A new robust fuzzy clustering framework considering different data weights in different clusters
•A whole new data weighting method for fuzzy clustering is proposed.•l2-Norm regularization terms of the data weights and the feature weights are introduced.•Synthetic and benchmark datasets corroborate the effectiveness of the method. In conventional fuzzy C-means clustering algorithms, each data a...
Saved in:
| Published in: | Expert systems with applications Vol. 206; p. 117728 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
15.11.2022
|
| Subjects: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A whole new data weighting method for fuzzy clustering is proposed.•l2-Norm regularization terms of the data weights and the feature weights are introduced.•Synthetic and benchmark datasets corroborate the effectiveness of the method.
In conventional fuzzy C-means clustering algorithms, each data and each feature are treated equally, the clustering performance is sensitive to the noise points; in existing weighting clustering algorithms, few studies have focus on data weighting and feature weighting simultaneously, besides, the same data in different clusters is treated equally. To address this issue, in this paper, taking the different data weights in different clusters and the different feature weights in different clusters into consideration, we present a new robust fuzzy C-means clustering framework. For the first time, we propose a whole new idea that the same data in different clusters should have different importance, the different data in a cluster should have different importance, as well; By the new data weighting method, the proposed clustering algorithm can weaken the impact of noise points on the formation of each clustering center, which could enhance the robustness of clustering; to stimulate more data and more features to take part in the process of clustering and to avoid overfitting, we add l2-norm regularization of the data weights and l2-norm regularization of the feature weights to the objective function. Then, based on the presented objective function, we get the scientific update rules of the different data weights in different clusters, the different feature weights in different clusters, the membership degrees, and the cluster centers, during each iteration. To assess the performance of the new fuzzy C-means framework, experimental verifications on synthetic dataset and real-world datasets are conducted, experimental results have shown that the new algorithm can achieve better clustering performances in comparison to other related clustering methods. |
|---|---|
| AbstractList | •A whole new data weighting method for fuzzy clustering is proposed.•l2-Norm regularization terms of the data weights and the feature weights are introduced.•Synthetic and benchmark datasets corroborate the effectiveness of the method.
In conventional fuzzy C-means clustering algorithms, each data and each feature are treated equally, the clustering performance is sensitive to the noise points; in existing weighting clustering algorithms, few studies have focus on data weighting and feature weighting simultaneously, besides, the same data in different clusters is treated equally. To address this issue, in this paper, taking the different data weights in different clusters and the different feature weights in different clusters into consideration, we present a new robust fuzzy C-means clustering framework. For the first time, we propose a whole new idea that the same data in different clusters should have different importance, the different data in a cluster should have different importance, as well; By the new data weighting method, the proposed clustering algorithm can weaken the impact of noise points on the formation of each clustering center, which could enhance the robustness of clustering; to stimulate more data and more features to take part in the process of clustering and to avoid overfitting, we add l2-norm regularization of the data weights and l2-norm regularization of the feature weights to the objective function. Then, based on the presented objective function, we get the scientific update rules of the different data weights in different clusters, the different feature weights in different clusters, the membership degrees, and the cluster centers, during each iteration. To assess the performance of the new fuzzy C-means framework, experimental verifications on synthetic dataset and real-world datasets are conducted, experimental results have shown that the new algorithm can achieve better clustering performances in comparison to other related clustering methods. |
| ArticleNumber | 117728 |
| Author | Wu, Ziheng Wang, Bing Li, Cong |
| Author_xml | – sequence: 1 givenname: Ziheng surname: Wu fullname: Wu, Ziheng email: wziheng@ahut.edu.cn organization: Anhui Province Key Laboratory of Special and Heavy Load Robot, AnHui University of Technology, Maanshan 243032, China – sequence: 2 givenname: Bing surname: Wang fullname: Wang, Bing email: wangbing@ustc.edu organization: Anhui Province Key Laboratory of Special and Heavy Load Robot, AnHui University of Technology, Maanshan 243032, China – sequence: 3 givenname: Cong surname: Li fullname: Li, Cong email: licong@ahut.edu.cn organization: Anhui Province Key Laboratory of Special and Heavy Load Robot, AnHui University of Technology, Maanshan 243032, China |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU_5A1snm93NLngpxS8oeNFzTJNJTW2zkqQu7a-3ZXsQDz3NMC_PC_OMyMC3Hgm5ZTBhwKq71QRjpyY55PmEMSHy-oIMWS14VomGD8gQmlJkBRPFFRnFuAJgAkAMyceUeuxoaBfbmKjd7vc7qteHHYPzS2qD2mDXhi-qWx-d6a_GWYsBfaJGJUU7dMvPFKnzf5JTSbwml1atI96c5pi8Pz68zZ6z-evTy2w6z3TOIWW8Mtyi0HohaiiwEroxpWGwwKbhjVKc2YojqKIRZW14nRdGcChLU5aFRgZ8TOq-V4c2xoBWapdUcq1PQbm1ZCCPpuRKHk3JoynZmzqg-T_0O7iNCrvz0H0P4eGpH4dBRu3QazQuoE7StO4c_gvUQ4Z7 |
| CitedBy_id | crossref_primary_10_1109_TKDE_2024_3508057 crossref_primary_10_1109_TKDE_2024_3386401 crossref_primary_10_1016_j_ins_2025_122381 crossref_primary_10_1155_2023_7217818 crossref_primary_10_1016_j_ins_2025_122427 crossref_primary_10_1016_j_asoc_2023_110395 crossref_primary_10_1016_j_ins_2023_119283 crossref_primary_10_3390_app122211342 |
| Cites_doi | 10.1016/j.eswa.2016.03.034 10.1109/TPAMI.2005.95 10.1016/j.eswa.2010.09.040 10.1016/j.eswa.2015.12.023 10.1109/TIP.2015.2456505 10.1109/TKDE.2007.1048 10.1016/j.asoc.2019.105610 10.1109/TFUZZ.2014.2306434 10.1016/j.future.2016.03.004 10.1007/s40815-020-01015-4 10.1016/j.asoc.2015.05.038 10.3724/SP.J.1004.2010.01544 10.1016/j.eswa.2015.04.032 10.1016/j.eswa.2013.11.013 10.1007/s00521-016-2786-6 10.1016/j.knosys.2018.03.028 10.1007/s00500-020-04924-6 10.1080/01969727308546046 10.1093/bioinformatics/btw006 10.1109/TFUZZ.2020.2991306 10.1016/j.asoc.2019.105928 10.1016/j.asoc.2015.12.022 10.1016/j.neucom.2016.08.042 10.1016/j.tcs.2021.06.035 10.1007/s10044-020-00932-2 10.1016/j.neucom.2015.09.127 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2022.117728 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2022_117728 S0957417422010107 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c230t-36d3fe7ccb7804e67c9d5d10be9939aa31f63e0a49758d3824d73055d554ce103 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000968569700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Tue Nov 18 22:43:31 EST 2025 Sat Nov 29 07:08:25 EST 2025 Fri Feb 23 02:40:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fuzzy C-means clustering algorithm l2-Norm regularization Feature weights Data weights |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c230t-36d3fe7ccb7804e67c9d5d10be9939aa31f63e0a49758d3824d73055d554ce103 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2022_117728 crossref_primary_10_1016_j_eswa_2022_117728 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_117728 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-15 |
| PublicationDateYYYYMMDD | 2022-11-15 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ramathilagam, Huang (b0100) 2011; 38 Maria, Martin, Johannes (b0085) 2016; 32 Dunn (b0025) 1973; 3 Lin, Chen (b0065) 2021; 29 Filho, Pimentel, Souza, Oliveira (b0035) 2015; 42 Shieh, Chang (b0105) 2010 Verma, Agrawal, Sharan (b0120) 2016; 46 Zhou, Chen, Chen, Zhang, Li (b0150) 2016; 198 Liu, Liu, Li, Zhou (b0075) 2021; 885 Jing, Ng, Huang (b0055) 2007; 19 Wang, Wang, Wang (b0125) 2010; 25 Xiu, Song, Fan, Ouyang, Khan (b0140) 2016; 65 Pimentel, Souza (b0090) 2014; 41 Fazendeiro, De Oliveira (b0030) 2015; 23 Ban, Ban, Tuse (b0010) 2016; 50 Bezdek (b0015) 1981 Xu, Zhao, Feng, Ni, Ou (b0145) 2021; 23 Adhikari, Sing, Basu, Nasipuri (b0005) 2015; 34 Wu, Wu, Zhang (b0135) 2017; 28 Wu, Wang (b0130) 2019; 37 Liu, Hou, Miao, Liu, Liu (b0070) 2021; 24 Radhika, Rangarajan (b0095) 2019; 83 Tang, Ren, Pedrycz (b0110) 2020; 87 Huang, Ng, Rong, Li (b0045) 2005; 27 Liu, Zhang, Wang (b0080) 2015; 24 Kesemen, Tezel, Ozkul (b0060) 2016; 58 Chang-Chien, Nataliani, Yang (b0020) 2021; 25 Haldar, Khan, Ali, Abbas (b0040) 2017; 220 Tang, Wang (b0115) 2010; 36 Huang, Yang, Zhao, Xiong, Ye (b0050) 2018; 151 Huang (10.1016/j.eswa.2022.117728_b0045) 2005; 27 Verma (10.1016/j.eswa.2022.117728_b0120) 2016; 46 Kesemen (10.1016/j.eswa.2022.117728_b0060) 2016; 58 Zhou (10.1016/j.eswa.2022.117728_b0150) 2016; 198 Tang (10.1016/j.eswa.2022.117728_b0110) 2020; 87 Chang-Chien (10.1016/j.eswa.2022.117728_b0020) 2021; 25 Radhika (10.1016/j.eswa.2022.117728_b0095) 2019; 83 Jing (10.1016/j.eswa.2022.117728_b0055) 2007; 19 Tang (10.1016/j.eswa.2022.117728_b0115) 2010; 36 Pimentel (10.1016/j.eswa.2022.117728_b0090) 2014; 41 Lin (10.1016/j.eswa.2022.117728_b0065) 2021; 29 Maria (10.1016/j.eswa.2022.117728_b0085) 2016; 32 Liu (10.1016/j.eswa.2022.117728_b0080) 2015; 24 Xu (10.1016/j.eswa.2022.117728_b0145) 2021; 23 Liu (10.1016/j.eswa.2022.117728_b0070) 2021; 24 Bezdek (10.1016/j.eswa.2022.117728_b0015) 1981 Adhikari (10.1016/j.eswa.2022.117728_b0005) 2015; 34 Ban (10.1016/j.eswa.2022.117728_b0010) 2016; 50 Fazendeiro (10.1016/j.eswa.2022.117728_b0030) 2015; 23 Wu (10.1016/j.eswa.2022.117728_b0135) 2017; 28 Ramathilagam (10.1016/j.eswa.2022.117728_b0100) 2011; 38 Dunn (10.1016/j.eswa.2022.117728_b0025) 1973; 3 Liu (10.1016/j.eswa.2022.117728_b0075) 2021; 885 Shieh (10.1016/j.eswa.2022.117728_b0105) 2010 Haldar (10.1016/j.eswa.2022.117728_b0040) 2017; 220 Huang (10.1016/j.eswa.2022.117728_b0050) 2018; 151 Xiu (10.1016/j.eswa.2022.117728_b0140) 2016; 65 Wu (10.1016/j.eswa.2022.117728_b0130) 2019; 37 Wang (10.1016/j.eswa.2022.117728_b0125) 2010; 25 Filho (10.1016/j.eswa.2022.117728_b0035) 2015; 42 |
| References_xml | – volume: 58 start-page: 76 year: 2016 end-page: 82 ident: b0060 article-title: Fuzzy C-means clustering algorithm for directional data (FCM4DD) publication-title: Expert Systems with Applications – volume: 34 start-page: 758 year: 2015 end-page: 769 ident: b0005 article-title: Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images publication-title: Applied Soft Computing – volume: 151 start-page: 165 year: 2018 end-page: 179 ident: b0050 article-title: A new weighting publication-title: Knowledge-based Systems – start-page: 767 year: 2010 end-page: 771 ident: b0105 article-title: A new robust validity index for fuzzy clustering algorithm publication-title: Proceedings of 2010 IEEE International Conference on Industrial Engineering and Engineering Management – volume: 23 start-page: 816 year: 2021 end-page: 832 ident: b0145 article-title: A fuzzy C-means clustering algorithm based on spatial context model for image segmentation publication-title: International Journal of Fuzzy Systems – volume: 3 start-page: 32 year: 1973 end-page: 57 ident: b0025 article-title: A Fuzzy Relative of the ISODATA Process and its Use in detecting compact well-separated clusters publication-title: Journal of Cybernetics – volume: 25 start-page: 1699 year: 2021 end-page: 1716 ident: b0020 article-title: Gaussian-kernel c-means clustering algorithms publication-title: Soft Computing – volume: 220 start-page: 221 year: 2017 end-page: 235 ident: b0040 article-title: Arrhythmia classification using mahalanobis distance based improved fuzzy C-means clustering for mobile health monitoring systems publication-title: Neurocomputing – volume: 83 year: 2019 ident: b0095 article-title: On improving the lifespan of wireless sensor networks with fuzzy based clustering and machine learning based data reduction publication-title: Applied Soft Computing Journal – volume: 198 start-page: 125 year: 2016 end-page: 134 ident: b0150 article-title: Fuzzy clustering with the entropy of attribute weights publication-title: Neurocomputing – volume: 23 start-page: 85 year: 2015 end-page: 97 ident: b0030 article-title: Observer-biased fuzzy clustering publication-title: IEEE Transactions on Fuzzy Systems – volume: 25 start-page: 1207 year: 2010 end-page: 1210 ident: b0125 article-title: Double-indices fuzzy subspace clustering algorithm based on feature weighted distance publication-title: Control and Decision – volume: 29 start-page: 2006 year: 2021 end-page: 2017 ident: b0065 article-title: A centroid auto-fused hierarchical fuzzy C-means clustering publication-title: IEEE Transactions on Fuzzy Systems – volume: 87 year: 2020 ident: b0110 article-title: Fuzzy C-means clustering through SSIM and patch for image segmentation publication-title: Applied Soft Computing – volume: 24 start-page: 611 year: 2021 end-page: 623 ident: b0070 article-title: IM-c-means: A new clustering algorithm for clusters with skewed distributions publication-title: Pattern Analysis and Applications – volume: 36 start-page: 1544 year: 2010 end-page: 1556 ident: b0115 article-title: Adaptive fuzzy clustering model based on internal connectivity of all data points publication-title: Acta Automatica Sinica – volume: 41 start-page: 3223 year: 2014 end-page: 3236 ident: b0090 article-title: A weighted multivariate fuzzy C-means method in interval-valued scientific production data publication-title: Expert Systems with Applications – volume: 50 start-page: 9 year: 2016 end-page: 16 ident: b0010 article-title: Importance-performance analysis by fuzzy C-means algorithm publication-title: Expert Systems with Applications – volume: 46 start-page: 543 year: 2016 end-page: 557 ident: b0120 article-title: An improved intuitionistic fuzzy C-means clustering algorithm incorporating local information for brain image segmentation publication-title: Applied Soft Computing – volume: 885 start-page: 146 year: 2021 end-page: 158 ident: b0075 article-title: Approximation algorithms for fuzzy C-means problem based on seeding method publication-title: Theoretical Computer Science – volume: 28 start-page: 3113 year: 2017 end-page: 3118 ident: b0135 article-title: An improved FCM algorithm with adaptive weights based on SA-PSO publication-title: Neural Computing and Applications – volume: 65 start-page: 90 year: 2016 end-page: 101 ident: b0140 article-title: Mapreducebased fast fuzzy C-means algorithm for large-scale underwater image segmentation publication-title: Future Generation Computer Systems – volume: 24 start-page: 3990 year: 2015 end-page: 4000 ident: b0080 article-title: Incorporating adaptive local information into fuzzy clustering for image segmentation publication-title: IEEE Transactions on Image Processing – volume: 42 start-page: 6315 year: 2015 end-page: 6328 ident: b0035 article-title: Hybrid methods for fuzzy clustering based on fuzzy C-means and improved particle swarm optimization publication-title: Expert Systems with Applications – volume: 32 start-page: 1323 year: 2016 end-page: 1330 ident: b0085 article-title: Mmseqs software suite for fast and deep clustering and searching of large protein sequence sets publication-title: Bioinformatics – volume: 27 start-page: 657 year: 2005 end-page: 668 ident: b0045 article-title: Automated variable weighting in k-means type clustering publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence – volume: 38 start-page: 3793 year: 2011 end-page: 3805 ident: b0100 article-title: Extended Gaussian kernel version of fuzzy C-means in the problem of data analyzing publication-title: Expert Systems with Applications – volume: 37 start-page: 4339 year: 2019 end-page: 4347 ident: b0130 article-title: DwfwFcm: An effective fuzzy c-means clustering framework considering the different data weights and feature weights publication-title: Journal of Intelligent & Fuzzy Systems – year: 1981 ident: b0015 article-title: Pattern recognition with fuzzy objective function algorithms – volume: 19 start-page: 1026 year: 2007 end-page: 1041 ident: b0055 article-title: An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data publication-title: IEEE Transactions on Knowledge & Data Engineering – volume: 58 start-page: 76 year: 2016 ident: 10.1016/j.eswa.2022.117728_b0060 article-title: Fuzzy C-means clustering algorithm for directional data (FCM4DD) publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.03.034 – volume: 37 start-page: 4339 issue: 3 year: 2019 ident: 10.1016/j.eswa.2022.117728_b0130 article-title: DwfwFcm: An effective fuzzy c-means clustering framework considering the different data weights and feature weights publication-title: Journal of Intelligent & Fuzzy Systems – start-page: 767 year: 2010 ident: 10.1016/j.eswa.2022.117728_b0105 article-title: A new robust validity index for fuzzy clustering algorithm – volume: 27 start-page: 657 issue: 5 year: 2005 ident: 10.1016/j.eswa.2022.117728_b0045 article-title: Automated variable weighting in k-means type clustering publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence doi: 10.1109/TPAMI.2005.95 – volume: 38 start-page: 3793 year: 2011 ident: 10.1016/j.eswa.2022.117728_b0100 article-title: Extended Gaussian kernel version of fuzzy C-means in the problem of data analyzing publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.09.040 – volume: 50 start-page: 9 year: 2016 ident: 10.1016/j.eswa.2022.117728_b0010 article-title: Importance-performance analysis by fuzzy C-means algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.12.023 – volume: 24 start-page: 3990 issue: 11 year: 2015 ident: 10.1016/j.eswa.2022.117728_b0080 article-title: Incorporating adaptive local information into fuzzy clustering for image segmentation publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2015.2456505 – year: 1981 ident: 10.1016/j.eswa.2022.117728_b0015 – volume: 19 start-page: 1026 issue: 8 year: 2007 ident: 10.1016/j.eswa.2022.117728_b0055 article-title: An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data publication-title: IEEE Transactions on Knowledge & Data Engineering doi: 10.1109/TKDE.2007.1048 – volume: 83 year: 2019 ident: 10.1016/j.eswa.2022.117728_b0095 article-title: On improving the lifespan of wireless sensor networks with fuzzy based clustering and machine learning based data reduction publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2019.105610 – volume: 23 start-page: 85 issue: 1 year: 2015 ident: 10.1016/j.eswa.2022.117728_b0030 article-title: Observer-biased fuzzy clustering publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2014.2306434 – volume: 65 start-page: 90 year: 2016 ident: 10.1016/j.eswa.2022.117728_b0140 article-title: Mapreducebased fast fuzzy C-means algorithm for large-scale underwater image segmentation publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2016.03.004 – volume: 23 start-page: 816 year: 2021 ident: 10.1016/j.eswa.2022.117728_b0145 article-title: A fuzzy C-means clustering algorithm based on spatial context model for image segmentation publication-title: International Journal of Fuzzy Systems doi: 10.1007/s40815-020-01015-4 – volume: 34 start-page: 758 year: 2015 ident: 10.1016/j.eswa.2022.117728_b0005 article-title: Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.05.038 – volume: 36 start-page: 1544 issue: 11 year: 2010 ident: 10.1016/j.eswa.2022.117728_b0115 article-title: Adaptive fuzzy clustering model based on internal connectivity of all data points publication-title: Acta Automatica Sinica doi: 10.3724/SP.J.1004.2010.01544 – volume: 42 start-page: 6315 year: 2015 ident: 10.1016/j.eswa.2022.117728_b0035 article-title: Hybrid methods for fuzzy clustering based on fuzzy C-means and improved particle swarm optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.04.032 – volume: 41 start-page: 3223 issue: 7 year: 2014 ident: 10.1016/j.eswa.2022.117728_b0090 article-title: A weighted multivariate fuzzy C-means method in interval-valued scientific production data publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.11.013 – volume: 25 start-page: 1207 issue: 8 year: 2010 ident: 10.1016/j.eswa.2022.117728_b0125 article-title: Double-indices fuzzy subspace clustering algorithm based on feature weighted distance publication-title: Control and Decision – volume: 28 start-page: 3113 year: 2017 ident: 10.1016/j.eswa.2022.117728_b0135 article-title: An improved FCM algorithm with adaptive weights based on SA-PSO publication-title: Neural Computing and Applications doi: 10.1007/s00521-016-2786-6 – volume: 151 start-page: 165 year: 2018 ident: 10.1016/j.eswa.2022.117728_b0050 article-title: A new weighting k-means type clustering framework with an l2-norm regularization publication-title: Knowledge-based Systems doi: 10.1016/j.knosys.2018.03.028 – volume: 25 start-page: 1699 year: 2021 ident: 10.1016/j.eswa.2022.117728_b0020 article-title: Gaussian-kernel c-means clustering algorithms publication-title: Soft Computing doi: 10.1007/s00500-020-04924-6 – volume: 3 start-page: 32 year: 1973 ident: 10.1016/j.eswa.2022.117728_b0025 article-title: A Fuzzy Relative of the ISODATA Process and its Use in detecting compact well-separated clusters publication-title: Journal of Cybernetics doi: 10.1080/01969727308546046 – volume: 32 start-page: 1323 issue: 9 year: 2016 ident: 10.1016/j.eswa.2022.117728_b0085 article-title: Mmseqs software suite for fast and deep clustering and searching of large protein sequence sets publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw006 – volume: 29 start-page: 2006 year: 2021 ident: 10.1016/j.eswa.2022.117728_b0065 article-title: A centroid auto-fused hierarchical fuzzy C-means clustering publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2020.2991306 – volume: 87 year: 2020 ident: 10.1016/j.eswa.2022.117728_b0110 article-title: Fuzzy C-means clustering through SSIM and patch for image segmentation publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.105928 – volume: 46 start-page: 543 year: 2016 ident: 10.1016/j.eswa.2022.117728_b0120 article-title: An improved intuitionistic fuzzy C-means clustering algorithm incorporating local information for brain image segmentation publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.12.022 – volume: 220 start-page: 221 year: 2017 ident: 10.1016/j.eswa.2022.117728_b0040 article-title: Arrhythmia classification using mahalanobis distance based improved fuzzy C-means clustering for mobile health monitoring systems publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.042 – volume: 885 start-page: 146 year: 2021 ident: 10.1016/j.eswa.2022.117728_b0075 article-title: Approximation algorithms for fuzzy C-means problem based on seeding method publication-title: Theoretical Computer Science doi: 10.1016/j.tcs.2021.06.035 – volume: 24 start-page: 611 year: 2021 ident: 10.1016/j.eswa.2022.117728_b0070 article-title: IM-c-means: A new clustering algorithm for clusters with skewed distributions publication-title: Pattern Analysis and Applications doi: 10.1007/s10044-020-00932-2 – volume: 198 start-page: 125 year: 2016 ident: 10.1016/j.eswa.2022.117728_b0150 article-title: Fuzzy clustering with the entropy of attribute weights publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.127 |
| SSID | ssj0017007 |
| Score | 2.4382844 |
| Snippet | •A whole new data weighting method for fuzzy clustering is proposed.•l2-Norm regularization terms of the data weights and the feature weights are... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 117728 |
| SubjectTerms | Data weights Feature weights Fuzzy C-means clustering algorithm l2-Norm regularization |
| Title | A new robust fuzzy clustering framework considering different data weights in different clusters |
| URI | https://dx.doi.org/10.1016/j.eswa.2022.117728 |
| Volume | 206 |
| WOSCitedRecordID | wos000968569700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKy4FLgQJqgSIfuEWpnDheJ8elKioIVT0UaW8hjm2xVZWtNklb-usZf2WzhVb0wCVaTZLZaOftZDx-M4PQR8UpqzIh4kJLHWdCk7iirIgzJiWnqRZEEztsgp-c5LNZceoJma0dJ8CbJr-5KS7_q6lBBsY2pbOPMPegFATwGYwORzA7HP_J8FMzJTxaLkTfdpHub29_RfVFb_ohWNJkIGMZvrkd1WmkYUxKFxnGaHRt86WOKTuc8UratVy-aZTc-XbQoVButCU-uPzeboLMfyr_orQpfOdmPs1Xsm-WW3C48BKfjYCFrGHEsbW0Io-zxE3eCR42JWMfabaJXUH4H-7bZRLOD1R7bXpCpenB6uL1Xtl33mEDszCQ1s5Lo6M0Okqn4wnaSjkrwPNtTb8czb4Oe02cuKL68OS-tMqxAO8-yd_Dl1FIcvYCbfu1BJ46DLxEG6rZQc_DnA7s3fYr9GOKARLYQQJbSOAVJPAACTyCBB4Mjw0ksIcEnjejMwESr9H3z0dnh8exn6wR17Dk7GI6kVQrXtfC9J9SE14XksmECAXhalFVNNETqkiVFbCclDRPM_jjEsYkBJ-1Sgh9gzabRaN2EU60YInOJ0RRmsk8h_CPa8lERmllevfvoST8YGXt286b6ScX5f2m2kPRcM-la7ry4NUs2KH0YaMLB0uA1QP3vX3Ut7xDz1Z4f482u2Wv9tHT-qqbt8sPHlO_AStbkaM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+robust+fuzzy+clustering+framework+considering+different+data+weights+in+different+clusters&rft.jtitle=Expert+systems+with+applications&rft.au=Wu%2C+Ziheng&rft.au=Wang%2C+Bing&rft.au=Li%2C+Cong&rft.date=2022-11-15&rft.issn=0957-4174&rft.volume=206&rft.spage=117728&rft_id=info:doi/10.1016%2Fj.eswa.2022.117728&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_117728 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |