A many-objective whale optimization algorithm to perform robust distributed clustering in wireless sensor network
The substantial increase in the usage of wireless sensor networks (WSNs) encourages to develop data clustering in event monitoring applications. Many centralized algorithms with single objective optimization are employed to solve this problem. However privacy, security and technical constraints are...
Uložené v:
| Vydané v: | Applied soft computing Ročník 110; s. 107650 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.10.2021
|
| Predmet: | |
| ISSN: | 1568-4946, 1872-9681 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The substantial increase in the usage of wireless sensor networks (WSNs) encourages to develop data clustering in event monitoring applications. Many centralized algorithms with single objective optimization are employed to solve this problem. However privacy, security and technical constraints are key issues in traditional centralized approach. Moreover, many WSN applications like condition monitoring and target tracking require more than three objectives for effective partitioning of dataset. This paper proposes many-objective whale optimization algorithm to handle robust distributed clustering in WSN. Initially, a swarm based many-objective whale optimization (MaOWOA) is discussed where reference point based leader selection method is utilized in updating the solutions instead of grid based leader selection as in multi-objective approach. This method gives better convergence and diversity. The simulation result of proposed approach is evaluated on many-objective DTLZ test problems against existing many-objective methods which is faster in terms of simulation time and gives competitive results in terms of generational distance (GD), inverse generational distance (IGD), spacing (SP) and hyper volume difference (HVD). Further, the encouraging results of the proposed MaOWOA are applied to perform robust distributed clustering in WSNs which is termed as distributed many-objective clustering using whale optimization algorithm (DMaOWOA). In this approach, a weight based method is incorporated to detect and remove the outliers and diffusion method of cooperation is used for distributed clustering. The proposed DMaOWOA is tested on one synthetic and three practical WSN datasets. It is observed that DMaOWOA based clustering performs up to 6% and 8% improvement in terms of Silhouette index as compared to particle swarm optimization based many-objective distributed clustering (DMaOPSO) and distributed K-Means (DK-Means) clustering algorithm, respectively.
•Distributed many-objective clustering method is proposed for sensor network.•The algorithm is based on many-objective whale optimization.•The leader is selected based on reference points.•The proposed algorithm is validated on four distributed datasets.•Proposed approach shows superiority over existing clustering approaches. |
|---|---|
| AbstractList | The substantial increase in the usage of wireless sensor networks (WSNs) encourages to develop data clustering in event monitoring applications. Many centralized algorithms with single objective optimization are employed to solve this problem. However privacy, security and technical constraints are key issues in traditional centralized approach. Moreover, many WSN applications like condition monitoring and target tracking require more than three objectives for effective partitioning of dataset. This paper proposes many-objective whale optimization algorithm to handle robust distributed clustering in WSN. Initially, a swarm based many-objective whale optimization (MaOWOA) is discussed where reference point based leader selection method is utilized in updating the solutions instead of grid based leader selection as in multi-objective approach. This method gives better convergence and diversity. The simulation result of proposed approach is evaluated on many-objective DTLZ test problems against existing many-objective methods which is faster in terms of simulation time and gives competitive results in terms of generational distance (GD), inverse generational distance (IGD), spacing (SP) and hyper volume difference (HVD). Further, the encouraging results of the proposed MaOWOA are applied to perform robust distributed clustering in WSNs which is termed as distributed many-objective clustering using whale optimization algorithm (DMaOWOA). In this approach, a weight based method is incorporated to detect and remove the outliers and diffusion method of cooperation is used for distributed clustering. The proposed DMaOWOA is tested on one synthetic and three practical WSN datasets. It is observed that DMaOWOA based clustering performs up to 6% and 8% improvement in terms of Silhouette index as compared to particle swarm optimization based many-objective distributed clustering (DMaOPSO) and distributed K-Means (DK-Means) clustering algorithm, respectively.
•Distributed many-objective clustering method is proposed for sensor network.•The algorithm is based on many-objective whale optimization.•The leader is selected based on reference points.•The proposed algorithm is validated on four distributed datasets.•Proposed approach shows superiority over existing clustering approaches. |
| ArticleNumber | 107650 |
| Author | Nanda, Satyasai Jagannath Kotary, Dinesh Kumar Gupta, Rachana |
| Author_xml | – sequence: 1 givenname: Dinesh Kumar surname: Kotary fullname: Kotary, Dinesh Kumar email: 2015rec9510@mnit.ac.in – sequence: 2 givenname: Satyasai Jagannath surname: Nanda fullname: Nanda, Satyasai Jagannath – sequence: 3 givenname: Rachana surname: Gupta fullname: Gupta, Rachana |
| BookMark | eNp9kM1KAzEUhYNUsK2-gKu8wNQkM0lmwE0p_kHBja5DmrnTZpxJapK21Kd3al25cHUvB74D55ugkfMOELqlZEYJFXftTEdvZowwOgRScHKBxrSULKtESUfDz0WZFVUhrtAkxpYMUMXKMfqc4167Y-ZXLZhk94APG90B9ttke_ulk_UO627tg02bHiePtxAaH3oc_GoXE65tTMGudglqbLohgWDdGluHDzZABzHiCC76gB2kgw8f1-iy0V2Em987Re-PD2-L52z5-vSymC8zw3KSspxRM6wROue8YiA1rzWD3JhGc6p5zqUUAmRZEG4EL3ghTC4Jl5o0lACYfIrKc68JPsYAjTI2_exJQdtOUaJO6lSrTurUSZ06qxtQ9gfdBtvrcPwfuj9DMIzaWwgqGgvOQD14MEnV3v6HfwOGY4y2 |
| CitedBy_id | crossref_primary_10_1007_s42979_024_02639_1 crossref_primary_10_1007_s10586_024_05005_1 crossref_primary_10_3390_agronomy13122966 crossref_primary_10_1093_jcde_qwac092 crossref_primary_10_4018_IJDWM_308817 crossref_primary_10_1016_j_cie_2022_108710 crossref_primary_10_1007_s11831_023_09928_7 crossref_primary_10_1016_j_jpdc_2025_105038 crossref_primary_10_1109_JSEN_2024_3498056 crossref_primary_10_3390_a15100363 crossref_primary_10_1007_s00170_022_09669_0 crossref_primary_10_1002_dac_6099 crossref_primary_10_1016_j_jnca_2024_104032 crossref_primary_10_1038_s41598_024_66631_8 crossref_primary_10_1007_s11042_023_16487_3 crossref_primary_10_1002_cpe_7770 crossref_primary_10_1007_s00521_022_07761_w crossref_primary_10_1016_j_asoc_2022_108493 crossref_primary_10_1016_j_asoc_2022_108477 crossref_primary_10_1016_j_jksuci_2022_10_022 crossref_primary_10_1016_j_eswa_2025_128257 crossref_primary_10_1016_j_jmsy_2022_10_002 crossref_primary_10_2478_cait_2023_0031 crossref_primary_10_1007_s11440_022_01450_7 crossref_primary_10_1016_j_enbuild_2024_115141 |
| Cites_doi | 10.1016/j.jpdc.2018.03.009 10.1109/ACCESS.2020.2991752 10.1016/j.comnet.2008.04.002 10.1109/TEVC.2007.892759 10.1049/el.2018.7164 10.1016/j.asoc.2017.12.031 10.1016/j.asoc.2012.08.005 10.1109/TITS.2018.2883511 10.1145/601858.601862 10.1109/TEVC.2016.2519378 10.1109/TEVC.2016.2587808 10.1016/j.compag.2017.03.018 10.1002/2017WR021307 10.1109/TSP.2008.917383 10.1007/s00521-017-3119-0 10.1016/j.asoc.2016.11.045 10.1016/j.neunet.2018.12.003 10.1016/j.dsp.2013.07.005 10.1016/j.asoc.2009.07.001 10.1080/01621459.1990.10474920 10.1109/TKDE.2015.2391123 10.1016/j.asoc.2020.106625 10.1109/IPSN.2006.244160 10.1016/j.swevo.2012.11.001 10.1016/j.asoc.2019.03.042 10.1080/03610927408827101 10.1016/j.ijleo.2017.09.116 10.1109/TEVC.2017.2782826 10.1007/s00607-012-0264-2 10.1016/j.measurement.2014.04.034 10.1016/j.ins.2005.11.007 10.1016/j.swevo.2013.11.003 10.1109/TEVC.2013.2281535 10.1016/j.asoc.2016.04.030 10.1016/j.ins.2017.09.051 10.1016/j.advengsoft.2016.01.008 10.1016/j.spasta.2015.04.001 10.1109/TEVC.2018.2883094 10.1016/j.ins.2016.09.026 10.1109/TPAMI.1979.4766909 10.1109/TEVC.2004.826067 10.1016/j.swevo.2012.02.003 10.1162/EVCO_a_00009 10.1016/j.jocs.2020.101104 10.1109/TKDE.2008.222 10.1109/JSTSP.2011.2114324 10.1016/j.engappai.2019.103342 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2021.107650 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2021_107650 S1568494621005718 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c230t-321c0216a35592e7a5da2e3ccfa51a5357766e78405c654546c37057a0f10eec3 |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000730507600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Tue Nov 18 22:20:08 EST 2025 Sat Nov 29 07:02:36 EST 2025 Fri Feb 23 02:43:24 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Reference points Whale optimization algorithm Many-objective optimization Distributed clustering |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c230t-321c0216a35592e7a5da2e3ccfa51a5357766e78405c654546c37057a0f10eec3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2021_107650 crossref_primary_10_1016_j_asoc_2021_107650 elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107650 |
| PublicationCentury | 2000 |
| PublicationDate | October 2021 2021-10-00 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kumawat, Nanda, Maddila (b33) 2017 Gasch, Brown, Brooks, Yourek, Poggio, Cobos, Campbell (b56) 2017; 137 Halkidi, Batistakis, Vazirgiannis (b59) 2002; 31 P.A. Forero, A. Cano, G.B. Giannakis, Consensus-based k-means algorithm for distributed learning using wireless sensor networks, in: Proceedings of the Workshop on Sensors, Signal and Info. Process., Sedona, AZ, 2008, pp. 11–14. Panda, Pani (b34) 2016; 46 Mashayekhi, Habibi, Khalafbeigi, Voulgaris, Van Steen (b3) 2015; 27 Xiang, Zhou, Li, Chen (b15) 2016; 21 Niknam, Amiri (b30) 2010; 10 Kotary, Nanda (b31) 2020; 87 Mashayekhi, Habibi, Voulgaris, van Steen (b2) 2013; 95 Benaichouche, Oulhadj, Siarry (b5) 2013; 23 Gupta, Nanda (b44) 2019 Datta, Giannella, Kargupta (b22) 2006 Saha, Bandyopadhyay (b13) 2013; 13 Coello, Pulido, Lechuga (b48) 2004; 8 Gasch, Brown, Campbell, Cobos, Brooks, Chahal, Poggio (b55) 2017; 53 Park, Kargupta (b4) 2002 L. Xiao, S. Boyd, S. Lall, A space-time diffusion scheme for peer-to-peer least-squares estimation, in: Proceedings of the 5th International Conference on Information Processing in Sensor Networks, 2006, pp. 168–176. Azimi, Sajedi (b28) 2018; 119 Gasch, Hengl, Gräler, Meyer, Magney, Brown (b57) 2015; 14 Lopes, Sayed (b11) 2008; 56 Bodik, Hong, Guestrin, Madden, Paskin, Thibaux (b53) 2004 Zhang, Wan (b49) 2018; 154 Rousseeuw, Van Zomeren (b6) 1990; 85 Asafuddoula, Verma, Zhang (b41) 2017; 22 X.L. Xie, G. Beni, A validity measure for fuzzy clustering, IEEE Trans. Pattern Anal. Mach. Intell.. Carneiro, Cheng, Zhao, Jin (b47) 2019; 110 Palakonda, Mallipeddi (b40) 2020; 8 Cheng, Jin, Olhofer, Sendhoff (b38) 2016; 20 Martincic, Schwiebert (b7) 2006 Deb, Jain (b14) 2013; 18 Davies, Bouldin (b52) 1979 Nayeem, Islam, Yao (b42) 2018; 20 Nanda, Panda (b12) 2014; 16 Vanneschi, Poli (b18) 2012 Gupta, Nanda, Shukla (b45) 2019; 79 Yick, Mukherjee, Ghosal (b1) 2008; 52 Bandyopadhyay, Giannella, Maulik, Kargupta, Liu, Datta (b21) 2006; 176 Zhou, Song, Pedrycz (b19) 2018; 64 Panda, Pani (b35) 2016 Panigrahi, Panda, Mulgrew, Majhi (b8) 2013; 9 Caliński, Harabasz (b51) 1974; 3 Hatamlou, Abdullah, Nezamabadi-Pour (b29) 2012; 6 Azimi, Sajedi, Ghayekhloo (b26) 2017; 51 Zhang, Li (b36) 2007; 11 Forero, Cano, Giannakis (b25) 2011; 5 Bader, Zitzler (b37) 2011; 19 Datta, Giannella, Kargupta (b23) 2009; 21 Singh, Bhattacharjee, Ray (b43) 2018; 23 Azimi, Sajedi (b27) 2018; 29 Figueiredo, Ludermir, Bastos-Filho (b46) 2016; 374 Yang (b16) 2020; 46 Mirjalili, Lewis (b20) 2016; 95 Kotary, Nanda (b32) 2020 Gupta, Nanda (b39) 2019; 55 Shamshirband, Amini, Anuar, Kiah, Teh, Furnell (b54) 2014; 55 Pal, Saha, Bandyopadhyay (b17) 2018; 423 Lopes, Sayed (b10) 2007 Codiga (b58) 2007 Panigrahi (10.1016/j.asoc.2021.107650_b8) 2013; 9 Benaichouche (10.1016/j.asoc.2021.107650_b5) 2013; 23 Carneiro (10.1016/j.asoc.2021.107650_b47) 2019; 110 Gasch (10.1016/j.asoc.2021.107650_b57) 2015; 14 Lopes (10.1016/j.asoc.2021.107650_b10) 2007 Halkidi (10.1016/j.asoc.2021.107650_b59) 2002; 31 Vanneschi (10.1016/j.asoc.2021.107650_b18) 2012 Deb (10.1016/j.asoc.2021.107650_b14) 2013; 18 Forero (10.1016/j.asoc.2021.107650_b25) 2011; 5 Pal (10.1016/j.asoc.2021.107650_b17) 2018; 423 10.1016/j.asoc.2021.107650_b24 Caliński (10.1016/j.asoc.2021.107650_b51) 1974; 3 Zhou (10.1016/j.asoc.2021.107650_b19) 2018; 64 Bandyopadhyay (10.1016/j.asoc.2021.107650_b21) 2006; 176 Panda (10.1016/j.asoc.2021.107650_b34) 2016; 46 Mirjalili (10.1016/j.asoc.2021.107650_b20) 2016; 95 Datta (10.1016/j.asoc.2021.107650_b22) 2006 Rousseeuw (10.1016/j.asoc.2021.107650_b6) 1990; 85 Saha (10.1016/j.asoc.2021.107650_b13) 2013; 13 Codiga (10.1016/j.asoc.2021.107650_b58) 2007 Figueiredo (10.1016/j.asoc.2021.107650_b46) 2016; 374 Martincic (10.1016/j.asoc.2021.107650_b7) 2006 Park (10.1016/j.asoc.2021.107650_b4) 2002 Lopes (10.1016/j.asoc.2021.107650_b11) 2008; 56 Kotary (10.1016/j.asoc.2021.107650_b32) 2020 Yick (10.1016/j.asoc.2021.107650_b1) 2008; 52 Niknam (10.1016/j.asoc.2021.107650_b30) 2010; 10 Xiang (10.1016/j.asoc.2021.107650_b15) 2016; 21 Gupta (10.1016/j.asoc.2021.107650_b39) 2019; 55 Zhang (10.1016/j.asoc.2021.107650_b36) 2007; 11 Hatamlou (10.1016/j.asoc.2021.107650_b29) 2012; 6 Yang (10.1016/j.asoc.2021.107650_b16) 2020; 46 Azimi (10.1016/j.asoc.2021.107650_b28) 2018; 119 Gupta (10.1016/j.asoc.2021.107650_b45) 2019; 79 Mashayekhi (10.1016/j.asoc.2021.107650_b3) 2015; 27 Davies (10.1016/j.asoc.2021.107650_b52) 1979 Bader (10.1016/j.asoc.2021.107650_b37) 2011; 19 Nayeem (10.1016/j.asoc.2021.107650_b42) 2018; 20 Panda (10.1016/j.asoc.2021.107650_b35) 2016 Shamshirband (10.1016/j.asoc.2021.107650_b54) 2014; 55 10.1016/j.asoc.2021.107650_b9 Palakonda (10.1016/j.asoc.2021.107650_b40) 2020; 8 Gasch (10.1016/j.asoc.2021.107650_b55) 2017; 53 Cheng (10.1016/j.asoc.2021.107650_b38) 2016; 20 Mashayekhi (10.1016/j.asoc.2021.107650_b2) 2013; 95 Azimi (10.1016/j.asoc.2021.107650_b27) 2018; 29 Coello (10.1016/j.asoc.2021.107650_b48) 2004; 8 Kumawat (10.1016/j.asoc.2021.107650_b33) 2017 Zhang (10.1016/j.asoc.2021.107650_b49) 2018; 154 Kotary (10.1016/j.asoc.2021.107650_b31) 2020; 87 Azimi (10.1016/j.asoc.2021.107650_b26) 2017; 51 Asafuddoula (10.1016/j.asoc.2021.107650_b41) 2017; 22 Gupta (10.1016/j.asoc.2021.107650_b44) 2019 Gasch (10.1016/j.asoc.2021.107650_b56) 2017; 137 Singh (10.1016/j.asoc.2021.107650_b43) 2018; 23 Datta (10.1016/j.asoc.2021.107650_b23) 2009; 21 Nanda (10.1016/j.asoc.2021.107650_b12) 2014; 16 10.1016/j.asoc.2021.107650_b50 Bodik (10.1016/j.asoc.2021.107650_b53) |
| References_xml | – start-page: 224 year: 1979 end-page: 227 ident: b52 article-title: A cluster separation measure publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 20 start-page: 773 year: 2016 end-page: 791 ident: b38 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 87 year: 2020 ident: b31 article-title: Distributed robust data clustering in wireless sensor networks using diffusion moth flame optimization publication-title: Eng. Appl. Artif. Intell. – volume: 6 start-page: 47 year: 2012 end-page: 52 ident: b29 article-title: A combined approach for clustering based on K-means and gravitational search algorithms publication-title: Swarm Evol. Comput. – volume: 14 start-page: 70 year: 2015 end-page: 90 ident: b57 article-title: Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3D+ T: The cook agronomy farm data set publication-title: Spatial Stat. – volume: 85 start-page: 633 year: 1990 end-page: 639 ident: b6 article-title: Unmasking multivariate outliers and leverage points publication-title: J. Amer. Statist. Assoc. – start-page: 651 year: 2016 end-page: 664 ident: b35 article-title: Multi-objective colliding bodies optimization publication-title: Proceedings of Fifth International Conference on Soft Computing for Problem Solving – volume: 31 start-page: 19 year: 2002 end-page: 27 ident: b59 article-title: Clustering validity checking methods: part II publication-title: ACM Sigmod Record – volume: 55 start-page: 198 year: 2019 end-page: 200 ident: b39 article-title: Vector-angle penalised NSGA-III to solve many-objective optimisation problems publication-title: Electron. Lett. – volume: 22 start-page: 762 year: 2017 end-page: 777 ident: b41 article-title: A divide-and-conquer-based ensemble classifier learning by means of many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 18 start-page: 577 year: 2013 end-page: 601 ident: b14 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. – volume: 79 start-page: 203 year: 2019 end-page: 226 ident: b45 article-title: Cloud detection in satellite images using multi-objective social spider optimization publication-title: Appl. Soft Comput. – year: 2002 ident: b4 article-title: Distributed data mining: Algorithms, systems, and applications – volume: 64 start-page: 564 year: 2018 end-page: 580 ident: b19 article-title: A comparative study of improved GA and PSO in solving multiple traveling salesmen problem publication-title: Appl. Soft Comput. – volume: 51 start-page: 147 year: 2017 end-page: 167 ident: b26 article-title: A distributed data clustering algorithm in P2P networks publication-title: Appl. Soft Comput. – volume: 21 start-page: 131 year: 2016 end-page: 152 ident: b15 article-title: A vector angle-based evolutionary algorithm for unconstrained many-objective optimization publication-title: IEEE Trans. Evol. Comput. – year: 2020 ident: b32 article-title: Distributed clustering in peer to peer networks using multi-objective whale optimization publication-title: Appl. Soft Comput. – start-page: 43 year: 2006 ident: b7 article-title: Distributed event detection in sensor networks publication-title: 2006 International Conference on Systems and Networks Communications – volume: 46 start-page: 344 year: 2016 end-page: 360 ident: b34 article-title: A symbiotic organisms search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems publication-title: Appl. Soft Comput. – start-page: 153 year: 2006 end-page: 164 ident: b22 article-title: K-means clustering over a large, dynamic network publication-title: Proceedings of the 2006 SIAM International Conference on Data Mining – volume: 5 start-page: 707 year: 2011 end-page: 724 ident: b25 article-title: Distributed clustering using wireless sensor networks publication-title: IEEE J. Sel. Top. Sign. Proces. – volume: 176 start-page: 1952 year: 2006 end-page: 1985 ident: b21 article-title: Clustering distributed data streams in peer-to-peer environments publication-title: Inform. Sci. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b20 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 21 start-page: 1372 year: 2009 end-page: 1388 ident: b23 article-title: Approximate distributed k-means clustering over a peer-to-peer network publication-title: IEEE Trans. Knowl. Data Eng. – volume: 8 start-page: 256 year: 2004 end-page: 279 ident: b48 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Trans. Evol. Comput. – volume: 374 start-page: 115 year: 2016 end-page: 134 ident: b46 article-title: Many objective particle swarm optimization publication-title: Inform. Sci. – start-page: 348 year: 2019 end-page: 352 ident: b44 article-title: Many-objective B/NSGA-III for band selection in cloud contaminated hyper-spectral images publication-title: 2019 International Conference on Information Technology – volume: 29 start-page: 593 year: 2018 end-page: 612 ident: b27 article-title: Peer sampling gossip-based distributed clustering algorithm for unstructured P2P networks publication-title: Neural Comput. Appl. – year: 2012 ident: b18 article-title: 24 genetic programming–introduction, applications, theory and open issues – reference: P.A. Forero, A. Cano, G.B. Giannakis, Consensus-based k-means algorithm for distributed learning using wireless sensor networks, in: Proceedings of the Workshop on Sensors, Signal and Info. Process., Sedona, AZ, 2008, pp. 11–14. – volume: 56 start-page: 3122 year: 2008 end-page: 3136 ident: b11 article-title: Diffusion least-mean squares over adaptive networks: Formulation and performance analysis publication-title: IEEE Trans. Signal Process. – volume: 3 start-page: 1 year: 1974 end-page: 27 ident: b51 article-title: A dendrite method for cluster analysis publication-title: Comm. Statist. Theory Methods – volume: 119 start-page: 64 year: 2018 end-page: 80 ident: b28 article-title: A decentralized gossip based approach for data clustering in peer-to-peer networks publication-title: J. Parallel Distrib. Comput. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: b36 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 16 start-page: 1 year: 2014 end-page: 18 ident: b12 article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering publication-title: Swarm Evol. Comput. – volume: 110 start-page: 243 year: 2019 end-page: 255 ident: b47 article-title: Particle swarm optimization for network-based data classification publication-title: Neural Netw. – volume: 53 start-page: 10878 year: 2017 end-page: 10887 ident: b55 article-title: A field-scale sensor network data set for monitoring and modeling the spatial and temporal variation of soil water content in a dryland agricultural field publication-title: Water Resour. Res. – volume: 52 start-page: 2292 year: 2008 end-page: 2330 ident: b1 article-title: Wireless sensor network survey publication-title: Comput. Netw. – volume: 95 start-page: 759 year: 2013 end-page: 784 ident: b2 article-title: GoSCAN: Decentralized scalable data clustering publication-title: Computing – volume: 423 start-page: 200 year: 2018 end-page: 218 ident: b17 article-title: DECOR: differential evolution using clustering based objective reduction for many-objective optimization publication-title: Inform. Sci. – volume: 8 start-page: 82781 year: 2020 end-page: 82796 ident: b40 article-title: An evolutionary algorithm for multi and many-objective optimization with adaptive mating and environmental selection publication-title: IEEE Access – year: 2007 ident: b10 article-title: Diffusion least-mean squares over adaptive networks publication-title: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 3 – volume: 13 start-page: 89 year: 2013 end-page: 108 ident: b13 article-title: A generalized automatic clustering algorithm in a multiobjective framework publication-title: Appl. Soft Comput. – volume: 20 start-page: 3952 year: 2018 end-page: 3963 ident: b42 article-title: Solving transit network design problem using many-objective evolutionary approach publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 19 start-page: 45 year: 2011 end-page: 76 ident: b37 article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization publication-title: Evol. Comput. – reference: X.L. Xie, G. Beni, A validity measure for fuzzy clustering, IEEE Trans. Pattern Anal. Mach. Intell.. – year: 2007 ident: b58 article-title: Narragansett bay water quality monitoring network – volume: 10 start-page: 183 year: 2010 end-page: 197 ident: b30 article-title: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis publication-title: Appl. Soft Comput. – volume: 46 year: 2020 ident: b16 article-title: Nature-inspired optimization algorithms: Challenges and open problems publication-title: J. Comput. Sci. – year: 2004 ident: b53 article-title: Intel berkely reseach lab IBRL dataset – volume: 137 start-page: 29 year: 2017 end-page: 40 ident: b56 article-title: A pragmatic, automated approach for retroactive calibration of soil moisture sensors using a two-step, soil-specific correction publication-title: Comput. Electron. Agric. – start-page: 2747 year: 2017 end-page: 2752 ident: b33 article-title: Multi-objective whale optimization publication-title: Tencon 2017-2017 Ieee Region 10 Conference – volume: 27 start-page: 1892 year: 2015 end-page: 1905 ident: b3 article-title: GDCluster: a general decentralized clustering algorithm publication-title: IEEE Trans. Knowl. Data Eng. – reference: L. Xiao, S. Boyd, S. Lall, A space-time diffusion scheme for peer-to-peer least-squares estimation, in: Proceedings of the 5th International Conference on Information Processing in Sensor Networks, 2006, pp. 168–176. – volume: 55 start-page: 212 year: 2014 end-page: 226 ident: b54 article-title: D-FICCA: A density-based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks publication-title: Measurement – volume: 23 start-page: 904 year: 2018 end-page: 912 ident: b43 article-title: Distance-based subset selection for benchmarking in evolutionary multi/many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 23 start-page: 1390 year: 2013 end-page: 1400 ident: b5 article-title: Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction publication-title: Digit. Signal Process. – volume: 154 start-page: 145 year: 2018 end-page: 156 ident: b49 article-title: Weight-based method for inside outlier detection publication-title: Optik – volume: 9 start-page: 47 year: 2013 end-page: 57 ident: b8 article-title: Distributed DOA estimation using clustering of sensor nodes and diffusion PSO algorithm publication-title: Swarm Evol. Comput. – volume: 119 start-page: 64 year: 2018 ident: 10.1016/j.asoc.2021.107650_b28 article-title: A decentralized gossip based approach for data clustering in peer-to-peer networks publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2018.03.009 – volume: 8 start-page: 82781 year: 2020 ident: 10.1016/j.asoc.2021.107650_b40 article-title: An evolutionary algorithm for multi and many-objective optimization with adaptive mating and environmental selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2991752 – volume: 52 start-page: 2292 issue: 12 year: 2008 ident: 10.1016/j.asoc.2021.107650_b1 article-title: Wireless sensor network survey publication-title: Comput. Netw. doi: 10.1016/j.comnet.2008.04.002 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.asoc.2021.107650_b36 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 55 start-page: 198 issue: 4 year: 2019 ident: 10.1016/j.asoc.2021.107650_b39 article-title: Vector-angle penalised NSGA-III to solve many-objective optimisation problems publication-title: Electron. Lett. doi: 10.1049/el.2018.7164 – volume: 64 start-page: 564 year: 2018 ident: 10.1016/j.asoc.2021.107650_b19 article-title: A comparative study of improved GA and PSO in solving multiple traveling salesmen problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.12.031 – volume: 13 start-page: 89 issue: 1 year: 2013 ident: 10.1016/j.asoc.2021.107650_b13 article-title: A generalized automatic clustering algorithm in a multiobjective framework publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.08.005 – volume: 20 start-page: 3952 issue: 10 year: 2018 ident: 10.1016/j.asoc.2021.107650_b42 article-title: Solving transit network design problem using many-objective evolutionary approach publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2883511 – year: 2002 ident: 10.1016/j.asoc.2021.107650_b4 – volume: 31 start-page: 19 issue: 3 year: 2002 ident: 10.1016/j.asoc.2021.107650_b59 article-title: Clustering validity checking methods: part II publication-title: ACM Sigmod Record doi: 10.1145/601858.601862 – volume: 20 start-page: 773 issue: 5 year: 2016 ident: 10.1016/j.asoc.2021.107650_b38 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2519378 – volume: 21 start-page: 131 issue: 1 year: 2016 ident: 10.1016/j.asoc.2021.107650_b15 article-title: A vector angle-based evolutionary algorithm for unconstrained many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2587808 – volume: 137 start-page: 29 year: 2017 ident: 10.1016/j.asoc.2021.107650_b56 article-title: A pragmatic, automated approach for retroactive calibration of soil moisture sensors using a two-step, soil-specific correction publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.03.018 – volume: 53 start-page: 10878 issue: 12 year: 2017 ident: 10.1016/j.asoc.2021.107650_b55 article-title: A field-scale sensor network data set for monitoring and modeling the spatial and temporal variation of soil water content in a dryland agricultural field publication-title: Water Resour. Res. doi: 10.1002/2017WR021307 – volume: 56 start-page: 3122 issue: 7 year: 2008 ident: 10.1016/j.asoc.2021.107650_b11 article-title: Diffusion least-mean squares over adaptive networks: Formulation and performance analysis publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.917383 – volume: 29 start-page: 593 issue: 2 year: 2018 ident: 10.1016/j.asoc.2021.107650_b27 article-title: Peer sampling gossip-based distributed clustering algorithm for unstructured P2P networks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-3119-0 – volume: 51 start-page: 147 year: 2017 ident: 10.1016/j.asoc.2021.107650_b26 article-title: A distributed data clustering algorithm in P2P networks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.11.045 – volume: 110 start-page: 243 year: 2019 ident: 10.1016/j.asoc.2021.107650_b47 article-title: Particle swarm optimization for network-based data classification publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.12.003 – volume: 23 start-page: 1390 issue: 5 year: 2013 ident: 10.1016/j.asoc.2021.107650_b5 article-title: Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2013.07.005 – volume: 10 start-page: 183 issue: 1 year: 2010 ident: 10.1016/j.asoc.2021.107650_b30 article-title: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.07.001 – ident: 10.1016/j.asoc.2021.107650_b50 – volume: 85 start-page: 633 issue: 411 year: 1990 ident: 10.1016/j.asoc.2021.107650_b6 article-title: Unmasking multivariate outliers and leverage points publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1990.10474920 – volume: 27 start-page: 1892 issue: 7 year: 2015 ident: 10.1016/j.asoc.2021.107650_b3 article-title: GDCluster: a general decentralized clustering algorithm publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2015.2391123 – year: 2020 ident: 10.1016/j.asoc.2021.107650_b32 article-title: Distributed clustering in peer to peer networks using multi-objective whale optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106625 – ident: 10.1016/j.asoc.2021.107650_b9 doi: 10.1109/IPSN.2006.244160 – volume: 9 start-page: 47 year: 2013 ident: 10.1016/j.asoc.2021.107650_b8 article-title: Distributed DOA estimation using clustering of sensor nodes and diffusion PSO algorithm publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2012.11.001 – volume: 79 start-page: 203 year: 2019 ident: 10.1016/j.asoc.2021.107650_b45 article-title: Cloud detection in satellite images using multi-objective social spider optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.03.042 – volume: 3 start-page: 1 issue: 1 year: 1974 ident: 10.1016/j.asoc.2021.107650_b51 article-title: A dendrite method for cluster analysis publication-title: Comm. Statist. Theory Methods doi: 10.1080/03610927408827101 – start-page: 43 year: 2006 ident: 10.1016/j.asoc.2021.107650_b7 article-title: Distributed event detection in sensor networks – volume: 154 start-page: 145 year: 2018 ident: 10.1016/j.asoc.2021.107650_b49 article-title: Weight-based method for inside outlier detection publication-title: Optik doi: 10.1016/j.ijleo.2017.09.116 – volume: 22 start-page: 762 issue: 5 year: 2017 ident: 10.1016/j.asoc.2021.107650_b41 article-title: A divide-and-conquer-based ensemble classifier learning by means of many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2782826 – start-page: 153 year: 2006 ident: 10.1016/j.asoc.2021.107650_b22 article-title: K-means clustering over a large, dynamic network – volume: 95 start-page: 759 issue: 9 year: 2013 ident: 10.1016/j.asoc.2021.107650_b2 article-title: GoSCAN: Decentralized scalable data clustering publication-title: Computing doi: 10.1007/s00607-012-0264-2 – start-page: 348 year: 2019 ident: 10.1016/j.asoc.2021.107650_b44 article-title: Many-objective B/NSGA-III for band selection in cloud contaminated hyper-spectral images – start-page: 2747 year: 2017 ident: 10.1016/j.asoc.2021.107650_b33 article-title: Multi-objective whale optimization – volume: 55 start-page: 212 year: 2014 ident: 10.1016/j.asoc.2021.107650_b54 article-title: D-FICCA: A density-based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks publication-title: Measurement doi: 10.1016/j.measurement.2014.04.034 – volume: 176 start-page: 1952 issue: 14 year: 2006 ident: 10.1016/j.asoc.2021.107650_b21 article-title: Clustering distributed data streams in peer-to-peer environments publication-title: Inform. Sci. doi: 10.1016/j.ins.2005.11.007 – volume: 16 start-page: 1 year: 2014 ident: 10.1016/j.asoc.2021.107650_b12 article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2013.11.003 – volume: 18 start-page: 577 issue: 4 year: 2013 ident: 10.1016/j.asoc.2021.107650_b14 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281535 – year: 2007 ident: 10.1016/j.asoc.2021.107650_b58 – volume: 46 start-page: 344 year: 2016 ident: 10.1016/j.asoc.2021.107650_b34 article-title: A symbiotic organisms search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.04.030 – volume: 423 start-page: 200 year: 2018 ident: 10.1016/j.asoc.2021.107650_b17 article-title: DECOR: differential evolution using clustering based objective reduction for many-objective optimization publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.09.051 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.asoc.2021.107650_b20 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 14 start-page: 70 year: 2015 ident: 10.1016/j.asoc.2021.107650_b57 article-title: Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3D+ T: The cook agronomy farm data set publication-title: Spatial Stat. doi: 10.1016/j.spasta.2015.04.001 – volume: 23 start-page: 904 issue: 5 year: 2018 ident: 10.1016/j.asoc.2021.107650_b43 article-title: Distance-based subset selection for benchmarking in evolutionary multi/many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2883094 – volume: 374 start-page: 115 year: 2016 ident: 10.1016/j.asoc.2021.107650_b46 article-title: Many objective particle swarm optimization publication-title: Inform. Sci. doi: 10.1016/j.ins.2016.09.026 – start-page: 224 issue: 2 year: 1979 ident: 10.1016/j.asoc.2021.107650_b52 article-title: A cluster separation measure publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1979.4766909 – volume: 8 start-page: 256 issue: 3 year: 2004 ident: 10.1016/j.asoc.2021.107650_b48 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826067 – year: 2007 ident: 10.1016/j.asoc.2021.107650_b10 article-title: Diffusion least-mean squares over adaptive networks – volume: 6 start-page: 47 year: 2012 ident: 10.1016/j.asoc.2021.107650_b29 article-title: A combined approach for clustering based on K-means and gravitational search algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2012.02.003 – volume: 19 start-page: 45 issue: 1 year: 2011 ident: 10.1016/j.asoc.2021.107650_b37 article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00009 – volume: 46 year: 2020 ident: 10.1016/j.asoc.2021.107650_b16 article-title: Nature-inspired optimization algorithms: Challenges and open problems publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2020.101104 – year: 2012 ident: 10.1016/j.asoc.2021.107650_b18 – volume: 21 start-page: 1372 issue: 10 year: 2009 ident: 10.1016/j.asoc.2021.107650_b23 article-title: Approximate distributed k-means clustering over a peer-to-peer network publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.222 – ident: 10.1016/j.asoc.2021.107650_b53 – volume: 5 start-page: 707 issue: 4 year: 2011 ident: 10.1016/j.asoc.2021.107650_b25 article-title: Distributed clustering using wireless sensor networks publication-title: IEEE J. Sel. Top. Sign. Proces. doi: 10.1109/JSTSP.2011.2114324 – volume: 87 year: 2020 ident: 10.1016/j.asoc.2021.107650_b31 article-title: Distributed robust data clustering in wireless sensor networks using diffusion moth flame optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103342 – ident: 10.1016/j.asoc.2021.107650_b24 – start-page: 651 year: 2016 ident: 10.1016/j.asoc.2021.107650_b35 article-title: Multi-objective colliding bodies optimization |
| SSID | ssj0016928 |
| Score | 2.473905 |
| Snippet | The substantial increase in the usage of wireless sensor networks (WSNs) encourages to develop data clustering in event monitoring applications. Many... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107650 |
| SubjectTerms | Distributed clustering Many-objective optimization Reference points Whale optimization algorithm |
| Title | A many-objective whale optimization algorithm to perform robust distributed clustering in wireless sensor network |
| URI | https://dx.doi.org/10.1016/j.asoc.2021.107650 |
| Volume | 110 |
| WOSCitedRecordID | wos000730507600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3ojykg_coqycl50cV6gIKlRxKNLeIsd1urtKkyWP0v4Dfjbj-LFpgYoeuESryPEmO99Ovhl_M0bofUxKgAYnfiHKwo9ZQfxUCuKTgtGClgngZCwU_sKOj9PlMvs6m_20tTAXFavr9PIy2_5XU8M5MLYqnb2Dud2kcAI-g9HhCGaH4z8ZfqEUqVd-U2y0L_N-rLhSEIJvODdFlx6vzpp23a_OFfXc6toBr22KoevVko3eBQuoqKgG1UjB1L2otsaV8owdxL5N69VaQj7lt5bUduDdR7n60Nt341hf03OzbK_U9itvFHi7fLRKaugsdX_FO772jvgZr1V236mEhq1hu1xVLPNpziIMnPrNuVma-nFmko_WDxt9q_akEJZS3ZL2Nyev8w2bOQf8ztX0893g6x21b7zpnP7QSts2uZojV3Pkeo57aD9kSQYufn_x-XB55FakaDbu0-vu3BRgaa3gzTv5M8mZEJeTx-ihiTjwQiPlCZrJ-il6ZHfzwMa5P0PfF_g6cPAIHDwFDnbAwX2DDXCwBg6eAAfvgIPXNbbAwRo42ADnOfr28fDkwyffbMjhC4hUez8KAwEPSTmQ1CyUjCenPJSRECVPAp5ECWOUSpZCECAoUPOYiohBQMBJGRApRfQC7dVNLV8inIoggJEkkpmICSsykopTWgKhLFWHOXaAAvsL5sJ0q1ebplT53213gDx3zVb3arl1dGINkxu2qVlkDji75bpXd_qW1-jB7g_wBu317SDfovviol937TsDsl9LDqYL |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+many-objective+whale+optimization+algorithm+to+perform+robust+distributed+clustering+in+wireless+sensor+network&rft.jtitle=Applied+soft+computing&rft.au=Kotary%2C+Dinesh+Kumar&rft.au=Nanda%2C+Satyasai+Jagannath&rft.au=Gupta%2C+Rachana&rft.date=2021-10-01&rft.issn=1568-4946&rft.volume=110&rft.spage=107650&rft_id=info:doi/10.1016%2Fj.asoc.2021.107650&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2021_107650 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |