0wCVaTZLZaOftZDx-M4PQR8UpqzIh4kJLHWdCk7iirIgzJiWnqRZEEztsgp-c5LNZceoJma0dJ8CbJr-5KS7_q6lBBsY2pbOPMPegFATwGYwORzA7HP_J8FMzJTxaLkTfdpHub29_RfVFb_ohWNJkIGMZvrkd1WmkYUxKFxnGaHRt86WOKTuc8UratVy-aZTc-XbQoVButCU-uPzeboLMfyr_orQpfOdmPs1Xsm-WW3C48BKfjYCFrGHEsbW0Io-zxE3eCR42JWMfabaJXUH4H-7bZRLOD1R7bXpCpenB6uL1Xtl33mEDszCQ1s5Lo6M0Okqn4wnaSjkrwPNtTb8czb4Oe02cuKL68OS-tMqxAO8-yd_Dl1FIcvYCbfu1BJ46DLxEG6rZQc_DnA7s3fYr9GOKARLYQQJbSOAVJPAACTyCBB4Mjw0ksIcEnjejMwESr9H3z0dnh8exn6wR17Dk7GI6kVQrXtfC9J9SE14XksmECAXhalFVNNETqkiVFbCclDRPM_jjEsYkBJ-1Sgh9gzabRaN2EU60YInOJ0RRmsk8h_CPa8lERmllevfvoST8YGXt286b6ScX5f2m2kPRcM-la7ry4NUs2KH0YaMLB0uA1QP3vX3Ut7xDz1Z4f482u2Wv9tHT-qqbt8sPHlO_AStbkaM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+robust+fuzzy+clustering+framework+considering+different+data+weights+in+different+clusters&rft.jtitle=Expert+systems+with+applications&rft.au=Wu%2C+Ziheng&rft.au=Wang%2C+Bing&rft.au=Li%2C+Cong&rft.date=2022-11-15&rft.issn=0957-4174&rft.volume=206&rft.spage=117728&rft_id=info:doi/10.1016%2Fj.eswa.2022.117728&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_117728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon