A distributed physical architecture and data-based scheduling method for smart factory based on intelligent agents

With the increasing demands for personalized customization, the characteristics of order gradually show dynamics and diversity, which bring new challenges to the production mode of traditional factory. In the context of industry 4.0, the emergence of advanced technologies has made the vision of tran...

Full description

Saved in:
Bibliographic Details
Published in:Journal of manufacturing systems Vol. 65; pp. 785 - 801
Main Authors: Gu, Wenbin, Liu, Siqi, Zhang, Zequn, Li, Yuxin
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.10.2022
Subjects:
ISSN:0278-6125, 1878-6642
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the increasing demands for personalized customization, the characteristics of order gradually show dynamics and diversity, which bring new challenges to the production mode of traditional factory. In the context of industry 4.0, the emergence of advanced technologies has made the vision of transforming manufacturing system into smart factory stronger and stronger. However, the establishment of smart factory based on the original automatic workshop needs to consider two problems: one is how to redesign the physical architecture of the factory, and another is how to improve the scheduling performance of the factory. Therefore, this paper proposes a distributed physical architecture of smart factory based on intelligent agents (DPASF-IA). First, it is divided into multiple units according to different functions, namely processing unit, transportation unit, storage unit and decision-making unit. Then, the intelligent agent (IA) is designed for the building of these heterogeneous units. Moreover, in order to improve the scheduling performance of smart factory, a data-based scheduling algorithm is proposed based on reinforcement learning which realizes the high-quality management and improves the performance of scheduling. Meanwhile, combing with the proposed architecture and scheduling algorithm, a real-time scheduling mechanism is also proposed. Finally, a prototype system experimental platform for performance evaluation of scheduling is built according to the proposed DPASF-IA. The experimental results show that the proposed method can realize real-time scheduling and has good scheduling performance compared with other scheduling methods. •This paper proposes a distributed physical architecture of smart factory based on intelligent agents (DPSAF-IA) according to different functions, namely processing unit, transportation unit, storage unit and decision-making unit.•An intelligent agent (IA) is designed for the building of these heterogeneous which can realize three unified functions: state perception and information exchanging; real-time scheduling; controlling physical equipment.•In order to improve the scheduling performance of smart factory, a data-based scheduling algorithm is proposed based on reinforcement learning which consists of five modules.•Combing with the DPASF-IA and data-based scheduling algorithm, a real-time scheduling mechanism is also proposed.•Experimental results show that the DPASF-IA can use the data-based scheduling algorithm to realize real-time scheduling, and has good scheduling performance compared with other scheduling methods.
AbstractList With the increasing demands for personalized customization, the characteristics of order gradually show dynamics and diversity, which bring new challenges to the production mode of traditional factory. In the context of industry 4.0, the emergence of advanced technologies has made the vision of transforming manufacturing system into smart factory stronger and stronger. However, the establishment of smart factory based on the original automatic workshop needs to consider two problems: one is how to redesign the physical architecture of the factory, and another is how to improve the scheduling performance of the factory. Therefore, this paper proposes a distributed physical architecture of smart factory based on intelligent agents (DPASF-IA). First, it is divided into multiple units according to different functions, namely processing unit, transportation unit, storage unit and decision-making unit. Then, the intelligent agent (IA) is designed for the building of these heterogeneous units. Moreover, in order to improve the scheduling performance of smart factory, a data-based scheduling algorithm is proposed based on reinforcement learning which realizes the high-quality management and improves the performance of scheduling. Meanwhile, combing with the proposed architecture and scheduling algorithm, a real-time scheduling mechanism is also proposed. Finally, a prototype system experimental platform for performance evaluation of scheduling is built according to the proposed DPASF-IA. The experimental results show that the proposed method can realize real-time scheduling and has good scheduling performance compared with other scheduling methods. •This paper proposes a distributed physical architecture of smart factory based on intelligent agents (DPSAF-IA) according to different functions, namely processing unit, transportation unit, storage unit and decision-making unit.•An intelligent agent (IA) is designed for the building of these heterogeneous which can realize three unified functions: state perception and information exchanging; real-time scheduling; controlling physical equipment.•In order to improve the scheduling performance of smart factory, a data-based scheduling algorithm is proposed based on reinforcement learning which consists of five modules.•Combing with the DPASF-IA and data-based scheduling algorithm, a real-time scheduling mechanism is also proposed.•Experimental results show that the DPASF-IA can use the data-based scheduling algorithm to realize real-time scheduling, and has good scheduling performance compared with other scheduling methods.
Author Gu, Wenbin
Zhang, Zequn
Li, Yuxin
Liu, Siqi
Author_xml – sequence: 1
  givenname: Wenbin
  surname: Gu
  fullname: Gu, Wenbin
  email: 20021592@hhu.edu.cn
  organization: Department of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China
– sequence: 2
  givenname: Siqi
  surname: Liu
  fullname: Liu, Siqi
  organization: Department of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China
– sequence: 3
  givenname: Zequn
  orcidid: 0000-0001-7597-0894
  surname: Zhang
  fullname: Zhang, Zequn
  organization: College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yadao Street, Nanjing 210016, China
– sequence: 4
  givenname: Yuxin
  surname: Li
  fullname: Li, Yuxin
  organization: Department of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China
BookMark eNp9kMlqwzAQQEVJoUnaH-hJP2BXGu_QSwjdINBLexYTaRwrOHKQlEL-vjbpqYdcZoF5w8xbsJkbHDH2KEUqhSyf9un-EM4pCIBUylSI8obNZV3VSVnmMGNzAVMtobhjixD2QkjIBcyZX3FjQ_R2e4pk-LE7B6ux5-h1ZyPpePLE0RluMGKyxTAOBd2ROfXW7fiBYjcY3g6ehwP6yFvUcfBnfpkcHLcuUt_bHbnIcYrhnt222Ad6-MtL9v368rV-Tzafbx_r1SbRkImYSFNkJZSCsgqlqKjJDLSUNUQIBkrQoLcCm7yUpq2yQsgGRV7rsQNtCmyzJYPLXu2HEDy16ujteORZSaEma2qvJmtqsqakVKO1Ear_QdpGjHZw0aPtr6PPF5TGp34seRW0JafJWD-KVGaw1_BfguKNnQ
CitedBy_id crossref_primary_10_1016_j_commatsci_2024_112793
crossref_primary_10_1007_s00170_023_12725_y
crossref_primary_10_3390_pr12122754
crossref_primary_10_1007_s10696_024_09585_3
crossref_primary_10_1016_j_jmsy_2024_04_014
crossref_primary_10_1016_j_jmsy_2023_02_008
crossref_primary_10_1016_j_epsr_2024_110543
crossref_primary_10_1016_j_rcim_2025_103085
crossref_primary_10_1016_j_energy_2025_137483
crossref_primary_10_1080_00207543_2025_2456577
Cites_doi 10.1016/j.cie.2020.106749
10.1109/ACCESS.2017.2783682
10.1109/ACCESS.2019.2897603
10.1007/s00170-017-0459-y
10.1287/moor.1.2.117
10.1016/j.asr.2018.10.007
10.1007/s00170-014-5987-0
10.1109/TII.2019.2919153
10.1016/j.rcim.2018.11.006
10.1080/00207543.2019.1636324
10.1016/j.rcim.2019.04.006
10.5545/sv-jme.2019.6156
10.1016/j.jmsy.2020.11.012
10.1155/2019/7237459
10.1016/j.rcim.2021.102202
10.1109/TII.2019.2908210
10.1016/j.rcim.2021.102283
10.1515/pomr-2017-0111
10.1016/j.cie.2018.03.039
10.1080/00207543.2020.1717008
10.1016/j.jmsy.2018.10.004
10.1080/00207543.2020.1870013
10.1016/j.jmsy.2018.01.006
10.1016/j.jmsy.2021.03.005
10.1007/s10845-015-1137-2
10.1016/j.compind.2005.05.005
10.1080/00207543.2020.1794075
10.1109/TEM.2016.2642144
10.1016/j.jmsy.2020.02.004
10.3390/app11083710
10.1109/JSYST.2010.2100195
10.1016/j.jmsy.2021.08.008
10.1016/j.jmsy.2020.06.010
10.3390/su12208718
10.1142/S0217595913500140
10.1016/j.swevo.2020.100742
ContentType Journal Article
Copyright 2022 The Society of Manufacturing Engineers
Copyright_xml – notice: 2022 The Society of Manufacturing Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.jmsy.2022.11.006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-6642
EndPage 801
ExternalDocumentID 10_1016_j_jmsy_2022_11_006
S0278612522001972
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29K
3EH
3V.
4.4
457
4G.
5GY
5VS
7-5
71M
7WY
883
88I
8AO
8FE
8FG
8FL
8FW
8G5
8P~
8R4
8R5
9JN
9M8
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJCF
ABJNI
ABMAC
ABUWG
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKRA
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BEZIV
BGLVJ
BJAXD
BKOJK
BKOMP
BLXMC
BPHCQ
C1A
CCPQU
CS3
D-I
DU5
DWQXO
E3Z
EBS
EFJIC
EFLBG
EJD
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FRNLG
FYGXN
G-2
GBLVA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K60
K6V
K6~
K7-
KOM
L6V
LY7
M0C
M0F
M0N
M2O
M2P
M41
M7S
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PQBIZ
PQQKQ
PRG
PROAC
PTHSS
Q2X
Q38
R2-
RIG
ROL
RPZ
RWL
S0X
SDF
SES
SET
SPC
SPCBC
SST
SSZ
T5K
TAE
TN5
U5U
WH7
WUQ
ZHY
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFFHD
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
PHGZM
PHGZT
PQBZA
PQGLB
~HD
ID FETCH-LOGICAL-c230t-1d536260e37a107e93d2fe39eea2d262c2cb0a9461df735019a048c1df2cd5af3
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001125013300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-6125
IngestDate Sat Nov 29 07:23:15 EST 2025
Tue Nov 18 22:11:29 EST 2025
Fri Feb 23 02:38:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Real-time scheduling mechanism
Data-based scheduling algorithm
Personalized customization
Smart factory
Intelligent agent
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c230t-1d536260e37a107e93d2fe39eea2d262c2cb0a9461df735019a048c1df2cd5af3
ORCID 0000-0001-7597-0894
PageCount 17
ParticipantIDs crossref_primary_10_1016_j_jmsy_2022_11_006
crossref_citationtrail_10_1016_j_jmsy_2022_11_006
elsevier_sciencedirect_doi_10_1016_j_jmsy_2022_11_006
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Journal of manufacturing systems
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhou, Yang, Zheng (bib30) 2017; 7
Ren, Ye, Li (bib44) 2021; 16
Harrington (bib9) 1974
Kumar, Mishra (bib16) 2011; 5
Lu, Xu (bib14) 2019; 57
Akpunar, Akpinar (bib26) 2021
g/10.1109/ TEM.2016.2642144.
Wang, Sarker, Li, Li (bib45) 2021; 59
Dai, Tang, Agriana, Miguel (bib23) 2020; 59
g/10. 1109/ACCESS.2017.2783682.
Atmojo, Salcic, Wang, Vyatkin (bib12) 2020; 16
Cunha, Cunha, Fonseca, Matos (bib34) 2021; 11
Zhang, Wang, Zhong, Hu (bib42) 2013; 30
Meng, Zhang, Shao, Zhang, Ren (bib39) 2020; 58
Zhou, Tang, Zhang, Zhang (bib17) 2021; 72
Wang, Luo (bib21) 2021; 58
Behnamian J , 2017. Heterogeneous Networked cooperative scheduling with anarchic particle swarm optimization. IEEE T Eng Manage 2017; 64(2): 166–178.
Meng, Zhang, Ren, Zhang (bib25) 2021; 57
Tao, Qi, Liu, Kusiak (bib19) 2018; 48
Lu, Xun, Wang (bib2) 2020; 56
Xu, Guo, Li, Guo, Wu (bib33) 2019; 18
Shen, Zhao, Xia, Du (bib6) 2017; 24
Leit˜ao, Restivo (bib10) 2006; 57
Lee, Cho, Lee (bib35) 2020; 12
Chen B T, Wan J F, Shu L, Li P Mukherjee M , 2018. Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges. IEEE Access 2018; 6: 6505–6519.
g/10.5545/ sv-jme. 2019.6156.
Sutton, Barto (bib32) 2018
Shiue, Lee, Su (bib43) 2018; 125
Li, Gu, Yuan, Tang (bib40) 2022; 74
Uhlmann, Frazzon (bib8) 2018; 49
Wang, Xu, Zhang, Zhong (bib20) 2022; 62
Mohan, Lanka, Rao (bib3) 2019; 30
Wang, Gao, Zheng, Zhang, Lp (bib37) 2021; 61
Zeng, Gao, Li (bib27) 2013; 64
Hu, Liu, Hu (bib46) 2020; 55
Hozdic E, Kozjek D, Butala P A Cyber-Physical Approach to the Management and Control of Manufacturing Systems, J Mech Eng 2020; 66: 61–70
Lin, Deng, Chih, Chiu (bib36) 2019; 15
Bachula, Zajac (bib11) 2013; 196
Tang, Zheng, Zhang, Sang, Zhang, Xu (bib13) 2018; 94
He, Xiu, Chen, Xiong, Liu (bib31) 2019; 63
Garey, Johnson, Sethi (bib22) 1976; 1
Huang, Pan, Gao (bib24) 2020; 59
Shi, Fan, Xiao (bib41) 2020; 58
Wang, Zhang, Liu, Wu (bib28) 2018; 6
Xiong, Fu (bib29) 2018; 29
Hu, Jia, He, Fu, Liu (bib7) 2020; 149
Zhuang, Liu, Xiong (bib15) 2019; 25
Park, Chun, Kim, Kim (bib38) 2021; 59
Li, Wang, Tang (bib4) 2014; 74
Kumar (10.1016/j.jmsy.2022.11.006_bib16) 2011; 5
Ren (10.1016/j.jmsy.2022.11.006_bib44) 2021; 16
Garey (10.1016/j.jmsy.2022.11.006_bib22) 1976; 1
Harrington (10.1016/j.jmsy.2022.11.006_bib9) 1974
Atmojo (10.1016/j.jmsy.2022.11.006_bib12) 2020; 16
Wang (10.1016/j.jmsy.2022.11.006_bib28) 2018; 6
10.1016/j.jmsy.2022.11.006_bib5
Huang (10.1016/j.jmsy.2022.11.006_bib24) 2020; 59
He (10.1016/j.jmsy.2022.11.006_bib31) 2019; 63
Dai (10.1016/j.jmsy.2022.11.006_bib23) 2020; 59
10.1016/j.jmsy.2022.11.006_bib1
Bachula (10.1016/j.jmsy.2022.11.006_bib11) 2013; 196
Wang (10.1016/j.jmsy.2022.11.006_bib37) 2021; 61
Leit˜ao (10.1016/j.jmsy.2022.11.006_bib10) 2006; 57
Li (10.1016/j.jmsy.2022.11.006_bib4) 2014; 74
Lu (10.1016/j.jmsy.2022.11.006_bib14) 2019; 57
Xu (10.1016/j.jmsy.2022.11.006_bib33) 2019; 18
Shen (10.1016/j.jmsy.2022.11.006_bib6) 2017; 24
Mohan (10.1016/j.jmsy.2022.11.006_bib3) 2019; 30
Zhou (10.1016/j.jmsy.2022.11.006_bib17) 2021; 72
Tao (10.1016/j.jmsy.2022.11.006_bib19) 2018; 48
Park (10.1016/j.jmsy.2022.11.006_bib38) 2021; 59
Cunha (10.1016/j.jmsy.2022.11.006_bib34) 2021; 11
Tang (10.1016/j.jmsy.2022.11.006_bib13) 2018; 94
Wang (10.1016/j.jmsy.2022.11.006_bib21) 2021; 58
Meng (10.1016/j.jmsy.2022.11.006_bib25) 2021; 57
Zhang (10.1016/j.jmsy.2022.11.006_bib42) 2013; 30
Hu (10.1016/j.jmsy.2022.11.006_bib7) 2020; 149
Shiue (10.1016/j.jmsy.2022.11.006_bib43) 2018; 125
Uhlmann (10.1016/j.jmsy.2022.11.006_bib8) 2018; 49
Sutton (10.1016/j.jmsy.2022.11.006_bib32) 2018
Lee (10.1016/j.jmsy.2022.11.006_bib35) 2020; 12
Zhuang (10.1016/j.jmsy.2022.11.006_bib15) 2019; 25
10.1016/j.jmsy.2022.11.006_bib18
Wang (10.1016/j.jmsy.2022.11.006_bib20) 2022; 62
Wang (10.1016/j.jmsy.2022.11.006_bib45) 2021; 59
Meng (10.1016/j.jmsy.2022.11.006_bib39) 2020; 58
Hu (10.1016/j.jmsy.2022.11.006_bib46) 2020; 55
Shi (10.1016/j.jmsy.2022.11.006_bib41) 2020; 58
Zhou (10.1016/j.jmsy.2022.11.006_bib30) 2017; 7
Lin (10.1016/j.jmsy.2022.11.006_bib36) 2019; 15
Lu (10.1016/j.jmsy.2022.11.006_bib2) 2020; 56
Li (10.1016/j.jmsy.2022.11.006_bib40) 2022; 74
Akpunar (10.1016/j.jmsy.2022.11.006_bib26) 2021
Zeng (10.1016/j.jmsy.2022.11.006_bib27) 2013; 64
Xiong (10.1016/j.jmsy.2022.11.006_bib29) 2018; 29
References_xml – volume: 24
  start-page: 102
  year: 2017
  end-page: 109
  ident: bib6
  article-title: A deep Q-Learning network for ship stowage planning problem
  publication-title: Pol Marit Res
– volume: 5
  start-page: 6
  year: 2011
  end-page: 15
  ident: bib16
  article-title: A multi-agent self correcting architecture for distributed manufacturing supply chain
  publication-title: IEEE Syst J
– volume: 49
  start-page: 186
  year: 2018
  end-page: 193
  ident: bib8
  article-title: Production rescheduling review: opportunities for industrial integration and practical applications
  publication-title: J Man Syst
– volume: 94
  start-page: 1597
  year: 2018
  end-page: 1606
  ident: bib13
  article-title: Using autonomous intelligence to build a smart shop floor
  publication-title: Int J Adv Manuf Technol
– volume: 72
  start-page: 1879
  year: 2021
  end-page: 2537
  ident: bib17
  article-title: Multi-agent reinforcement learning for online scheduling in smart factories
  publication-title: Rob Comput Integr Manuf
– volume: 57
  start-page: 92
  year: 2019
  end-page: 102
  ident: bib14
  article-title: Cloud-based manufacturing equipment and big data analytics to enable on-demand manufacturing services
  publication-title: Rob Comput Integr Manuf
– volume: 11
  start-page: 3710
  year: 2021
  ident: bib34
  article-title: Intelligent scheduling with reinforcement learning
  publication-title: Appl Sci-Basel
– volume: 61
  start-page: 239
  year: 2021
  end-page: 248
  ident: bib37
  article-title: A fuzzy hierarchical reinforcement learning based scheduling method for semiconductor wafer manufacturing systems
  publication-title: J Man Syst
– volume: 62
  start-page: 738
  year: 2022
  end-page: 752
  ident: bib20
  article-title: Big data analytics for intelligent manufacturing systems a review
  publication-title: J Man Syst
– volume: 57
  start-page: 121
  year: 2006
  end-page: 130
  ident: bib10
  article-title: ADACOR: a holonic architecture for agile and adaptive manufacturing control
  publication-title: Comput Ind
– volume: 74
  year: 2022
  ident: bib40
  article-title: Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation resources using hybrid deep Q network
  publication-title: Rob Comput Integr Manuf
– volume: 59
  start-page: 5867
  year: 2021
  end-page: 5883
  ident: bib45
  article-title: Adaptive scheduling for assembly job shop with uncertain assembly times based on dual Q-learning
  publication-title: Int J Prod Res
– volume: 59
  year: 2020
  ident: bib24
  article-title: An effective iterated greedy method for the distributed permutation flow shop scheduling problem with sequence-dependent setup times
  publication-title: Swarm Evol Comput
– volume: 48
  start-page: 157
  year: 2018
  end-page: 169
  ident: bib19
  article-title: Data-driven smart manufacturing
  publication-title: J Man Syst
– start-page: 68
  year: 2021
  ident: bib26
  article-title: A hybrid adaptive large neighborhood search algorithm for the capacitated location routing problem
  publication-title: Expert Syst Appl
– volume: 15
  start-page: 4276
  year: 2019
  end-page: 4284
  ident: bib36
  article-title: Smart manufacturing scheduling with edge computing using multiclass deep Q network
  publication-title: IEEE Trans Ind Inf
– volume: 59
  start-page: 3360
  year: 2021
  end-page: 3377
  ident: bib38
  article-title: Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning
  publication-title: Int J Prod Res
– reference: g/10. 1109/ACCESS.2017.2783682.
– volume: 12
  start-page: 8718
  year: 2020
  ident: bib35
  article-title: Injection mold production sustainable scheduling using deep reinforcement learning
  publication-title: Sustainability
– volume: 16
  start-page: 151
  year: 2020
  end-page: 160
  ident: bib12
  article-title: A service-oriented programming approach for dynamic distributed manufacturing systems
  publication-title: IEEE Trans Ind Inf
– volume: 7
  start-page: 21147
  year: 2017
  end-page: 21176
  ident: bib30
  article-title: Multi-agent based hyper-heuristics for multi-objective flexible job shop scheduling: a case study in an aero-engine blade manufacturing plan]
  publication-title: IEEE Access
– volume: 16
  start-page: 269
  year: 2021
  end-page: 284
  ident: bib44
  article-title: A new solution to distributed permutation flow shop scheduling problem based on NASH Q-Learning
  publication-title: Adv Prod Eng Manag
– volume: 74
  start-page: 47
  year: 2014
  end-page: 64
  ident: bib4
  article-title: Production planning in virtual cell of reconfiguration manufacturing system using genetic algorithm
  publication-title: Int J Adv Manuf Technol
– volume: 25
  start-page: 1865
  year: 2019
  end-page: 1874
  ident: bib15
  article-title: Distributed initiative and collaborative manufacturing: new paradigm for intelligent shop-floor
  publication-title: Comput Integr Manuf Syst
– volume: 125
  start-page: 604
  year: 2018
  end-page: 614
  ident: bib43
  article-title: Real-time scheduling for a smart factory using a reinforcement learning approach
  publication-title: Comput Ind Eng
– reference: g/10.1109/ TEM.2016.2642144.
– volume: 149
  year: 2020
  ident: bib7
  article-title: Deep reinforcement learning based AGVs real-time scheduling with mixed rule for flexible shop floor in industry 4.0
  publication-title: Comput Ind Eng
– volume: 58
  start-page: 3362
  year: 2020
  end-page: 3380
  ident: bib41
  article-title: Intelligent scheduling of discrete automated production line via deep reinforcement learning
  publication-title: Int J Prod Res
– volume: 6
  start-page: 2327
  year: 2018
  end-page: 4662
  ident: bib28
  article-title: Multi-agent and bargaining-game-based real-time scheduling for internet of things-enabled flexible job shop
  publication-title: IEEE Internet Things J
– volume: 57
  start-page: 264
  year: 2021
  end-page: 272
  ident: bib25
  article-title: Hybrid shuffled frog-leaping algorithm for distributed flexible job shop scheduling
  publication-title: J Mech Eng
– reference: Behnamian J , 2017. Heterogeneous Networked cooperative scheduling with anarchic particle swarm optimization. IEEE T Eng Manage 2017; 64(2): 166–178.
– volume: 30
  start-page: 1350014
  year: 2013
  ident: bib42
  article-title: Flow shop scheduling with reinforcement learning
  publication-title: Asia Pac J Oper Res
– reference: Chen B T, Wan J F, Shu L, Li P Mukherjee M , 2018. Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges. IEEE Access 2018; 6: 6505–6519.
– volume: 63
  start-page: 897
  year: 2019
  end-page: 912
  ident: bib31
  article-title: Hierarchical scheduling for real-time agile satellite task scheduling in a dynamic environment
  publication-title: Adv Space Res
– volume: 58
  start-page: 16
  year: 2021
  end-page: 32
  ident: bib21
  article-title: A digital twin-based big data virtual and real fusion learning reference framework supported by industrial internet towards smart manufacturing
  publication-title: J Man Syst
– volume: 55
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib46
  article-title: Petri-net-based dynamic scheduling of flexible manufacturing system via deep reinforcement learning with graph convolutional network
  publication-title: J Man Syst
– volume: 30
  start-page: 34
  year: 2019
  end-page: 39
  ident: bib3
  article-title: A review of dynamic job shop scheduling techniques
  publication-title: 14th Glob Congr Manuf Manag
– volume: 29
  start-page: 857
  year: 2018
  end-page: 873
  ident: bib29
  article-title: A new immune multi-agent system for the flexible job shop scheduling problem
  publication-title: J Intell Manuf
– volume: 196
  start-page: 148
  year: 2013
  end-page: 155
  ident: bib11
  article-title: The study of distributed manufacturing control system self-configuration
  publication-title: J Clean Prod
– year: 1974
  ident: bib9
  article-title: Computer integrated manufacturing
– volume: 1
  start-page: 117
  year: 1976
  end-page: 129
  ident: bib22
  article-title: The complexity of flowshop and jobshop scheduling
  publication-title: Math Oper Res
– volume: 64
  start-page: 1071
  year: 2013
  end-page: 1078
  ident: bib27
  article-title: Whale swarm algorithm for function optimization
  publication-title: Intellt Comput Theory Appl
– volume: 58
  start-page: 3905
  year: 2020
  end-page: 3930
  ident: bib39
  article-title: More MILP models for hybrid flow shop scheduling problem and its extended problems
  publication-title: Int J Prod Res
– volume: 59
  start-page: 143
  year: 2020
  end-page: 157
  ident: bib23
  article-title: Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints
  publication-title: Rob Comput Integr Manuf
– reference: g/10.5545/ sv-jme. 2019.6156.
– volume: 18
  start-page: 7237459
  year: 2019
  ident: bib33
  article-title: A dynamic scheduling method for logistics tasks oriented to intelligent manufacturing workshop
  publication-title: Math Probl Eng
– year: 2018
  ident: bib32
  article-title: Reinforcement learning: an introduction
– volume: 56
  start-page: 312
  year: 2020
  end-page: 325
  ident: bib2
  article-title: Smart manufacturing process and system automation – a critical review of the standards and envisioned scenarios
  publication-title: J MAnuf Syst
– reference: Hozdic E, Kozjek D, Butala P A Cyber-Physical Approach to the Management and Control of Manufacturing Systems, J Mech Eng 2020; 66: 61–70,
– volume: 149
  year: 2020
  ident: 10.1016/j.jmsy.2022.11.006_bib7
  article-title: Deep reinforcement learning based AGVs real-time scheduling with mixed rule for flexible shop floor in industry 4.0
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2020.106749
– volume: 64
  start-page: 1071
  issue: 7
  year: 2013
  ident: 10.1016/j.jmsy.2022.11.006_bib27
  article-title: Whale swarm algorithm for function optimization
  publication-title: Intellt Comput Theory Appl
– volume: 196
  start-page: 148
  year: 2013
  ident: 10.1016/j.jmsy.2022.11.006_bib11
  article-title: The study of distributed manufacturing control system self-configuration
  publication-title: J Clean Prod
– ident: 10.1016/j.jmsy.2022.11.006_bib1
  doi: 10.1109/ACCESS.2017.2783682
– volume: 7
  start-page: 21147
  year: 2017
  ident: 10.1016/j.jmsy.2022.11.006_bib30
  article-title: Multi-agent based hyper-heuristics for multi-objective flexible job shop scheduling: a case study in an aero-engine blade manufacturing plan]
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897603
– year: 2018
  ident: 10.1016/j.jmsy.2022.11.006_bib32
– volume: 6
  start-page: 2327
  issue: 2
  year: 2018
  ident: 10.1016/j.jmsy.2022.11.006_bib28
  article-title: Multi-agent and bargaining-game-based real-time scheduling for internet of things-enabled flexible job shop
  publication-title: IEEE Internet Things J
– volume: 94
  start-page: 1597
  year: 2018
  ident: 10.1016/j.jmsy.2022.11.006_bib13
  article-title: Using autonomous intelligence to build a smart shop floor
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-017-0459-y
– volume: 1
  start-page: 117
  issue: 2
  year: 1976
  ident: 10.1016/j.jmsy.2022.11.006_bib22
  article-title: The complexity of flowshop and jobshop scheduling
  publication-title: Math Oper Res
  doi: 10.1287/moor.1.2.117
– volume: 63
  start-page: 897
  issue: 2
  year: 2019
  ident: 10.1016/j.jmsy.2022.11.006_bib31
  article-title: Hierarchical scheduling for real-time agile satellite task scheduling in a dynamic environment
  publication-title: Adv Space Res
  doi: 10.1016/j.asr.2018.10.007
– volume: 74
  start-page: 47
  year: 2014
  ident: 10.1016/j.jmsy.2022.11.006_bib4
  article-title: Production planning in virtual cell of reconfiguration manufacturing system using genetic algorithm
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-5987-0
– volume: 16
  start-page: 151
  issue: 1
  year: 2020
  ident: 10.1016/j.jmsy.2022.11.006_bib12
  article-title: A service-oriented programming approach for dynamic distributed manufacturing systems
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2019.2919153
– volume: 57
  start-page: 92
  year: 2019
  ident: 10.1016/j.jmsy.2022.11.006_bib14
  article-title: Cloud-based manufacturing equipment and big data analytics to enable on-demand manufacturing services
  publication-title: Rob Comput Integr Manuf
  doi: 10.1016/j.rcim.2018.11.006
– volume: 58
  start-page: 3905
  issue: 13
  year: 2020
  ident: 10.1016/j.jmsy.2022.11.006_bib39
  article-title: More MILP models for hybrid flow shop scheduling problem and its extended problems
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2019.1636324
– volume: 59
  start-page: 143
  year: 2020
  ident: 10.1016/j.jmsy.2022.11.006_bib23
  article-title: Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints
  publication-title: Rob Comput Integr Manuf
  doi: 10.1016/j.rcim.2019.04.006
– ident: 10.1016/j.jmsy.2022.11.006_bib18
  doi: 10.5545/sv-jme.2019.6156
– volume: 58
  start-page: 16
  year: 2021
  ident: 10.1016/j.jmsy.2022.11.006_bib21
  article-title: A digital twin-based big data virtual and real fusion learning reference framework supported by industrial internet towards smart manufacturing
  publication-title: J Man Syst
  doi: 10.1016/j.jmsy.2020.11.012
– volume: 18
  start-page: 7237459
  year: 2019
  ident: 10.1016/j.jmsy.2022.11.006_bib33
  article-title: A dynamic scheduling method for logistics tasks oriented to intelligent manufacturing workshop
  publication-title: Math Probl Eng
  doi: 10.1155/2019/7237459
– volume: 72
  start-page: 1879
  year: 2021
  ident: 10.1016/j.jmsy.2022.11.006_bib17
  article-title: Multi-agent reinforcement learning for online scheduling in smart factories
  publication-title: Rob Comput Integr Manuf
  doi: 10.1016/j.rcim.2021.102202
– start-page: 68
  year: 2021
  ident: 10.1016/j.jmsy.2022.11.006_bib26
  article-title: A hybrid adaptive large neighborhood search algorithm for the capacitated location routing problem
  publication-title: Expert Syst Appl
– volume: 15
  start-page: 4276
  issue: 7
  year: 2019
  ident: 10.1016/j.jmsy.2022.11.006_bib36
  article-title: Smart manufacturing scheduling with edge computing using multiclass deep Q network
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2019.2908210
– volume: 74
  year: 2022
  ident: 10.1016/j.jmsy.2022.11.006_bib40
  article-title: Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation resources using hybrid deep Q network
  publication-title: Rob Comput Integr Manuf
  doi: 10.1016/j.rcim.2021.102283
– volume: 24
  start-page: 102
  issue: 3
  year: 2017
  ident: 10.1016/j.jmsy.2022.11.006_bib6
  article-title: A deep Q-Learning network for ship stowage planning problem
  publication-title: Pol Marit Res
  doi: 10.1515/pomr-2017-0111
– volume: 125
  start-page: 604
  year: 2018
  ident: 10.1016/j.jmsy.2022.11.006_bib43
  article-title: Real-time scheduling for a smart factory using a reinforcement learning approach
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2018.03.039
– volume: 57
  start-page: 264
  issue: 17
  year: 2021
  ident: 10.1016/j.jmsy.2022.11.006_bib25
  article-title: Hybrid shuffled frog-leaping algorithm for distributed flexible job shop scheduling
  publication-title: J Mech Eng
– volume: 58
  start-page: 3362
  issue: 11
  year: 2020
  ident: 10.1016/j.jmsy.2022.11.006_bib41
  article-title: Intelligent scheduling of discrete automated production line via deep reinforcement learning
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2020.1717008
– volume: 49
  start-page: 186
  year: 2018
  ident: 10.1016/j.jmsy.2022.11.006_bib8
  article-title: Production rescheduling review: opportunities for industrial integration and practical applications
  publication-title: J Man Syst
  doi: 10.1016/j.jmsy.2018.10.004
– volume: 59
  start-page: 3360
  issue: 11
  year: 2021
  ident: 10.1016/j.jmsy.2022.11.006_bib38
  article-title: Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2020.1870013
– volume: 48
  start-page: 157
  year: 2018
  ident: 10.1016/j.jmsy.2022.11.006_bib19
  article-title: Data-driven smart manufacturing
  publication-title: J Man Syst
  doi: 10.1016/j.jmsy.2018.01.006
– volume: 62
  start-page: 738
  year: 2022
  ident: 10.1016/j.jmsy.2022.11.006_bib20
  article-title: Big data analytics for intelligent manufacturing systems a review
  publication-title: J Man Syst
  doi: 10.1016/j.jmsy.2021.03.005
– volume: 25
  start-page: 1865
  issue: 8
  year: 2019
  ident: 10.1016/j.jmsy.2022.11.006_bib15
  article-title: Distributed initiative and collaborative manufacturing: new paradigm for intelligent shop-floor
  publication-title: Comput Integr Manuf Syst
– year: 1974
  ident: 10.1016/j.jmsy.2022.11.006_bib9
– volume: 29
  start-page: 857
  year: 2018
  ident: 10.1016/j.jmsy.2022.11.006_bib29
  article-title: A new immune multi-agent system for the flexible job shop scheduling problem
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-015-1137-2
– volume: 57
  start-page: 121
  issue: 2
  year: 2006
  ident: 10.1016/j.jmsy.2022.11.006_bib10
  article-title: ADACOR: a holonic architecture for agile and adaptive manufacturing control
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2005.05.005
– volume: 59
  start-page: 5867
  issue: 19
  year: 2021
  ident: 10.1016/j.jmsy.2022.11.006_bib45
  article-title: Adaptive scheduling for assembly job shop with uncertain assembly times based on dual Q-learning
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2020.1794075
– volume: 30
  start-page: 34
  year: 2019
  ident: 10.1016/j.jmsy.2022.11.006_bib3
  article-title: A review of dynamic job shop scheduling techniques
  publication-title: 14th Glob Congr Manuf Manag
– ident: 10.1016/j.jmsy.2022.11.006_bib5
  doi: 10.1109/TEM.2016.2642144
– volume: 55
  start-page: 1
  year: 2020
  ident: 10.1016/j.jmsy.2022.11.006_bib46
  article-title: Petri-net-based dynamic scheduling of flexible manufacturing system via deep reinforcement learning with graph convolutional network
  publication-title: J Man Syst
  doi: 10.1016/j.jmsy.2020.02.004
– volume: 11
  start-page: 3710
  issue: 8
  year: 2021
  ident: 10.1016/j.jmsy.2022.11.006_bib34
  article-title: Intelligent scheduling with reinforcement learning
  publication-title: Appl Sci-Basel
  doi: 10.3390/app11083710
– volume: 5
  start-page: 6
  issue: 1
  year: 2011
  ident: 10.1016/j.jmsy.2022.11.006_bib16
  article-title: A multi-agent self correcting architecture for distributed manufacturing supply chain
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2010.2100195
– volume: 61
  start-page: 239
  year: 2021
  ident: 10.1016/j.jmsy.2022.11.006_bib37
  article-title: A fuzzy hierarchical reinforcement learning based scheduling method for semiconductor wafer manufacturing systems
  publication-title: J Man Syst
  doi: 10.1016/j.jmsy.2021.08.008
– volume: 56
  start-page: 312
  year: 2020
  ident: 10.1016/j.jmsy.2022.11.006_bib2
  article-title: Smart manufacturing process and system automation – a critical review of the standards and envisioned scenarios
  publication-title: J MAnuf Syst
  doi: 10.1016/j.jmsy.2020.06.010
– volume: 12
  start-page: 8718
  year: 2020
  ident: 10.1016/j.jmsy.2022.11.006_bib35
  article-title: Injection mold production sustainable scheduling using deep reinforcement learning
  publication-title: Sustainability
  doi: 10.3390/su12208718
– volume: 16
  start-page: 269
  issue: 3
  year: 2021
  ident: 10.1016/j.jmsy.2022.11.006_bib44
  article-title: A new solution to distributed permutation flow shop scheduling problem based on NASH Q-Learning
  publication-title: Adv Prod Eng Manag
– volume: 30
  start-page: 1350014
  issue: 05
  year: 2013
  ident: 10.1016/j.jmsy.2022.11.006_bib42
  article-title: Flow shop scheduling with reinforcement learning
  publication-title: Asia Pac J Oper Res
  doi: 10.1142/S0217595913500140
– volume: 59
  year: 2020
  ident: 10.1016/j.jmsy.2022.11.006_bib24
  article-title: An effective iterated greedy method for the distributed permutation flow shop scheduling problem with sequence-dependent setup times
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2020.100742
SSID ssj0012402
Score 2.3718238
Snippet With the increasing demands for personalized customization, the characteristics of order gradually show dynamics and diversity, which bring new challenges to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 785
SubjectTerms Data-based scheduling algorithm
Intelligent agent
Personalized customization
Real-time scheduling mechanism
Smart factory
Title A distributed physical architecture and data-based scheduling method for smart factory based on intelligent agents
URI https://dx.doi.org/10.1016/j.jmsy.2022.11.006
Volume 65
WOSCitedRecordID wos001125013300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-6642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012402
  issn: 0278-6125
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JTxsxFLYi6IEeUOmiQlvkQ2_RRDOexcwxqqgKQggJKkW9jBwvaCIyhCSDwv_gB_d5SyySIjj0MspYtmeS9-Ut9uf3EPpOwQuXJFaRyDMVZZKDHlSpiHJJEp6mhZDMSPqMnp8fDQblRafz6M_C3N_QpjlaLMrJfxU1tIGw9dHZV4h7OSk0wGcQOlxB7HB9keD7etPF1rECZ3Li5bC2Y6C5oZE2YqILES5YHHMw3VaUNuTD2RhmdwV5Hrq2pyFG-iSe8y679qmgNji4Y9a0erQ9CDkLUqNrvk9r2H2yGdYrUlBtGi_ru3ptPfuPvGuDjsZytAs31q1aQMDr-W9euRGIXrV3FWriIg9UKbWlfLxVtoPXFL5dexj1RuPZQ08_qKdzssYbsms_sXpLLqKnuY0qPUel54CwqDJ53LcJzUtQ99v9k-PB6XJ3Su9ImbU79x3cYSzLG3z6JpsdnsCJuXqHdp1wcN-iZg91ZPMevQ1yUn5A0z4O8IM9fnCIHwz4wSv84BV-sMUPBvxggx_s8INtz9sGB_jBFj8f0e-fx1c_fkWuMEfEIWKdR4nIdRajWKaUJTGVZSqIkmkpJSOCFIQTPoxZmRWJUFTvXJcMDAWHO8JFzlT6CW01t438jDDcZMOMJCLRHAClhkUm4kwRBc5Vzmi6jxL_61XcZa3XxVNuqn_LbR91l2MmNmfLs71zL5TKeZ3Wm6wAY8-MO3jVU76gndXf4Cvamk9b-Q294ffzejY9dAD7C6tcqPc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+distributed+physical+architecture+and+data-based+scheduling+method+for+smart+factory+based+on+intelligent+agents&rft.jtitle=Journal+of+manufacturing+systems&rft.au=Gu%2C+Wenbin&rft.au=Liu%2C+Siqi&rft.au=Zhang%2C+Zequn&rft.au=Li%2C+Yuxin&rft.date=2022-10-01&rft.issn=0278-6125&rft.volume=65&rft.spage=785&rft.epage=801&rft_id=info:doi/10.1016%2Fj.jmsy.2022.11.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmsy_2022_11_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-6125&client=summon