A distributed physical architecture and data-based scheduling method for smart factory based on intelligent agents
With the increasing demands for personalized customization, the characteristics of order gradually show dynamics and diversity, which bring new challenges to the production mode of traditional factory. In the context of industry 4.0, the emergence of advanced technologies has made the vision of tran...
Saved in:
| Published in: | Journal of manufacturing systems Vol. 65; pp. 785 - 801 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.10.2022
|
| Subjects: | |
| ISSN: | 0278-6125, 1878-6642 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | With the increasing demands for personalized customization, the characteristics of order gradually show dynamics and diversity, which bring new challenges to the production mode of traditional factory. In the context of industry 4.0, the emergence of advanced technologies has made the vision of transforming manufacturing system into smart factory stronger and stronger. However, the establishment of smart factory based on the original automatic workshop needs to consider two problems: one is how to redesign the physical architecture of the factory, and another is how to improve the scheduling performance of the factory. Therefore, this paper proposes a distributed physical architecture of smart factory based on intelligent agents (DPASF-IA). First, it is divided into multiple units according to different functions, namely processing unit, transportation unit, storage unit and decision-making unit. Then, the intelligent agent (IA) is designed for the building of these heterogeneous units. Moreover, in order to improve the scheduling performance of smart factory, a data-based scheduling algorithm is proposed based on reinforcement learning which realizes the high-quality management and improves the performance of scheduling. Meanwhile, combing with the proposed architecture and scheduling algorithm, a real-time scheduling mechanism is also proposed. Finally, a prototype system experimental platform for performance evaluation of scheduling is built according to the proposed DPASF-IA. The experimental results show that the proposed method can realize real-time scheduling and has good scheduling performance compared with other scheduling methods.
•This paper proposes a distributed physical architecture of smart factory based on intelligent agents (DPSAF-IA) according to different functions, namely processing unit, transportation unit, storage unit and decision-making unit.•An intelligent agent (IA) is designed for the building of these heterogeneous which can realize three unified functions: state perception and information exchanging; real-time scheduling; controlling physical equipment.•In order to improve the scheduling performance of smart factory, a data-based scheduling algorithm is proposed based on reinforcement learning which consists of five modules.•Combing with the DPASF-IA and data-based scheduling algorithm, a real-time scheduling mechanism is also proposed.•Experimental results show that the DPASF-IA can use the data-based scheduling algorithm to realize real-time scheduling, and has good scheduling performance compared with other scheduling methods. |
|---|---|
| AbstractList | With the increasing demands for personalized customization, the characteristics of order gradually show dynamics and diversity, which bring new challenges to the production mode of traditional factory. In the context of industry 4.0, the emergence of advanced technologies has made the vision of transforming manufacturing system into smart factory stronger and stronger. However, the establishment of smart factory based on the original automatic workshop needs to consider two problems: one is how to redesign the physical architecture of the factory, and another is how to improve the scheduling performance of the factory. Therefore, this paper proposes a distributed physical architecture of smart factory based on intelligent agents (DPASF-IA). First, it is divided into multiple units according to different functions, namely processing unit, transportation unit, storage unit and decision-making unit. Then, the intelligent agent (IA) is designed for the building of these heterogeneous units. Moreover, in order to improve the scheduling performance of smart factory, a data-based scheduling algorithm is proposed based on reinforcement learning which realizes the high-quality management and improves the performance of scheduling. Meanwhile, combing with the proposed architecture and scheduling algorithm, a real-time scheduling mechanism is also proposed. Finally, a prototype system experimental platform for performance evaluation of scheduling is built according to the proposed DPASF-IA. The experimental results show that the proposed method can realize real-time scheduling and has good scheduling performance compared with other scheduling methods.
•This paper proposes a distributed physical architecture of smart factory based on intelligent agents (DPSAF-IA) according to different functions, namely processing unit, transportation unit, storage unit and decision-making unit.•An intelligent agent (IA) is designed for the building of these heterogeneous which can realize three unified functions: state perception and information exchanging; real-time scheduling; controlling physical equipment.•In order to improve the scheduling performance of smart factory, a data-based scheduling algorithm is proposed based on reinforcement learning which consists of five modules.•Combing with the DPASF-IA and data-based scheduling algorithm, a real-time scheduling mechanism is also proposed.•Experimental results show that the DPASF-IA can use the data-based scheduling algorithm to realize real-time scheduling, and has good scheduling performance compared with other scheduling methods. |
| Author | Gu, Wenbin Zhang, Zequn Li, Yuxin Liu, Siqi |
| Author_xml | – sequence: 1 givenname: Wenbin surname: Gu fullname: Gu, Wenbin email: 20021592@hhu.edu.cn organization: Department of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China – sequence: 2 givenname: Siqi surname: Liu fullname: Liu, Siqi organization: Department of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China – sequence: 3 givenname: Zequn orcidid: 0000-0001-7597-0894 surname: Zhang fullname: Zhang, Zequn organization: College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yadao Street, Nanjing 210016, China – sequence: 4 givenname: Yuxin surname: Li fullname: Li, Yuxin organization: Department of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China |
| BookMark | eNp9kMlqwzAQQEVJoUnaH-hJP2BXGu_QSwjdINBLexYTaRwrOHKQlEL-vjbpqYdcZoF5w8xbsJkbHDH2KEUqhSyf9un-EM4pCIBUylSI8obNZV3VSVnmMGNzAVMtobhjixD2QkjIBcyZX3FjQ_R2e4pk-LE7B6ux5-h1ZyPpePLE0RluMGKyxTAOBd2ROfXW7fiBYjcY3g6ehwP6yFvUcfBnfpkcHLcuUt_bHbnIcYrhnt222Ad6-MtL9v368rV-Tzafbx_r1SbRkImYSFNkJZSCsgqlqKjJDLSUNUQIBkrQoLcCm7yUpq2yQsgGRV7rsQNtCmyzJYPLXu2HEDy16ujteORZSaEma2qvJmtqsqakVKO1Ear_QdpGjHZw0aPtr6PPF5TGp34seRW0JafJWD-KVGaw1_BfguKNnQ |
| CitedBy_id | crossref_primary_10_1016_j_commatsci_2024_112793 crossref_primary_10_1007_s00170_023_12725_y crossref_primary_10_3390_pr12122754 crossref_primary_10_1007_s10696_024_09585_3 crossref_primary_10_1016_j_jmsy_2024_04_014 crossref_primary_10_1016_j_jmsy_2023_02_008 crossref_primary_10_1016_j_epsr_2024_110543 crossref_primary_10_1016_j_rcim_2025_103085 crossref_primary_10_1016_j_energy_2025_137483 crossref_primary_10_1080_00207543_2025_2456577 |
| Cites_doi | 10.1016/j.cie.2020.106749 10.1109/ACCESS.2017.2783682 10.1109/ACCESS.2019.2897603 10.1007/s00170-017-0459-y 10.1287/moor.1.2.117 10.1016/j.asr.2018.10.007 10.1007/s00170-014-5987-0 10.1109/TII.2019.2919153 10.1016/j.rcim.2018.11.006 10.1080/00207543.2019.1636324 10.1016/j.rcim.2019.04.006 10.5545/sv-jme.2019.6156 10.1016/j.jmsy.2020.11.012 10.1155/2019/7237459 10.1016/j.rcim.2021.102202 10.1109/TII.2019.2908210 10.1016/j.rcim.2021.102283 10.1515/pomr-2017-0111 10.1016/j.cie.2018.03.039 10.1080/00207543.2020.1717008 10.1016/j.jmsy.2018.10.004 10.1080/00207543.2020.1870013 10.1016/j.jmsy.2018.01.006 10.1016/j.jmsy.2021.03.005 10.1007/s10845-015-1137-2 10.1016/j.compind.2005.05.005 10.1080/00207543.2020.1794075 10.1109/TEM.2016.2642144 10.1016/j.jmsy.2020.02.004 10.3390/app11083710 10.1109/JSYST.2010.2100195 10.1016/j.jmsy.2021.08.008 10.1016/j.jmsy.2020.06.010 10.3390/su12208718 10.1142/S0217595913500140 10.1016/j.swevo.2020.100742 |
| ContentType | Journal Article |
| Copyright | 2022 The Society of Manufacturing Engineers |
| Copyright_xml | – notice: 2022 The Society of Manufacturing Engineers |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jmsy.2022.11.006 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1878-6642 |
| EndPage | 801 |
| ExternalDocumentID | 10_1016_j_jmsy_2022_11_006 S0278612522001972 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29K 3EH 3V. 4.4 457 4G. 5GY 5VS 7-5 71M 7WY 883 88I 8AO 8FE 8FG 8FL 8FW 8G5 8P~ 8R4 8R5 9JN 9M8 AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABFNM ABJCF ABJNI ABMAC ABUWG ABXDB ABYKQ ACDAQ ACGFO ACGFS ACGOD ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKRA AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BENPR BEZIV BGLVJ BJAXD BKOJK BKOMP BLXMC BPHCQ C1A CCPQU CS3 D-I DU5 DWQXO E3Z EBS EFJIC EFLBG EJD EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FRNLG FYGXN G-2 GBLVA GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HVGLF HZ~ H~9 IHE J1W JJJVA K60 K6V K6~ K7- KOM L6V LY7 M0C M0F M0N M2O M2P M41 M7S MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PQBIZ PQQKQ PRG PROAC PTHSS Q2X Q38 R2- RIG ROL RPZ RWL S0X SDF SES SET SPC SPCBC SST SSZ T5K TAE TN5 U5U WH7 WUQ ZHY ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFFHD AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS PHGZM PHGZT PQBZA PQGLB ~HD |
| ID | FETCH-LOGICAL-c230t-1d536260e37a107e93d2fe39eea2d262c2cb0a9461df735019a048c1df2cd5af3 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001125013300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-6125 |
| IngestDate | Sat Nov 29 07:23:15 EST 2025 Tue Nov 18 22:11:29 EST 2025 Fri Feb 23 02:38:59 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Real-time scheduling mechanism Data-based scheduling algorithm Personalized customization Smart factory Intelligent agent |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c230t-1d536260e37a107e93d2fe39eea2d262c2cb0a9461df735019a048c1df2cd5af3 |
| ORCID | 0000-0001-7597-0894 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1016_j_jmsy_2022_11_006 crossref_citationtrail_10_1016_j_jmsy_2022_11_006 elsevier_sciencedirect_doi_10_1016_j_jmsy_2022_11_006 |
| PublicationCentury | 2000 |
| PublicationDate | October 2022 2022-10-00 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of manufacturing systems |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhou, Yang, Zheng (bib30) 2017; 7 Ren, Ye, Li (bib44) 2021; 16 Harrington (bib9) 1974 Kumar, Mishra (bib16) 2011; 5 Lu, Xu (bib14) 2019; 57 Akpunar, Akpinar (bib26) 2021 g/10.1109/ TEM.2016.2642144. Wang, Sarker, Li, Li (bib45) 2021; 59 Dai, Tang, Agriana, Miguel (bib23) 2020; 59 g/10. 1109/ACCESS.2017.2783682. Atmojo, Salcic, Wang, Vyatkin (bib12) 2020; 16 Cunha, Cunha, Fonseca, Matos (bib34) 2021; 11 Zhang, Wang, Zhong, Hu (bib42) 2013; 30 Meng, Zhang, Shao, Zhang, Ren (bib39) 2020; 58 Zhou, Tang, Zhang, Zhang (bib17) 2021; 72 Wang, Luo (bib21) 2021; 58 Behnamian J , 2017. Heterogeneous Networked cooperative scheduling with anarchic particle swarm optimization. IEEE T Eng Manage 2017; 64(2): 166–178. Meng, Zhang, Ren, Zhang (bib25) 2021; 57 Tao, Qi, Liu, Kusiak (bib19) 2018; 48 Lu, Xun, Wang (bib2) 2020; 56 Xu, Guo, Li, Guo, Wu (bib33) 2019; 18 Shen, Zhao, Xia, Du (bib6) 2017; 24 Leit˜ao, Restivo (bib10) 2006; 57 Lee, Cho, Lee (bib35) 2020; 12 Chen B T, Wan J F, Shu L, Li P Mukherjee M , 2018. Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges. IEEE Access 2018; 6: 6505–6519. g/10.5545/ sv-jme. 2019.6156. Sutton, Barto (bib32) 2018 Shiue, Lee, Su (bib43) 2018; 125 Li, Gu, Yuan, Tang (bib40) 2022; 74 Uhlmann, Frazzon (bib8) 2018; 49 Wang, Xu, Zhang, Zhong (bib20) 2022; 62 Mohan, Lanka, Rao (bib3) 2019; 30 Wang, Gao, Zheng, Zhang, Lp (bib37) 2021; 61 Zeng, Gao, Li (bib27) 2013; 64 Hu, Liu, Hu (bib46) 2020; 55 Hozdic E, Kozjek D, Butala P A Cyber-Physical Approach to the Management and Control of Manufacturing Systems, J Mech Eng 2020; 66: 61–70 Lin, Deng, Chih, Chiu (bib36) 2019; 15 Bachula, Zajac (bib11) 2013; 196 Tang, Zheng, Zhang, Sang, Zhang, Xu (bib13) 2018; 94 He, Xiu, Chen, Xiong, Liu (bib31) 2019; 63 Garey, Johnson, Sethi (bib22) 1976; 1 Huang, Pan, Gao (bib24) 2020; 59 Shi, Fan, Xiao (bib41) 2020; 58 Wang, Zhang, Liu, Wu (bib28) 2018; 6 Xiong, Fu (bib29) 2018; 29 Hu, Jia, He, Fu, Liu (bib7) 2020; 149 Zhuang, Liu, Xiong (bib15) 2019; 25 Park, Chun, Kim, Kim (bib38) 2021; 59 Li, Wang, Tang (bib4) 2014; 74 Kumar (10.1016/j.jmsy.2022.11.006_bib16) 2011; 5 Ren (10.1016/j.jmsy.2022.11.006_bib44) 2021; 16 Garey (10.1016/j.jmsy.2022.11.006_bib22) 1976; 1 Harrington (10.1016/j.jmsy.2022.11.006_bib9) 1974 Atmojo (10.1016/j.jmsy.2022.11.006_bib12) 2020; 16 Wang (10.1016/j.jmsy.2022.11.006_bib28) 2018; 6 10.1016/j.jmsy.2022.11.006_bib5 Huang (10.1016/j.jmsy.2022.11.006_bib24) 2020; 59 He (10.1016/j.jmsy.2022.11.006_bib31) 2019; 63 Dai (10.1016/j.jmsy.2022.11.006_bib23) 2020; 59 10.1016/j.jmsy.2022.11.006_bib1 Bachula (10.1016/j.jmsy.2022.11.006_bib11) 2013; 196 Wang (10.1016/j.jmsy.2022.11.006_bib37) 2021; 61 Leit˜ao (10.1016/j.jmsy.2022.11.006_bib10) 2006; 57 Li (10.1016/j.jmsy.2022.11.006_bib4) 2014; 74 Lu (10.1016/j.jmsy.2022.11.006_bib14) 2019; 57 Xu (10.1016/j.jmsy.2022.11.006_bib33) 2019; 18 Shen (10.1016/j.jmsy.2022.11.006_bib6) 2017; 24 Mohan (10.1016/j.jmsy.2022.11.006_bib3) 2019; 30 Zhou (10.1016/j.jmsy.2022.11.006_bib17) 2021; 72 Tao (10.1016/j.jmsy.2022.11.006_bib19) 2018; 48 Park (10.1016/j.jmsy.2022.11.006_bib38) 2021; 59 Cunha (10.1016/j.jmsy.2022.11.006_bib34) 2021; 11 Tang (10.1016/j.jmsy.2022.11.006_bib13) 2018; 94 Wang (10.1016/j.jmsy.2022.11.006_bib21) 2021; 58 Meng (10.1016/j.jmsy.2022.11.006_bib25) 2021; 57 Zhang (10.1016/j.jmsy.2022.11.006_bib42) 2013; 30 Hu (10.1016/j.jmsy.2022.11.006_bib7) 2020; 149 Shiue (10.1016/j.jmsy.2022.11.006_bib43) 2018; 125 Uhlmann (10.1016/j.jmsy.2022.11.006_bib8) 2018; 49 Sutton (10.1016/j.jmsy.2022.11.006_bib32) 2018 Lee (10.1016/j.jmsy.2022.11.006_bib35) 2020; 12 Zhuang (10.1016/j.jmsy.2022.11.006_bib15) 2019; 25 10.1016/j.jmsy.2022.11.006_bib18 Wang (10.1016/j.jmsy.2022.11.006_bib20) 2022; 62 Wang (10.1016/j.jmsy.2022.11.006_bib45) 2021; 59 Meng (10.1016/j.jmsy.2022.11.006_bib39) 2020; 58 Hu (10.1016/j.jmsy.2022.11.006_bib46) 2020; 55 Shi (10.1016/j.jmsy.2022.11.006_bib41) 2020; 58 Zhou (10.1016/j.jmsy.2022.11.006_bib30) 2017; 7 Lin (10.1016/j.jmsy.2022.11.006_bib36) 2019; 15 Lu (10.1016/j.jmsy.2022.11.006_bib2) 2020; 56 Li (10.1016/j.jmsy.2022.11.006_bib40) 2022; 74 Akpunar (10.1016/j.jmsy.2022.11.006_bib26) 2021 Zeng (10.1016/j.jmsy.2022.11.006_bib27) 2013; 64 Xiong (10.1016/j.jmsy.2022.11.006_bib29) 2018; 29 |
| References_xml | – volume: 24 start-page: 102 year: 2017 end-page: 109 ident: bib6 article-title: A deep Q-Learning network for ship stowage planning problem publication-title: Pol Marit Res – volume: 5 start-page: 6 year: 2011 end-page: 15 ident: bib16 article-title: A multi-agent self correcting architecture for distributed manufacturing supply chain publication-title: IEEE Syst J – volume: 49 start-page: 186 year: 2018 end-page: 193 ident: bib8 article-title: Production rescheduling review: opportunities for industrial integration and practical applications publication-title: J Man Syst – volume: 94 start-page: 1597 year: 2018 end-page: 1606 ident: bib13 article-title: Using autonomous intelligence to build a smart shop floor publication-title: Int J Adv Manuf Technol – volume: 72 start-page: 1879 year: 2021 end-page: 2537 ident: bib17 article-title: Multi-agent reinforcement learning for online scheduling in smart factories publication-title: Rob Comput Integr Manuf – volume: 57 start-page: 92 year: 2019 end-page: 102 ident: bib14 article-title: Cloud-based manufacturing equipment and big data analytics to enable on-demand manufacturing services publication-title: Rob Comput Integr Manuf – volume: 11 start-page: 3710 year: 2021 ident: bib34 article-title: Intelligent scheduling with reinforcement learning publication-title: Appl Sci-Basel – volume: 61 start-page: 239 year: 2021 end-page: 248 ident: bib37 article-title: A fuzzy hierarchical reinforcement learning based scheduling method for semiconductor wafer manufacturing systems publication-title: J Man Syst – volume: 62 start-page: 738 year: 2022 end-page: 752 ident: bib20 article-title: Big data analytics for intelligent manufacturing systems a review publication-title: J Man Syst – volume: 57 start-page: 121 year: 2006 end-page: 130 ident: bib10 article-title: ADACOR: a holonic architecture for agile and adaptive manufacturing control publication-title: Comput Ind – volume: 74 year: 2022 ident: bib40 article-title: Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation resources using hybrid deep Q network publication-title: Rob Comput Integr Manuf – volume: 59 start-page: 5867 year: 2021 end-page: 5883 ident: bib45 article-title: Adaptive scheduling for assembly job shop with uncertain assembly times based on dual Q-learning publication-title: Int J Prod Res – volume: 59 year: 2020 ident: bib24 article-title: An effective iterated greedy method for the distributed permutation flow shop scheduling problem with sequence-dependent setup times publication-title: Swarm Evol Comput – volume: 48 start-page: 157 year: 2018 end-page: 169 ident: bib19 article-title: Data-driven smart manufacturing publication-title: J Man Syst – start-page: 68 year: 2021 ident: bib26 article-title: A hybrid adaptive large neighborhood search algorithm for the capacitated location routing problem publication-title: Expert Syst Appl – volume: 15 start-page: 4276 year: 2019 end-page: 4284 ident: bib36 article-title: Smart manufacturing scheduling with edge computing using multiclass deep Q network publication-title: IEEE Trans Ind Inf – volume: 59 start-page: 3360 year: 2021 end-page: 3377 ident: bib38 article-title: Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning publication-title: Int J Prod Res – reference: g/10. 1109/ACCESS.2017.2783682. – volume: 12 start-page: 8718 year: 2020 ident: bib35 article-title: Injection mold production sustainable scheduling using deep reinforcement learning publication-title: Sustainability – volume: 16 start-page: 151 year: 2020 end-page: 160 ident: bib12 article-title: A service-oriented programming approach for dynamic distributed manufacturing systems publication-title: IEEE Trans Ind Inf – volume: 7 start-page: 21147 year: 2017 end-page: 21176 ident: bib30 article-title: Multi-agent based hyper-heuristics for multi-objective flexible job shop scheduling: a case study in an aero-engine blade manufacturing plan] publication-title: IEEE Access – volume: 16 start-page: 269 year: 2021 end-page: 284 ident: bib44 article-title: A new solution to distributed permutation flow shop scheduling problem based on NASH Q-Learning publication-title: Adv Prod Eng Manag – volume: 74 start-page: 47 year: 2014 end-page: 64 ident: bib4 article-title: Production planning in virtual cell of reconfiguration manufacturing system using genetic algorithm publication-title: Int J Adv Manuf Technol – volume: 25 start-page: 1865 year: 2019 end-page: 1874 ident: bib15 article-title: Distributed initiative and collaborative manufacturing: new paradigm for intelligent shop-floor publication-title: Comput Integr Manuf Syst – volume: 125 start-page: 604 year: 2018 end-page: 614 ident: bib43 article-title: Real-time scheduling for a smart factory using a reinforcement learning approach publication-title: Comput Ind Eng – reference: g/10.1109/ TEM.2016.2642144. – volume: 149 year: 2020 ident: bib7 article-title: Deep reinforcement learning based AGVs real-time scheduling with mixed rule for flexible shop floor in industry 4.0 publication-title: Comput Ind Eng – volume: 58 start-page: 3362 year: 2020 end-page: 3380 ident: bib41 article-title: Intelligent scheduling of discrete automated production line via deep reinforcement learning publication-title: Int J Prod Res – volume: 6 start-page: 2327 year: 2018 end-page: 4662 ident: bib28 article-title: Multi-agent and bargaining-game-based real-time scheduling for internet of things-enabled flexible job shop publication-title: IEEE Internet Things J – volume: 57 start-page: 264 year: 2021 end-page: 272 ident: bib25 article-title: Hybrid shuffled frog-leaping algorithm for distributed flexible job shop scheduling publication-title: J Mech Eng – reference: Behnamian J , 2017. Heterogeneous Networked cooperative scheduling with anarchic particle swarm optimization. IEEE T Eng Manage 2017; 64(2): 166–178. – volume: 30 start-page: 1350014 year: 2013 ident: bib42 article-title: Flow shop scheduling with reinforcement learning publication-title: Asia Pac J Oper Res – reference: Chen B T, Wan J F, Shu L, Li P Mukherjee M , 2018. Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges. IEEE Access 2018; 6: 6505–6519. – volume: 63 start-page: 897 year: 2019 end-page: 912 ident: bib31 article-title: Hierarchical scheduling for real-time agile satellite task scheduling in a dynamic environment publication-title: Adv Space Res – volume: 58 start-page: 16 year: 2021 end-page: 32 ident: bib21 article-title: A digital twin-based big data virtual and real fusion learning reference framework supported by industrial internet towards smart manufacturing publication-title: J Man Syst – volume: 55 start-page: 1 year: 2020 end-page: 14 ident: bib46 article-title: Petri-net-based dynamic scheduling of flexible manufacturing system via deep reinforcement learning with graph convolutional network publication-title: J Man Syst – volume: 30 start-page: 34 year: 2019 end-page: 39 ident: bib3 article-title: A review of dynamic job shop scheduling techniques publication-title: 14th Glob Congr Manuf Manag – volume: 29 start-page: 857 year: 2018 end-page: 873 ident: bib29 article-title: A new immune multi-agent system for the flexible job shop scheduling problem publication-title: J Intell Manuf – volume: 196 start-page: 148 year: 2013 end-page: 155 ident: bib11 article-title: The study of distributed manufacturing control system self-configuration publication-title: J Clean Prod – year: 1974 ident: bib9 article-title: Computer integrated manufacturing – volume: 1 start-page: 117 year: 1976 end-page: 129 ident: bib22 article-title: The complexity of flowshop and jobshop scheduling publication-title: Math Oper Res – volume: 64 start-page: 1071 year: 2013 end-page: 1078 ident: bib27 article-title: Whale swarm algorithm for function optimization publication-title: Intellt Comput Theory Appl – volume: 58 start-page: 3905 year: 2020 end-page: 3930 ident: bib39 article-title: More MILP models for hybrid flow shop scheduling problem and its extended problems publication-title: Int J Prod Res – volume: 59 start-page: 143 year: 2020 end-page: 157 ident: bib23 article-title: Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints publication-title: Rob Comput Integr Manuf – reference: g/10.5545/ sv-jme. 2019.6156. – volume: 18 start-page: 7237459 year: 2019 ident: bib33 article-title: A dynamic scheduling method for logistics tasks oriented to intelligent manufacturing workshop publication-title: Math Probl Eng – year: 2018 ident: bib32 article-title: Reinforcement learning: an introduction – volume: 56 start-page: 312 year: 2020 end-page: 325 ident: bib2 article-title: Smart manufacturing process and system automation – a critical review of the standards and envisioned scenarios publication-title: J MAnuf Syst – reference: Hozdic E, Kozjek D, Butala P A Cyber-Physical Approach to the Management and Control of Manufacturing Systems, J Mech Eng 2020; 66: 61–70, – volume: 149 year: 2020 ident: 10.1016/j.jmsy.2022.11.006_bib7 article-title: Deep reinforcement learning based AGVs real-time scheduling with mixed rule for flexible shop floor in industry 4.0 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2020.106749 – volume: 64 start-page: 1071 issue: 7 year: 2013 ident: 10.1016/j.jmsy.2022.11.006_bib27 article-title: Whale swarm algorithm for function optimization publication-title: Intellt Comput Theory Appl – volume: 196 start-page: 148 year: 2013 ident: 10.1016/j.jmsy.2022.11.006_bib11 article-title: The study of distributed manufacturing control system self-configuration publication-title: J Clean Prod – ident: 10.1016/j.jmsy.2022.11.006_bib1 doi: 10.1109/ACCESS.2017.2783682 – volume: 7 start-page: 21147 year: 2017 ident: 10.1016/j.jmsy.2022.11.006_bib30 article-title: Multi-agent based hyper-heuristics for multi-objective flexible job shop scheduling: a case study in an aero-engine blade manufacturing plan] publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897603 – year: 2018 ident: 10.1016/j.jmsy.2022.11.006_bib32 – volume: 6 start-page: 2327 issue: 2 year: 2018 ident: 10.1016/j.jmsy.2022.11.006_bib28 article-title: Multi-agent and bargaining-game-based real-time scheduling for internet of things-enabled flexible job shop publication-title: IEEE Internet Things J – volume: 94 start-page: 1597 year: 2018 ident: 10.1016/j.jmsy.2022.11.006_bib13 article-title: Using autonomous intelligence to build a smart shop floor publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-017-0459-y – volume: 1 start-page: 117 issue: 2 year: 1976 ident: 10.1016/j.jmsy.2022.11.006_bib22 article-title: The complexity of flowshop and jobshop scheduling publication-title: Math Oper Res doi: 10.1287/moor.1.2.117 – volume: 63 start-page: 897 issue: 2 year: 2019 ident: 10.1016/j.jmsy.2022.11.006_bib31 article-title: Hierarchical scheduling for real-time agile satellite task scheduling in a dynamic environment publication-title: Adv Space Res doi: 10.1016/j.asr.2018.10.007 – volume: 74 start-page: 47 year: 2014 ident: 10.1016/j.jmsy.2022.11.006_bib4 article-title: Production planning in virtual cell of reconfiguration manufacturing system using genetic algorithm publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-5987-0 – volume: 16 start-page: 151 issue: 1 year: 2020 ident: 10.1016/j.jmsy.2022.11.006_bib12 article-title: A service-oriented programming approach for dynamic distributed manufacturing systems publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2019.2919153 – volume: 57 start-page: 92 year: 2019 ident: 10.1016/j.jmsy.2022.11.006_bib14 article-title: Cloud-based manufacturing equipment and big data analytics to enable on-demand manufacturing services publication-title: Rob Comput Integr Manuf doi: 10.1016/j.rcim.2018.11.006 – volume: 58 start-page: 3905 issue: 13 year: 2020 ident: 10.1016/j.jmsy.2022.11.006_bib39 article-title: More MILP models for hybrid flow shop scheduling problem and its extended problems publication-title: Int J Prod Res doi: 10.1080/00207543.2019.1636324 – volume: 59 start-page: 143 year: 2020 ident: 10.1016/j.jmsy.2022.11.006_bib23 article-title: Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints publication-title: Rob Comput Integr Manuf doi: 10.1016/j.rcim.2019.04.006 – ident: 10.1016/j.jmsy.2022.11.006_bib18 doi: 10.5545/sv-jme.2019.6156 – volume: 58 start-page: 16 year: 2021 ident: 10.1016/j.jmsy.2022.11.006_bib21 article-title: A digital twin-based big data virtual and real fusion learning reference framework supported by industrial internet towards smart manufacturing publication-title: J Man Syst doi: 10.1016/j.jmsy.2020.11.012 – volume: 18 start-page: 7237459 year: 2019 ident: 10.1016/j.jmsy.2022.11.006_bib33 article-title: A dynamic scheduling method for logistics tasks oriented to intelligent manufacturing workshop publication-title: Math Probl Eng doi: 10.1155/2019/7237459 – volume: 72 start-page: 1879 year: 2021 ident: 10.1016/j.jmsy.2022.11.006_bib17 article-title: Multi-agent reinforcement learning for online scheduling in smart factories publication-title: Rob Comput Integr Manuf doi: 10.1016/j.rcim.2021.102202 – start-page: 68 year: 2021 ident: 10.1016/j.jmsy.2022.11.006_bib26 article-title: A hybrid adaptive large neighborhood search algorithm for the capacitated location routing problem publication-title: Expert Syst Appl – volume: 15 start-page: 4276 issue: 7 year: 2019 ident: 10.1016/j.jmsy.2022.11.006_bib36 article-title: Smart manufacturing scheduling with edge computing using multiclass deep Q network publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2019.2908210 – volume: 74 year: 2022 ident: 10.1016/j.jmsy.2022.11.006_bib40 article-title: Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation resources using hybrid deep Q network publication-title: Rob Comput Integr Manuf doi: 10.1016/j.rcim.2021.102283 – volume: 24 start-page: 102 issue: 3 year: 2017 ident: 10.1016/j.jmsy.2022.11.006_bib6 article-title: A deep Q-Learning network for ship stowage planning problem publication-title: Pol Marit Res doi: 10.1515/pomr-2017-0111 – volume: 125 start-page: 604 year: 2018 ident: 10.1016/j.jmsy.2022.11.006_bib43 article-title: Real-time scheduling for a smart factory using a reinforcement learning approach publication-title: Comput Ind Eng doi: 10.1016/j.cie.2018.03.039 – volume: 57 start-page: 264 issue: 17 year: 2021 ident: 10.1016/j.jmsy.2022.11.006_bib25 article-title: Hybrid shuffled frog-leaping algorithm for distributed flexible job shop scheduling publication-title: J Mech Eng – volume: 58 start-page: 3362 issue: 11 year: 2020 ident: 10.1016/j.jmsy.2022.11.006_bib41 article-title: Intelligent scheduling of discrete automated production line via deep reinforcement learning publication-title: Int J Prod Res doi: 10.1080/00207543.2020.1717008 – volume: 49 start-page: 186 year: 2018 ident: 10.1016/j.jmsy.2022.11.006_bib8 article-title: Production rescheduling review: opportunities for industrial integration and practical applications publication-title: J Man Syst doi: 10.1016/j.jmsy.2018.10.004 – volume: 59 start-page: 3360 issue: 11 year: 2021 ident: 10.1016/j.jmsy.2022.11.006_bib38 article-title: Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning publication-title: Int J Prod Res doi: 10.1080/00207543.2020.1870013 – volume: 48 start-page: 157 year: 2018 ident: 10.1016/j.jmsy.2022.11.006_bib19 article-title: Data-driven smart manufacturing publication-title: J Man Syst doi: 10.1016/j.jmsy.2018.01.006 – volume: 62 start-page: 738 year: 2022 ident: 10.1016/j.jmsy.2022.11.006_bib20 article-title: Big data analytics for intelligent manufacturing systems a review publication-title: J Man Syst doi: 10.1016/j.jmsy.2021.03.005 – volume: 25 start-page: 1865 issue: 8 year: 2019 ident: 10.1016/j.jmsy.2022.11.006_bib15 article-title: Distributed initiative and collaborative manufacturing: new paradigm for intelligent shop-floor publication-title: Comput Integr Manuf Syst – year: 1974 ident: 10.1016/j.jmsy.2022.11.006_bib9 – volume: 29 start-page: 857 year: 2018 ident: 10.1016/j.jmsy.2022.11.006_bib29 article-title: A new immune multi-agent system for the flexible job shop scheduling problem publication-title: J Intell Manuf doi: 10.1007/s10845-015-1137-2 – volume: 57 start-page: 121 issue: 2 year: 2006 ident: 10.1016/j.jmsy.2022.11.006_bib10 article-title: ADACOR: a holonic architecture for agile and adaptive manufacturing control publication-title: Comput Ind doi: 10.1016/j.compind.2005.05.005 – volume: 59 start-page: 5867 issue: 19 year: 2021 ident: 10.1016/j.jmsy.2022.11.006_bib45 article-title: Adaptive scheduling for assembly job shop with uncertain assembly times based on dual Q-learning publication-title: Int J Prod Res doi: 10.1080/00207543.2020.1794075 – volume: 30 start-page: 34 year: 2019 ident: 10.1016/j.jmsy.2022.11.006_bib3 article-title: A review of dynamic job shop scheduling techniques publication-title: 14th Glob Congr Manuf Manag – ident: 10.1016/j.jmsy.2022.11.006_bib5 doi: 10.1109/TEM.2016.2642144 – volume: 55 start-page: 1 year: 2020 ident: 10.1016/j.jmsy.2022.11.006_bib46 article-title: Petri-net-based dynamic scheduling of flexible manufacturing system via deep reinforcement learning with graph convolutional network publication-title: J Man Syst doi: 10.1016/j.jmsy.2020.02.004 – volume: 11 start-page: 3710 issue: 8 year: 2021 ident: 10.1016/j.jmsy.2022.11.006_bib34 article-title: Intelligent scheduling with reinforcement learning publication-title: Appl Sci-Basel doi: 10.3390/app11083710 – volume: 5 start-page: 6 issue: 1 year: 2011 ident: 10.1016/j.jmsy.2022.11.006_bib16 article-title: A multi-agent self correcting architecture for distributed manufacturing supply chain publication-title: IEEE Syst J doi: 10.1109/JSYST.2010.2100195 – volume: 61 start-page: 239 year: 2021 ident: 10.1016/j.jmsy.2022.11.006_bib37 article-title: A fuzzy hierarchical reinforcement learning based scheduling method for semiconductor wafer manufacturing systems publication-title: J Man Syst doi: 10.1016/j.jmsy.2021.08.008 – volume: 56 start-page: 312 year: 2020 ident: 10.1016/j.jmsy.2022.11.006_bib2 article-title: Smart manufacturing process and system automation – a critical review of the standards and envisioned scenarios publication-title: J MAnuf Syst doi: 10.1016/j.jmsy.2020.06.010 – volume: 12 start-page: 8718 year: 2020 ident: 10.1016/j.jmsy.2022.11.006_bib35 article-title: Injection mold production sustainable scheduling using deep reinforcement learning publication-title: Sustainability doi: 10.3390/su12208718 – volume: 16 start-page: 269 issue: 3 year: 2021 ident: 10.1016/j.jmsy.2022.11.006_bib44 article-title: A new solution to distributed permutation flow shop scheduling problem based on NASH Q-Learning publication-title: Adv Prod Eng Manag – volume: 30 start-page: 1350014 issue: 05 year: 2013 ident: 10.1016/j.jmsy.2022.11.006_bib42 article-title: Flow shop scheduling with reinforcement learning publication-title: Asia Pac J Oper Res doi: 10.1142/S0217595913500140 – volume: 59 year: 2020 ident: 10.1016/j.jmsy.2022.11.006_bib24 article-title: An effective iterated greedy method for the distributed permutation flow shop scheduling problem with sequence-dependent setup times publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100742 |
| SSID | ssj0012402 |
| Score | 2.371735 |
| Snippet | With the increasing demands for personalized customization, the characteristics of order gradually show dynamics and diversity, which bring new challenges to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 785 |
| SubjectTerms | Data-based scheduling algorithm Intelligent agent Personalized customization Real-time scheduling mechanism Smart factory |
| Title | A distributed physical architecture and data-based scheduling method for smart factory based on intelligent agents |
| URI | https://dx.doi.org/10.1016/j.jmsy.2022.11.006 |
| Volume | 65 |
| WOSCitedRecordID | wos001125013300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-6642 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012402 issn: 0278-6125 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3La9swGBeh3WE7jD1Z223osFtwcOTYso5hdGxjlME6CLsYvTwcGjdN4pL-H_uD--mViCYr62EXkwhJdvL9_D30vRD6kDJeC6FkwulIJiNFs0RICS-eYHWZg8TQuU0U_kbPzsrJhH3v9f6EXJjrC9q25XrN5v-V1DAGxDapsw8g92ZTGIDPQHS4Atnh-k-EHxuni-tjBcrkPNBhx2NgYkMTI8RUHyxckDg2Md11lLbBh8sZ7O4b8tz03UwbGBmKeK76_HcoBbVHwZ3xtjOrXSLkMiqNbuJ9Ohvdp1vRbIOCGjv4o7lqds6zf-mrLppoJUe39mv9qQUYvCH-LTA3Atar0a5iTlzkESulrpVPkMpu8Q7Dd2cP08F0trwZmBsNTE3WdE917TtSbxOLGMLcppXZozJ7gFlU2Truh4TmDNj94fjL6eTrxjtlPFL27M7_Bp-M5eIG7z7JfoUnUmLOn6Gnnjh47FDzHPV0-wI9iWpSvkSLMY7wgwN-cIwfDPjBW_zgLX6www8G_GCLH-zxg93MyxZH-MEOP6_Qz0-n5x8_J74xRyLBYl0lQ5WbKkapzigfplSzTJFaZ0xrThQpiCRSpJyNiqGqqfFcMw6CQsI3IlXO6-w1OmgvW_0G4bIUNbG9iGsxorwQVNS8ALZCFUlpLY7QMPx7lfRV603zlIvq73Q7Qv3Nmrmr2XLv7DwQpfJap9MmK8DYPeuOH3SXE_R4-xq8RQerRaffoUfyetUsF-89wG4BP02qUg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+distributed+physical+architecture+and+data-based+scheduling+method+for+smart+factory+based+on+intelligent+agents&rft.jtitle=Journal+of+manufacturing+systems&rft.au=Gu%2C+Wenbin&rft.au=Liu%2C+Siqi&rft.au=Zhang%2C+Zequn&rft.au=Li%2C+Yuxin&rft.date=2022-10-01&rft.issn=0278-6125&rft.volume=65&rft.spage=785&rft.epage=801&rft_id=info:doi/10.1016%2Fj.jmsy.2022.11.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmsy_2022_11_006 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-6125&client=summon |