Wind speed interval prediction model based on variational mode decomposition and multi-objective optimization

As a potential new energy power generation technology, wind power is gradually developing into the world’s mainstream energy. In the research on wind power generation, wind speed prediction is an important part, which has been widely studied. The accurate wind speed prediction is a key part of wind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 113; S. 107848
Hauptverfasser: Wang, Jianzhou, Cheng, Zishu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2021
Schlagworte:
ISSN:1568-4946, 1872-9681
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As a potential new energy power generation technology, wind power is gradually developing into the world’s mainstream energy. In the research on wind power generation, wind speed prediction is an important part, which has been widely studied. The accurate wind speed prediction is a key part of wind power management to help wind power grid-tied. Currently, most research has focused on point prediction, which in fact does not facilitate the quantitative characterization of the endogenous uncertainty involved. However, interval prediction can avoid this deficiency and make better operation and scheduling of the wind power models. In this study, a novel interval prediction model based on wind speed distribution and multi-objective optimization is designed, which includes data noise reduction module, prediction module, and combination module based on a multi-objective salp swarm algorithm, to provide accurate forecast for power model operation and grid dispatching. The 10-minute wind speed data from three data sets in China were selected for prediction to evaluate the effectiveness of the proposed combined model. The results show that the model is not only better than the considered benchmark model, but also has good potential practical application value in wind power models. •Developed the novel combined model on data ensemble decomposition and reconstruction and a swarm intelligence-based algorithm.•Provide an effective method for choosing the de-noising model.•Interval prediction of wind speed can better help power grid connection and dispatch.
AbstractList As a potential new energy power generation technology, wind power is gradually developing into the world’s mainstream energy. In the research on wind power generation, wind speed prediction is an important part, which has been widely studied. The accurate wind speed prediction is a key part of wind power management to help wind power grid-tied. Currently, most research has focused on point prediction, which in fact does not facilitate the quantitative characterization of the endogenous uncertainty involved. However, interval prediction can avoid this deficiency and make better operation and scheduling of the wind power models. In this study, a novel interval prediction model based on wind speed distribution and multi-objective optimization is designed, which includes data noise reduction module, prediction module, and combination module based on a multi-objective salp swarm algorithm, to provide accurate forecast for power model operation and grid dispatching. The 10-minute wind speed data from three data sets in China were selected for prediction to evaluate the effectiveness of the proposed combined model. The results show that the model is not only better than the considered benchmark model, but also has good potential practical application value in wind power models. •Developed the novel combined model on data ensemble decomposition and reconstruction and a swarm intelligence-based algorithm.•Provide an effective method for choosing the de-noising model.•Interval prediction of wind speed can better help power grid connection and dispatch.
ArticleNumber 107848
Author Cheng, Zishu
Wang, Jianzhou
Author_xml – sequence: 1
  givenname: Jianzhou
  orcidid: 0000-0001-9078-7617
  surname: Wang
  fullname: Wang, Jianzhou
  organization: Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, China
– sequence: 2
  givenname: Zishu
  surname: Cheng
  fullname: Cheng, Zishu
  email: zishu_cheng2020@163.com
  organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
BookMark eNp9kMtKxDAUhoOM4MzoC7jqC3RM2iZNwY0M3mDAjeIypMkpnNI2JakFfXrTGVcuZpXLf76f5NuQ1eAGIOSW0R2jTNy1Ox2c2WU0Y_GilIW8IGsmyyythGSruOdCpkVViCuyCaGlEaoyuSb9Jw42CSOATXCYwM-6S0YPFs2Ebkh6Z6FLah1iHo-z9qiXIE4tUWLBuH50AY_TOnb1X92EqatbiA0zJG6csMefI3VNLhvdBbj5W7fk4-nxff-SHt6eX_cPh9RkOZ1SxouGlaLJcs45FXVlQVDLSy2Z4UUpLKu1lLQ2ttS6gsJWUFHBeJ4bzRoK-ZZkp17jXQgeGjV67LX_VoyqRZhq1SJMLcLUSViE5D_I4HR89uQ1dufR-xMK8VMzglfBIAwmavRRg7IOz-G_xlSLgA
CitedBy_id crossref_primary_10_1007_s12145_023_01038_z
crossref_primary_10_3389_fenrg_2022_990989
crossref_primary_10_1016_j_jclepro_2024_144124
crossref_primary_10_1016_j_enconman_2022_116579
crossref_primary_10_1016_j_renene_2024_120360
crossref_primary_10_3390_atmos15030294
crossref_primary_10_1016_j_asoc_2024_111869
crossref_primary_10_1016_j_energy_2023_129898
crossref_primary_10_1109_JSEN_2022_3181451
crossref_primary_10_1007_s00202_024_02874_y
crossref_primary_10_1016_j_energy_2023_129618
crossref_primary_10_1007_s13369_022_06787_5
crossref_primary_10_3389_fenrg_2023_1298088
crossref_primary_10_1016_j_energy_2025_136302
crossref_primary_10_1016_j_energy_2023_127695
crossref_primary_10_1057_s41278_024_00284_2
crossref_primary_10_1002_ente_202300889
crossref_primary_10_1088_1742_6596_2427_1_012031
crossref_primary_10_1007_s00477_024_02873_2
crossref_primary_10_1016_j_energy_2022_123960
crossref_primary_10_1016_j_apenergy_2025_126318
crossref_primary_10_1016_j_asoc_2024_112246
crossref_primary_10_1016_j_energy_2021_122333
crossref_primary_10_1016_j_eswa_2023_121546
crossref_primary_10_1016_j_eswa_2024_124195
crossref_primary_10_1016_j_measurement_2024_116189
Cites_doi 10.1016/j.enconman.2017.01.022
10.1016/j.renene.2003.11.009
10.1016/j.apenergy.2014.04.103
10.1016/j.enconman.2018.07.070
10.1016/j.energy.2019.06.132
10.1016/j.asoc.2018.07.022
10.1016/j.energy.2019.02.194
10.1016/j.renene.2018.05.031
10.1016/j.renene.2008.09.006
10.1016/j.knosys.2011.04.019
10.1109/TITS.2011.2106209
10.1016/j.renene.2015.01.022
10.1016/j.egypro.2014.12.431
10.1016/j.enconman.2018.04.082
10.1016/j.apenergy.2016.06.098
10.1016/j.jenvman.2019.109855
10.1016/j.egypro.2019.01.079
10.1016/j.enconman.2018.03.030
10.1016/j.apenergy.2018.07.032
10.1016/j.apenergy.2013.02.002
10.1016/j.apenergy.2010.10.031
10.1016/j.renene.2017.03.064
10.1016/j.renene.2019.01.006
10.1016/j.apenergy.2018.12.076
10.1016/j.procs.2017.05.109
10.1016/j.enconman.2015.05.065
10.1016/j.swevo.2014.10.005
10.1016/j.apenergy.2018.09.012
10.1016/j.enconman.2019.112254
10.1016/j.apenergy.2011.01.037
10.1016/j.renene.2019.01.031
10.1016/j.renene.2015.03.049
10.1016/j.renene.2017.02.014
10.1016/j.rser.2006.10.007
10.1109/TPWRS.2013.2287871
10.1016/j.asoc.2019.03.035
10.1016/j.enconman.2010.11.007
10.1016/j.jclepro.2020.121027
10.1016/j.apenergy.2012.03.054
10.1016/j.rser.2010.11.055
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2021.107848
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2021_107848
S1568494621007705
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c230t-154f176f2355506b9de60d57a81c5476d1ba880bcd7aa9e4d9e9061533ca1f0e3
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000760655500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:06:12 EST 2025
Tue Nov 18 22:28:44 EST 2025
Fri Feb 23 02:41:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective optimization algorithm
Combined models
Wind speed
Interval prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c230t-154f176f2355506b9de60d57a81c5476d1ba880bcd7aa9e4d9e9061533ca1f0e3
ORCID 0000-0001-9078-7617
ParticipantIDs crossref_primary_10_1016_j_asoc_2021_107848
crossref_citationtrail_10_1016_j_asoc_2021_107848
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107848
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhao, Liu, Yu, Chang (b8) 2018; 164
Liu, Wang, Wang (b5) 2015; 78
Charabi, Al-Yahyai, Gastli (b33) 2011; 15
Cassola, Burlando (b32) 2012; 99
S.N., Singh, Mohapatra (b15) 2019; 136
Li, Jin (b29) 2018; 228
Du, Wang, Yang, Niu (b24) 2021
Wang, Wang, Li (b23) 2020; 260
Kavasseri, Seetharaman (b34) 2009; 34
Huang, Liu, Tzeng, Wang (b36) 2011
Li, Zhu, Yang, Li (b41) 2019; 174
Coello, Lechuga (b46) 2002; vol. 2
Lahouar, Ben Hadj Slama (b19) 2017; 109
Guo, Wu, Lu, Wang (b39) 2011; 24
Hu, Chen (b20) 2018; 173
Tian, Hao, Hu (b1) 2018; 231
Khosravi, Mazloumi, Nahavandi, Creighton, van Lint (b25) 2011; 12
Erdem, Shi (b13) 2011; 88
Zhang, Zhao, Kong, Chen (b14) 2020; 203
Wang, Du, Lu, Yang, Niu (b16) 2018; 72
Bouzgou, Benoudjit (b35) 2011; 88
Lynch, OMahony, Scully (b10) 2014; 62
Zhou, Shi, Li (b17) 2011; 52
Wang, Du, Hao, Ma, Niu, Yang (b22) 2020; 255
Sun, Zhou, Liu, He (b42) 2019; 158
Emeksiz, Cetin (b4) 2019; 35
Georgilakis (b3) 2008; 12
Zhao, Wu, Hu, Xu, Rasmussen (b2) 2015; 137
Naik, Dash, Dhar (b28) 2019; 136
Rakesh, Suganthan (b31) 2017; 108
Yuan, Chen, Yuan, Huang, Tan (b30) 2015; 101
Li, Wu, Liu (b37) 2018; 167
Zhao, Wei, Su (b12) 2016; 178
Nix, Weigend (b27) 1994; vol. 1
Zhang, Wei, Tan (b40) 2020; 190
Wan, Xu, Pinson, Dong, Wong (b26) 2014; 29
Drucker, Burges, Kaufman, Smola, Vapnik (b45) 1997
Cheng, Liu, Bourgeois, Wu, Haupt (b11) 2017; 107
Liu, Tian, Pan, Li (b18) 2013; 107
Wang, Han, Liu, Yan, Li (b9) 2019; 237
Zhang, Qu, Zhang, Mao, Ma, Fan (b21) 2017; 136
Naik, Bisoi, Dash (b43) 2018; 129
Mohandes, Halawani, Rehman, Hussain (b38) 2004; 29
Mirjalili, Lewis (b44) 2015; 21
Du, Wang, Yang, Niu (b7) 2019; 80
Croonenbroeck, Stadtmann (b6) 2015; 81
Li (10.1016/j.asoc.2021.107848_b41) 2019; 174
Zhang (10.1016/j.asoc.2021.107848_b21) 2017; 136
Mirjalili (10.1016/j.asoc.2021.107848_b44) 2015; 21
Du (10.1016/j.asoc.2021.107848_b7) 2019; 80
Wang (10.1016/j.asoc.2021.107848_b16) 2018; 72
Hu (10.1016/j.asoc.2021.107848_b20) 2018; 173
Croonenbroeck (10.1016/j.asoc.2021.107848_b6) 2015; 81
Zhou (10.1016/j.asoc.2021.107848_b17) 2011; 52
Wang (10.1016/j.asoc.2021.107848_b23) 2020; 260
Zhang (10.1016/j.asoc.2021.107848_b40) 2020; 190
Khosravi (10.1016/j.asoc.2021.107848_b25) 2011; 12
Cassola (10.1016/j.asoc.2021.107848_b32) 2012; 99
Zhao (10.1016/j.asoc.2021.107848_b8) 2018; 164
Lahouar (10.1016/j.asoc.2021.107848_b19) 2017; 109
Erdem (10.1016/j.asoc.2021.107848_b13) 2011; 88
Li (10.1016/j.asoc.2021.107848_b37) 2018; 167
Tian (10.1016/j.asoc.2021.107848_b1) 2018; 231
Zhao (10.1016/j.asoc.2021.107848_b2) 2015; 137
Georgilakis (10.1016/j.asoc.2021.107848_b3) 2008; 12
Rakesh (10.1016/j.asoc.2021.107848_b31) 2017; 108
Naik (10.1016/j.asoc.2021.107848_b43) 2018; 129
Coello (10.1016/j.asoc.2021.107848_b46) 2002; vol. 2
Cheng (10.1016/j.asoc.2021.107848_b11) 2017; 107
Naik (10.1016/j.asoc.2021.107848_b28) 2019; 136
Liu (10.1016/j.asoc.2021.107848_b18) 2013; 107
Mohandes (10.1016/j.asoc.2021.107848_b38) 2004; 29
Du (10.1016/j.asoc.2021.107848_b24) 2021
Huang (10.1016/j.asoc.2021.107848_b36) 2011
Drucker (10.1016/j.asoc.2021.107848_b45) 1997
Charabi (10.1016/j.asoc.2021.107848_b33) 2011; 15
Kavasseri (10.1016/j.asoc.2021.107848_b34) 2009; 34
Zhang (10.1016/j.asoc.2021.107848_b14) 2020; 203
Wan (10.1016/j.asoc.2021.107848_b26) 2014; 29
Yuan (10.1016/j.asoc.2021.107848_b30) 2015; 101
Guo (10.1016/j.asoc.2021.107848_b39) 2011; 24
S.N. (10.1016/j.asoc.2021.107848_b15) 2019; 136
Lynch (10.1016/j.asoc.2021.107848_b10) 2014; 62
Nix (10.1016/j.asoc.2021.107848_b27) 1994; vol. 1
Liu (10.1016/j.asoc.2021.107848_b5) 2015; 78
Li (10.1016/j.asoc.2021.107848_b29) 2018; 228
Emeksiz (10.1016/j.asoc.2021.107848_b4) 2019; 35
Bouzgou (10.1016/j.asoc.2021.107848_b35) 2011; 88
Zhao (10.1016/j.asoc.2021.107848_b12) 2016; 178
Wang (10.1016/j.asoc.2021.107848_b22) 2020; 255
Sun (10.1016/j.asoc.2021.107848_b42) 2019; 158
Wang (10.1016/j.asoc.2021.107848_b9) 2019; 237
References_xml – volume: 174
  start-page: 1219
  year: 2019
  end-page: 1237
  ident: b41
  article-title: An innovative hybrid system for wind speed forecasting based on fuzzy preprocessing scheme and multi-objective optimization
  publication-title: Energy
– volume: 80
  start-page: 93
  year: 2019
  end-page: 106
  ident: b7
  article-title: A novel hybrid model for short-term wind power forecasting
  publication-title: Appl. Soft Comput.
– volume: 173
  start-page: 123
  year: 2018
  end-page: 142
  ident: b20
  article-title: A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and differential evolution algorithm
  publication-title: Energy Convers. Manage.
– volume: 237
  start-page: 1
  year: 2019
  end-page: 10
  ident: b9
  article-title: Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system
  publication-title: Appl. Energy
– volume: 190
  year: 2020
  ident: b40
  article-title: An adaptive hybrid model for short term wind speed forecasting
  publication-title: Energy
– volume: 137
  start-page: 545
  year: 2015
  end-page: 553
  ident: b2
  article-title: Review of energy storage system for wind power integration support
  publication-title: Appl. Energy
– volume: 78
  start-page: 599
  year: 2015
  end-page: 608
  ident: b5
  article-title: Short-term wind speed forecasting based on spectral clustering and optimised echo state networks
  publication-title: Renew. Energy
– volume: 72
  start-page: 321
  year: 2018
  end-page: 337
  ident: b16
  article-title: An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting
  publication-title: Appl. Soft Comput.
– volume: 136
  start-page: 701
  year: 2019
  end-page: 731
  ident: b28
  article-title: A multi-objective wind speed and wind power prediction interval forecasting using variational modes decomposition based Multi-kernel robust ridge regression
  publication-title: Renew. Energy
– volume: 99
  start-page: 154
  year: 2012
  end-page: 166
  ident: b32
  article-title: Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output
  publication-title: Appl. Energy
– volume: vol. 1
  start-page: 55
  year: 1994
  end-page: 60
  ident: b27
  article-title: Estimating the mean and variance of the target probability distribution
  publication-title: Proceedings of 1994 IEEE International Conference on Neural Networks
– volume: 136
  start-page: 439
  year: 2017
  end-page: 451
  ident: b21
  article-title: A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting
  publication-title: Energy Convers. Manage.
– volume: 107
  start-page: 191
  year: 2013
  end-page: 208
  ident: b18
  article-title: Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks
  publication-title: Appl. Energy
– volume: 29
  start-page: 1033
  year: 2014
  end-page: 1044
  ident: b26
  article-title: Probabilistic forecasting of wind power generation using extreme learning machine
  publication-title: IEEE Trans. Power Syst.
– volume: 34
  start-page: 1388
  year: 2009
  end-page: 1393
  ident: b34
  article-title: Day-ahead wind speed forecasting using f-ARIMA models
  publication-title: Renew. Energy
– volume: 88
  start-page: 2463
  year: 2011
  end-page: 2471
  ident: b35
  article-title: Multiple architecture system for wind speed prediction
  publication-title: Appl. Energy
– start-page: 1
  year: 2011
  end-page: 5
  ident: b36
  article-title: Short term wind speed predictions by using the grey prediction model based forecast method
  publication-title: 2011 IEEE Green Technologies Conference
– start-page: 155
  year: 1997
  end-page: 161
  ident: b45
  article-title: Support vector regression machines
  publication-title: Advances in Neural Information Processing Systems
– volume: 231
  start-page: 301
  year: 2018
  end-page: 319
  ident: b1
  article-title: A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization
  publication-title: Appl. Energy
– volume: 12
  start-page: 852
  year: 2008
  end-page: 863
  ident: b3
  article-title: Technical challenges associated with the integration of wind power into power systems
  publication-title: Renew. Sustain. Energy Rev.
– volume: 52
  start-page: 1990
  year: 2011
  end-page: 1998
  ident: b17
  article-title: Fine tuning support vector machines for short-term wind speed forecasting
  publication-title: Energy Convers. Manage.
– volume: 129
  start-page: 357
  year: 2018
  end-page: 383
  ident: b43
  article-title: Prediction interval forecasting of wind speed and wind power using modes decomposition based low rank multi-kernel ridge regression
  publication-title: Renew. Energy
– volume: 203
  year: 2020
  ident: b14
  article-title: A new prediction method based on VMD-PRBF-ARMA-E model considering wind speed characteristic
  publication-title: Energy Convers. Manage.
– volume: 136
  start-page: 758
  year: 2019
  end-page: 768
  ident: b15
  article-title: Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting
  publication-title: Renew. Energy
– volume: 255
  year: 2020
  ident: b22
  article-title: An innovative hybrid model based on outlier detection and correction algorithm and heuristic intelligent optimization algorithm for daily air quality index forecasting
  publication-title: J. Environ. Manag.
– volume: 108
  start-page: 375
  year: 2017
  end-page: 383
  ident: b31
  article-title: An ensemble of kernel ridge regression for multi-class classification
  publication-title: Procedia Comput. Sci.
– volume: 107
  start-page: 340
  year: 2017
  end-page: 351
  ident: b11
  article-title: Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation
  publication-title: Renew. Energy
– volume: 260
  year: 2020
  ident: b23
  article-title: A novel hybrid air quality early-warning system based on phase-space reconstruction and multi-objective optimization: A case study in China
  publication-title: J. Clean. Prod.
– year: 2021
  ident: b24
  article-title: A novel hybrid fine particulate matter (PM
  publication-title: J. Forecast.
– volume: 29
  start-page: 939
  year: 2004
  end-page: 947
  ident: b38
  article-title: Support vector machines for wind speed prediction
  publication-title: Renew. Energy
– volume: vol. 2
  start-page: 1051
  year: 2002
  end-page: 1056
  ident: b46
  article-title: MOPSO: a proposal for multiple objective particle swarm optimization
  publication-title: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600)
– volume: 101
  start-page: 393
  year: 2015
  end-page: 401
  ident: b30
  article-title: Short-term wind power prediction based on LSSVM–GSA model
  publication-title: Energy Convers. Manage.
– volume: 167
  start-page: 203
  year: 2018
  end-page: 219
  ident: b37
  article-title: Multi-step wind speed forecasting using EWT decomposition, LSTM principal computing, RELM subordinate computing and IEWT reconstruction
  publication-title: Energy Convers. Manage.
– volume: 35
  start-page: 148
  year: 2019
  end-page: 159
  ident: b4
  article-title: In case study: Investigation of tower shadow disturbance and wind shear variations effects on energy production, wind speed and power characteristics
  publication-title: Sustain. Energy Technol. Assess.
– volume: 228
  start-page: 2207
  year: 2018
  end-page: 2220
  ident: b29
  article-title: A wind speed interval prediction system based on multi-objective optimization for machine learning method
  publication-title: Appl. Energy
– volume: 158
  start-page: 217
  year: 2019
  end-page: 222
  ident: b42
  article-title: A hybrid wind speed forecasting model based on a decomposition method and an improved regularized extreme learning machine
  publication-title: Energy Procedia
– volume: 109
  start-page: 529
  year: 2017
  end-page: 541
  ident: b19
  article-title: Hour-ahead wind power forecast based on random forests
  publication-title: Renew. Energy
– volume: 12
  start-page: 537
  year: 2011
  end-page: 547
  ident: b25
  article-title: Prediction intervals to account for uncertainties in travel time prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 21
  start-page: 1
  year: 2015
  end-page: 23
  ident: b44
  article-title: Novel performance metrics for robust multi-objective optimization algorithms
  publication-title: Swarm Evol. Comput.
– volume: 24
  start-page: 1048
  year: 2011
  end-page: 1056
  ident: b39
  article-title: A case study on a hybrid wind speed forecasting method using BP neural network
  publication-title: Knowl.-Based Syst.
– volume: 15
  start-page: 1545
  year: 2011
  end-page: 1555
  ident: b33
  article-title: Evaluation of NWP performance for wind energy resource assessment in Oman
  publication-title: Renew. Sustain. Energy Rev.
– volume: 62
  start-page: 676
  year: 2014
  end-page: 685
  ident: b10
  article-title: Simplified method to derive the Kalman filter covariance matrices to predict wind speeds from a NWP model
  publication-title: Energy Procedia
– volume: 88
  start-page: 1405
  year: 2011
  end-page: 1414
  ident: b13
  article-title: ARMA based approaches for forecasting the tuple of wind speed and direction
  publication-title: Appl. Energy
– volume: 164
  start-page: 560
  year: 2018
  end-page: 569
  ident: b8
  article-title: One-day-ahead probabilistic wind speed forecast based on optimized numerical weather prediction data
  publication-title: Energy Convers. Manage.
– volume: 178
  start-page: 886
  year: 2016
  end-page: 901
  ident: b12
  article-title: One day ahead wind speed forecasting: A resampling-based approach
  publication-title: Appl. Energy
– volume: 81
  start-page: 197
  year: 2015
  end-page: 208
  ident: b6
  article-title: Minimizing asymmetric loss in medium-term wind power forecasting
  publication-title: Renew. Energy
– volume: 136
  start-page: 439
  year: 2017
  ident: 10.1016/j.asoc.2021.107848_b21
  article-title: A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.01.022
– volume: 29
  start-page: 939
  year: 2004
  ident: 10.1016/j.asoc.2021.107848_b38
  article-title: Support vector machines for wind speed prediction
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2003.11.009
– start-page: 1
  year: 2011
  ident: 10.1016/j.asoc.2021.107848_b36
  article-title: Short term wind speed predictions by using the grey prediction model based forecast method
– volume: 137
  start-page: 545
  year: 2015
  ident: 10.1016/j.asoc.2021.107848_b2
  article-title: Review of energy storage system for wind power integration support
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.04.103
– volume: 173
  start-page: 123
  year: 2018
  ident: 10.1016/j.asoc.2021.107848_b20
  article-title: A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and differential evolution algorithm
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.07.070
– volume: 190
  year: 2020
  ident: 10.1016/j.asoc.2021.107848_b40
  article-title: An adaptive hybrid model for short term wind speed forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2019.06.132
– volume: 72
  start-page: 321
  year: 2018
  ident: 10.1016/j.asoc.2021.107848_b16
  article-title: An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.07.022
– volume: 174
  start-page: 1219
  year: 2019
  ident: 10.1016/j.asoc.2021.107848_b41
  article-title: An innovative hybrid system for wind speed forecasting based on fuzzy preprocessing scheme and multi-objective optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.194
– volume: 129
  start-page: 357
  year: 2018
  ident: 10.1016/j.asoc.2021.107848_b43
  article-title: Prediction interval forecasting of wind speed and wind power using modes decomposition based low rank multi-kernel ridge regression
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.05.031
– volume: 34
  start-page: 1388
  year: 2009
  ident: 10.1016/j.asoc.2021.107848_b34
  article-title: Day-ahead wind speed forecasting using f-ARIMA models
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2008.09.006
– volume: 24
  start-page: 1048
  year: 2011
  ident: 10.1016/j.asoc.2021.107848_b39
  article-title: A case study on a hybrid wind speed forecasting method using BP neural network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.04.019
– volume: 12
  start-page: 537
  year: 2011
  ident: 10.1016/j.asoc.2021.107848_b25
  article-title: Prediction intervals to account for uncertainties in travel time prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2011.2106209
– volume: 78
  start-page: 599
  year: 2015
  ident: 10.1016/j.asoc.2021.107848_b5
  article-title: Short-term wind speed forecasting based on spectral clustering and optimised echo state networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.01.022
– volume: 62
  start-page: 676
  year: 2014
  ident: 10.1016/j.asoc.2021.107848_b10
  article-title: Simplified method to derive the Kalman filter covariance matrices to predict wind speeds from a NWP model
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.12.431
– volume: 35
  start-page: 148
  year: 2019
  ident: 10.1016/j.asoc.2021.107848_b4
  article-title: In case study: Investigation of tower shadow disturbance and wind shear variations effects on energy production, wind speed and power characteristics
  publication-title: Sustain. Energy Technol. Assess.
– volume: 167
  start-page: 203
  year: 2018
  ident: 10.1016/j.asoc.2021.107848_b37
  article-title: Multi-step wind speed forecasting using EWT decomposition, LSTM principal computing, RELM subordinate computing and IEWT reconstruction
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.04.082
– volume: 178
  start-page: 886
  year: 2016
  ident: 10.1016/j.asoc.2021.107848_b12
  article-title: One day ahead wind speed forecasting: A resampling-based approach
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.06.098
– volume: 255
  year: 2020
  ident: 10.1016/j.asoc.2021.107848_b22
  article-title: An innovative hybrid model based on outlier detection and correction algorithm and heuristic intelligent optimization algorithm for daily air quality index forecasting
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.109855
– volume: vol. 1
  start-page: 55
  year: 1994
  ident: 10.1016/j.asoc.2021.107848_b27
  article-title: Estimating the mean and variance of the target probability distribution
– volume: 158
  start-page: 217
  year: 2019
  ident: 10.1016/j.asoc.2021.107848_b42
  article-title: A hybrid wind speed forecasting model based on a decomposition method and an improved regularized extreme learning machine
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.01.079
– volume: 164
  start-page: 560
  year: 2018
  ident: 10.1016/j.asoc.2021.107848_b8
  article-title: One-day-ahead probabilistic wind speed forecast based on optimized numerical weather prediction data
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.03.030
– volume: 228
  start-page: 2207
  year: 2018
  ident: 10.1016/j.asoc.2021.107848_b29
  article-title: A wind speed interval prediction system based on multi-objective optimization for machine learning method
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.07.032
– volume: 107
  start-page: 191
  year: 2013
  ident: 10.1016/j.asoc.2021.107848_b18
  article-title: Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.02.002
– volume: 88
  start-page: 1405
  year: 2011
  ident: 10.1016/j.asoc.2021.107848_b13
  article-title: ARMA based approaches for forecasting the tuple of wind speed and direction
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.10.031
– volume: 109
  start-page: 529
  year: 2017
  ident: 10.1016/j.asoc.2021.107848_b19
  article-title: Hour-ahead wind power forecast based on random forests
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.03.064
– volume: 136
  start-page: 701
  year: 2019
  ident: 10.1016/j.asoc.2021.107848_b28
  article-title: A multi-objective wind speed and wind power prediction interval forecasting using variational modes decomposition based Multi-kernel robust ridge regression
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.01.006
– volume: 237
  start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2021.107848_b9
  article-title: Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.12.076
– volume: 108
  start-page: 375
  year: 2017
  ident: 10.1016/j.asoc.2021.107848_b31
  article-title: An ensemble of kernel ridge regression for multi-class classification
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.05.109
– volume: 101
  start-page: 393
  year: 2015
  ident: 10.1016/j.asoc.2021.107848_b30
  article-title: Short-term wind power prediction based on LSSVM–GSA model
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.05.065
– volume: 21
  start-page: 1
  year: 2015
  ident: 10.1016/j.asoc.2021.107848_b44
  article-title: Novel performance metrics for robust multi-objective optimization algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2014.10.005
– volume: 231
  start-page: 301
  year: 2018
  ident: 10.1016/j.asoc.2021.107848_b1
  article-title: A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.012
– volume: 203
  year: 2020
  ident: 10.1016/j.asoc.2021.107848_b14
  article-title: A new prediction method based on VMD-PRBF-ARMA-E model considering wind speed characteristic
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2019.112254
– volume: 88
  start-page: 2463
  year: 2011
  ident: 10.1016/j.asoc.2021.107848_b35
  article-title: Multiple architecture system for wind speed prediction
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.01.037
– volume: 136
  start-page: 758
  year: 2019
  ident: 10.1016/j.asoc.2021.107848_b15
  article-title: Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.01.031
– volume: vol. 2
  start-page: 1051
  year: 2002
  ident: 10.1016/j.asoc.2021.107848_b46
  article-title: MOPSO: a proposal for multiple objective particle swarm optimization
– volume: 81
  start-page: 197
  year: 2015
  ident: 10.1016/j.asoc.2021.107848_b6
  article-title: Minimizing asymmetric loss in medium-term wind power forecasting
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.03.049
– year: 2021
  ident: 10.1016/j.asoc.2021.107848_b24
  article-title: A novel hybrid fine particulate matter (PM 2.5 ) forecasting and its further application system: Case studies in China
  publication-title: J. Forecast.
– volume: 107
  start-page: 340
  year: 2017
  ident: 10.1016/j.asoc.2021.107848_b11
  article-title: Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.02.014
– volume: 12
  start-page: 852
  year: 2008
  ident: 10.1016/j.asoc.2021.107848_b3
  article-title: Technical challenges associated with the integration of wind power into power systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2006.10.007
– volume: 29
  start-page: 1033
  year: 2014
  ident: 10.1016/j.asoc.2021.107848_b26
  article-title: Probabilistic forecasting of wind power generation using extreme learning machine
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2287871
– volume: 80
  start-page: 93
  year: 2019
  ident: 10.1016/j.asoc.2021.107848_b7
  article-title: A novel hybrid model for short-term wind power forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.03.035
– volume: 52
  start-page: 1990
  year: 2011
  ident: 10.1016/j.asoc.2021.107848_b17
  article-title: Fine tuning support vector machines for short-term wind speed forecasting
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2010.11.007
– volume: 260
  year: 2020
  ident: 10.1016/j.asoc.2021.107848_b23
  article-title: A novel hybrid air quality early-warning system based on phase-space reconstruction and multi-objective optimization: A case study in China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.121027
– volume: 99
  start-page: 154
  year: 2012
  ident: 10.1016/j.asoc.2021.107848_b32
  article-title: Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.03.054
– volume: 15
  start-page: 1545
  year: 2011
  ident: 10.1016/j.asoc.2021.107848_b33
  article-title: Evaluation of NWP performance for wind energy resource assessment in Oman
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.11.055
– start-page: 155
  year: 1997
  ident: 10.1016/j.asoc.2021.107848_b45
  article-title: Support vector regression machines
SSID ssj0016928
Score 2.4844117
Snippet As a potential new energy power generation technology, wind power is gradually developing into the world’s mainstream energy. In the research on wind power...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107848
SubjectTerms Combined models
Interval prediction
Multi-objective optimization algorithm
Wind speed
Title Wind speed interval prediction model based on variational mode decomposition and multi-objective optimization
URI https://dx.doi.org/10.1016/j.asoc.2021.107848
Volume 113
WOSCitedRecordID wos000760655500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBcj3WGXdes21m4tOvQWXCzHtqRjGR1rGaXQbgu7GFmSaULrhHxR9tfvPUl23HSUbrCLSaTICno_nt73I-SQM5XHVZlGFcxHaTmQkTQiw2ZmIMtpU3mP6fev_PxcDIfyIhRUmLt2Aryuxd2dnP5XUsMYEBtTZ_-C3O1LYQA-A9HhCWSH55MI_2OEpvAp3EquFsRshblWM_THOFK71jd9vLwMOgpWoCs39kCc6huLUeYhlMu5FlzMYTQpx5439ifAZW5D-mZXtm0E2jlwdheqvlw096Kz2IfYX8Djr-vJch1XYP3Ez9H8etk1QiRsI6DjYXaMZ6a5AKIHE6P1Y4Inkcx9m5aWA_t01Afc3BsWxkcKgHqE28IQF74y50aV7EvcDPdKMOyDY1XbrYRnUvTI1vHpyfCsdS3l0jXcbf9cyKTyQX-bO_1ZWulIIFevyMugOtBjT_LX5Jmtd8h205aDBi79htwiAqhDAG0QQNcIoA4B1CGAwtcOAtwUvYcACgigGwigXQS8Jd8-n1x9-hKFrhqRBnVzEYHMXDGeVwlImlmcl9LYPDYZV4LpLOW5YaUCpl5qw5WSNjXSytipBVqxKraDd6RXT2r7nlBmYIlOmYYTS6u0UtYkyoACbaTgA6N2CWtOr9Ch5Dx2PrkpmtjCcYEnXuCJF_7Ed0m_XTP1BVce_XXWEKUIIqMXBQvA0CPr9v5x3QfyYg3_j6S3mC3tPnmuV4vRfHYQoPYbfbCVKA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+speed+interval+prediction+model+based+on+variational+mode+decomposition+and+multi-objective+optimization&rft.jtitle=Applied+soft+computing&rft.au=Wang%2C+Jianzhou&rft.au=Cheng%2C+Zishu&rft.date=2021-12-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=113&rft_id=info:doi/10.1016%2Fj.asoc.2021.107848&rft.externalDocID=S1568494621007705
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon