Wind speed interval prediction model based on variational mode decomposition and multi-objective optimization
As a potential new energy power generation technology, wind power is gradually developing into the world’s mainstream energy. In the research on wind power generation, wind speed prediction is an important part, which has been widely studied. The accurate wind speed prediction is a key part of wind...
Gespeichert in:
| Veröffentlicht in: | Applied soft computing Jg. 113; S. 107848 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.12.2021
|
| Schlagworte: | |
| ISSN: | 1568-4946, 1872-9681 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | As a potential new energy power generation technology, wind power is gradually developing into the world’s mainstream energy. In the research on wind power generation, wind speed prediction is an important part, which has been widely studied. The accurate wind speed prediction is a key part of wind power management to help wind power grid-tied. Currently, most research has focused on point prediction, which in fact does not facilitate the quantitative characterization of the endogenous uncertainty involved. However, interval prediction can avoid this deficiency and make better operation and scheduling of the wind power models. In this study, a novel interval prediction model based on wind speed distribution and multi-objective optimization is designed, which includes data noise reduction module, prediction module, and combination module based on a multi-objective salp swarm algorithm, to provide accurate forecast for power model operation and grid dispatching. The 10-minute wind speed data from three data sets in China were selected for prediction to evaluate the effectiveness of the proposed combined model. The results show that the model is not only better than the considered benchmark model, but also has good potential practical application value in wind power models.
•Developed the novel combined model on data ensemble decomposition and reconstruction and a swarm intelligence-based algorithm.•Provide an effective method for choosing the de-noising model.•Interval prediction of wind speed can better help power grid connection and dispatch. |
|---|---|
| AbstractList | As a potential new energy power generation technology, wind power is gradually developing into the world’s mainstream energy. In the research on wind power generation, wind speed prediction is an important part, which has been widely studied. The accurate wind speed prediction is a key part of wind power management to help wind power grid-tied. Currently, most research has focused on point prediction, which in fact does not facilitate the quantitative characterization of the endogenous uncertainty involved. However, interval prediction can avoid this deficiency and make better operation and scheduling of the wind power models. In this study, a novel interval prediction model based on wind speed distribution and multi-objective optimization is designed, which includes data noise reduction module, prediction module, and combination module based on a multi-objective salp swarm algorithm, to provide accurate forecast for power model operation and grid dispatching. The 10-minute wind speed data from three data sets in China were selected for prediction to evaluate the effectiveness of the proposed combined model. The results show that the model is not only better than the considered benchmark model, but also has good potential practical application value in wind power models.
•Developed the novel combined model on data ensemble decomposition and reconstruction and a swarm intelligence-based algorithm.•Provide an effective method for choosing the de-noising model.•Interval prediction of wind speed can better help power grid connection and dispatch. |
| ArticleNumber | 107848 |
| Author | Cheng, Zishu Wang, Jianzhou |
| Author_xml | – sequence: 1 givenname: Jianzhou orcidid: 0000-0001-9078-7617 surname: Wang fullname: Wang, Jianzhou organization: Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, China – sequence: 2 givenname: Zishu surname: Cheng fullname: Cheng, Zishu email: zishu_cheng2020@163.com organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China |
| BookMark | eNp9kMtKxDAUhoOM4MzoC7jqC3RM2iZNwY0M3mDAjeIypMkpnNI2JakFfXrTGVcuZpXLf76f5NuQ1eAGIOSW0R2jTNy1Ox2c2WU0Y_GilIW8IGsmyyythGSruOdCpkVViCuyCaGlEaoyuSb9Jw42CSOATXCYwM-6S0YPFs2Ebkh6Z6FLah1iHo-z9qiXIE4tUWLBuH50AY_TOnb1X92EqatbiA0zJG6csMefI3VNLhvdBbj5W7fk4-nxff-SHt6eX_cPh9RkOZ1SxouGlaLJcs45FXVlQVDLSy2Z4UUpLKu1lLQ2ttS6gsJWUFHBeJ4bzRoK-ZZkp17jXQgeGjV67LX_VoyqRZhq1SJMLcLUSViE5D_I4HR89uQ1dufR-xMK8VMzglfBIAwmavRRg7IOz-G_xlSLgA |
| CitedBy_id | crossref_primary_10_1007_s12145_023_01038_z crossref_primary_10_3389_fenrg_2022_990989 crossref_primary_10_1016_j_jclepro_2024_144124 crossref_primary_10_1016_j_enconman_2022_116579 crossref_primary_10_1016_j_renene_2024_120360 crossref_primary_10_3390_atmos15030294 crossref_primary_10_1016_j_asoc_2024_111869 crossref_primary_10_1016_j_energy_2023_129898 crossref_primary_10_1109_JSEN_2022_3181451 crossref_primary_10_1007_s00202_024_02874_y crossref_primary_10_1016_j_energy_2023_129618 crossref_primary_10_1007_s13369_022_06787_5 crossref_primary_10_3389_fenrg_2023_1298088 crossref_primary_10_1016_j_energy_2025_136302 crossref_primary_10_1016_j_energy_2023_127695 crossref_primary_10_1057_s41278_024_00284_2 crossref_primary_10_1002_ente_202300889 crossref_primary_10_1088_1742_6596_2427_1_012031 crossref_primary_10_1007_s00477_024_02873_2 crossref_primary_10_1016_j_energy_2022_123960 crossref_primary_10_1016_j_apenergy_2025_126318 crossref_primary_10_1016_j_asoc_2024_112246 crossref_primary_10_1016_j_energy_2021_122333 crossref_primary_10_1016_j_eswa_2023_121546 crossref_primary_10_1016_j_eswa_2024_124195 crossref_primary_10_1016_j_measurement_2024_116189 |
| Cites_doi | 10.1016/j.enconman.2017.01.022 10.1016/j.renene.2003.11.009 10.1016/j.apenergy.2014.04.103 10.1016/j.enconman.2018.07.070 10.1016/j.energy.2019.06.132 10.1016/j.asoc.2018.07.022 10.1016/j.energy.2019.02.194 10.1016/j.renene.2018.05.031 10.1016/j.renene.2008.09.006 10.1016/j.knosys.2011.04.019 10.1109/TITS.2011.2106209 10.1016/j.renene.2015.01.022 10.1016/j.egypro.2014.12.431 10.1016/j.enconman.2018.04.082 10.1016/j.apenergy.2016.06.098 10.1016/j.jenvman.2019.109855 10.1016/j.egypro.2019.01.079 10.1016/j.enconman.2018.03.030 10.1016/j.apenergy.2018.07.032 10.1016/j.apenergy.2013.02.002 10.1016/j.apenergy.2010.10.031 10.1016/j.renene.2017.03.064 10.1016/j.renene.2019.01.006 10.1016/j.apenergy.2018.12.076 10.1016/j.procs.2017.05.109 10.1016/j.enconman.2015.05.065 10.1016/j.swevo.2014.10.005 10.1016/j.apenergy.2018.09.012 10.1016/j.enconman.2019.112254 10.1016/j.apenergy.2011.01.037 10.1016/j.renene.2019.01.031 10.1016/j.renene.2015.03.049 10.1016/j.renene.2017.02.014 10.1016/j.rser.2006.10.007 10.1109/TPWRS.2013.2287871 10.1016/j.asoc.2019.03.035 10.1016/j.enconman.2010.11.007 10.1016/j.jclepro.2020.121027 10.1016/j.apenergy.2012.03.054 10.1016/j.rser.2010.11.055 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2021.107848 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2021_107848 S1568494621007705 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c230t-154f176f2355506b9de60d57a81c5476d1ba880bcd7aa9e4d9e9061533ca1f0e3 |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000760655500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Sat Nov 29 07:06:12 EST 2025 Tue Nov 18 22:28:44 EST 2025 Fri Feb 23 02:41:49 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-objective optimization algorithm Combined models Wind speed Interval prediction |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c230t-154f176f2355506b9de60d57a81c5476d1ba880bcd7aa9e4d9e9061533ca1f0e3 |
| ORCID | 0000-0001-9078-7617 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2021_107848 crossref_citationtrail_10_1016_j_asoc_2021_107848 elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107848 |
| PublicationCentury | 2000 |
| PublicationDate | December 2021 2021-12-00 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhao, Liu, Yu, Chang (b8) 2018; 164 Liu, Wang, Wang (b5) 2015; 78 Charabi, Al-Yahyai, Gastli (b33) 2011; 15 Cassola, Burlando (b32) 2012; 99 S.N., Singh, Mohapatra (b15) 2019; 136 Li, Jin (b29) 2018; 228 Du, Wang, Yang, Niu (b24) 2021 Wang, Wang, Li (b23) 2020; 260 Kavasseri, Seetharaman (b34) 2009; 34 Huang, Liu, Tzeng, Wang (b36) 2011 Li, Zhu, Yang, Li (b41) 2019; 174 Coello, Lechuga (b46) 2002; vol. 2 Lahouar, Ben Hadj Slama (b19) 2017; 109 Guo, Wu, Lu, Wang (b39) 2011; 24 Hu, Chen (b20) 2018; 173 Tian, Hao, Hu (b1) 2018; 231 Khosravi, Mazloumi, Nahavandi, Creighton, van Lint (b25) 2011; 12 Erdem, Shi (b13) 2011; 88 Zhang, Zhao, Kong, Chen (b14) 2020; 203 Wang, Du, Lu, Yang, Niu (b16) 2018; 72 Bouzgou, Benoudjit (b35) 2011; 88 Lynch, OMahony, Scully (b10) 2014; 62 Zhou, Shi, Li (b17) 2011; 52 Wang, Du, Hao, Ma, Niu, Yang (b22) 2020; 255 Sun, Zhou, Liu, He (b42) 2019; 158 Emeksiz, Cetin (b4) 2019; 35 Georgilakis (b3) 2008; 12 Zhao, Wu, Hu, Xu, Rasmussen (b2) 2015; 137 Naik, Dash, Dhar (b28) 2019; 136 Rakesh, Suganthan (b31) 2017; 108 Yuan, Chen, Yuan, Huang, Tan (b30) 2015; 101 Li, Wu, Liu (b37) 2018; 167 Zhao, Wei, Su (b12) 2016; 178 Nix, Weigend (b27) 1994; vol. 1 Zhang, Wei, Tan (b40) 2020; 190 Wan, Xu, Pinson, Dong, Wong (b26) 2014; 29 Drucker, Burges, Kaufman, Smola, Vapnik (b45) 1997 Cheng, Liu, Bourgeois, Wu, Haupt (b11) 2017; 107 Liu, Tian, Pan, Li (b18) 2013; 107 Wang, Han, Liu, Yan, Li (b9) 2019; 237 Zhang, Qu, Zhang, Mao, Ma, Fan (b21) 2017; 136 Naik, Bisoi, Dash (b43) 2018; 129 Mohandes, Halawani, Rehman, Hussain (b38) 2004; 29 Mirjalili, Lewis (b44) 2015; 21 Du, Wang, Yang, Niu (b7) 2019; 80 Croonenbroeck, Stadtmann (b6) 2015; 81 Li (10.1016/j.asoc.2021.107848_b41) 2019; 174 Zhang (10.1016/j.asoc.2021.107848_b21) 2017; 136 Mirjalili (10.1016/j.asoc.2021.107848_b44) 2015; 21 Du (10.1016/j.asoc.2021.107848_b7) 2019; 80 Wang (10.1016/j.asoc.2021.107848_b16) 2018; 72 Hu (10.1016/j.asoc.2021.107848_b20) 2018; 173 Croonenbroeck (10.1016/j.asoc.2021.107848_b6) 2015; 81 Zhou (10.1016/j.asoc.2021.107848_b17) 2011; 52 Wang (10.1016/j.asoc.2021.107848_b23) 2020; 260 Zhang (10.1016/j.asoc.2021.107848_b40) 2020; 190 Khosravi (10.1016/j.asoc.2021.107848_b25) 2011; 12 Cassola (10.1016/j.asoc.2021.107848_b32) 2012; 99 Zhao (10.1016/j.asoc.2021.107848_b8) 2018; 164 Lahouar (10.1016/j.asoc.2021.107848_b19) 2017; 109 Erdem (10.1016/j.asoc.2021.107848_b13) 2011; 88 Li (10.1016/j.asoc.2021.107848_b37) 2018; 167 Tian (10.1016/j.asoc.2021.107848_b1) 2018; 231 Zhao (10.1016/j.asoc.2021.107848_b2) 2015; 137 Georgilakis (10.1016/j.asoc.2021.107848_b3) 2008; 12 Rakesh (10.1016/j.asoc.2021.107848_b31) 2017; 108 Naik (10.1016/j.asoc.2021.107848_b43) 2018; 129 Coello (10.1016/j.asoc.2021.107848_b46) 2002; vol. 2 Cheng (10.1016/j.asoc.2021.107848_b11) 2017; 107 Naik (10.1016/j.asoc.2021.107848_b28) 2019; 136 Liu (10.1016/j.asoc.2021.107848_b18) 2013; 107 Mohandes (10.1016/j.asoc.2021.107848_b38) 2004; 29 Du (10.1016/j.asoc.2021.107848_b24) 2021 Huang (10.1016/j.asoc.2021.107848_b36) 2011 Drucker (10.1016/j.asoc.2021.107848_b45) 1997 Charabi (10.1016/j.asoc.2021.107848_b33) 2011; 15 Kavasseri (10.1016/j.asoc.2021.107848_b34) 2009; 34 Zhang (10.1016/j.asoc.2021.107848_b14) 2020; 203 Wan (10.1016/j.asoc.2021.107848_b26) 2014; 29 Yuan (10.1016/j.asoc.2021.107848_b30) 2015; 101 Guo (10.1016/j.asoc.2021.107848_b39) 2011; 24 S.N. (10.1016/j.asoc.2021.107848_b15) 2019; 136 Lynch (10.1016/j.asoc.2021.107848_b10) 2014; 62 Nix (10.1016/j.asoc.2021.107848_b27) 1994; vol. 1 Liu (10.1016/j.asoc.2021.107848_b5) 2015; 78 Li (10.1016/j.asoc.2021.107848_b29) 2018; 228 Emeksiz (10.1016/j.asoc.2021.107848_b4) 2019; 35 Bouzgou (10.1016/j.asoc.2021.107848_b35) 2011; 88 Zhao (10.1016/j.asoc.2021.107848_b12) 2016; 178 Wang (10.1016/j.asoc.2021.107848_b22) 2020; 255 Sun (10.1016/j.asoc.2021.107848_b42) 2019; 158 Wang (10.1016/j.asoc.2021.107848_b9) 2019; 237 |
| References_xml | – volume: 174 start-page: 1219 year: 2019 end-page: 1237 ident: b41 article-title: An innovative hybrid system for wind speed forecasting based on fuzzy preprocessing scheme and multi-objective optimization publication-title: Energy – volume: 80 start-page: 93 year: 2019 end-page: 106 ident: b7 article-title: A novel hybrid model for short-term wind power forecasting publication-title: Appl. Soft Comput. – volume: 173 start-page: 123 year: 2018 end-page: 142 ident: b20 article-title: A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and differential evolution algorithm publication-title: Energy Convers. Manage. – volume: 237 start-page: 1 year: 2019 end-page: 10 ident: b9 article-title: Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system publication-title: Appl. Energy – volume: 190 year: 2020 ident: b40 article-title: An adaptive hybrid model for short term wind speed forecasting publication-title: Energy – volume: 137 start-page: 545 year: 2015 end-page: 553 ident: b2 article-title: Review of energy storage system for wind power integration support publication-title: Appl. Energy – volume: 78 start-page: 599 year: 2015 end-page: 608 ident: b5 article-title: Short-term wind speed forecasting based on spectral clustering and optimised echo state networks publication-title: Renew. Energy – volume: 72 start-page: 321 year: 2018 end-page: 337 ident: b16 article-title: An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting publication-title: Appl. Soft Comput. – volume: 136 start-page: 701 year: 2019 end-page: 731 ident: b28 article-title: A multi-objective wind speed and wind power prediction interval forecasting using variational modes decomposition based Multi-kernel robust ridge regression publication-title: Renew. Energy – volume: 99 start-page: 154 year: 2012 end-page: 166 ident: b32 article-title: Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output publication-title: Appl. Energy – volume: vol. 1 start-page: 55 year: 1994 end-page: 60 ident: b27 article-title: Estimating the mean and variance of the target probability distribution publication-title: Proceedings of 1994 IEEE International Conference on Neural Networks – volume: 136 start-page: 439 year: 2017 end-page: 451 ident: b21 article-title: A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting publication-title: Energy Convers. Manage. – volume: 107 start-page: 191 year: 2013 end-page: 208 ident: b18 article-title: Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks publication-title: Appl. Energy – volume: 29 start-page: 1033 year: 2014 end-page: 1044 ident: b26 article-title: Probabilistic forecasting of wind power generation using extreme learning machine publication-title: IEEE Trans. Power Syst. – volume: 34 start-page: 1388 year: 2009 end-page: 1393 ident: b34 article-title: Day-ahead wind speed forecasting using f-ARIMA models publication-title: Renew. Energy – volume: 88 start-page: 2463 year: 2011 end-page: 2471 ident: b35 article-title: Multiple architecture system for wind speed prediction publication-title: Appl. Energy – start-page: 1 year: 2011 end-page: 5 ident: b36 article-title: Short term wind speed predictions by using the grey prediction model based forecast method publication-title: 2011 IEEE Green Technologies Conference – start-page: 155 year: 1997 end-page: 161 ident: b45 article-title: Support vector regression machines publication-title: Advances in Neural Information Processing Systems – volume: 231 start-page: 301 year: 2018 end-page: 319 ident: b1 article-title: A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization publication-title: Appl. Energy – volume: 12 start-page: 852 year: 2008 end-page: 863 ident: b3 article-title: Technical challenges associated with the integration of wind power into power systems publication-title: Renew. Sustain. Energy Rev. – volume: 52 start-page: 1990 year: 2011 end-page: 1998 ident: b17 article-title: Fine tuning support vector machines for short-term wind speed forecasting publication-title: Energy Convers. Manage. – volume: 129 start-page: 357 year: 2018 end-page: 383 ident: b43 article-title: Prediction interval forecasting of wind speed and wind power using modes decomposition based low rank multi-kernel ridge regression publication-title: Renew. Energy – volume: 203 year: 2020 ident: b14 article-title: A new prediction method based on VMD-PRBF-ARMA-E model considering wind speed characteristic publication-title: Energy Convers. Manage. – volume: 136 start-page: 758 year: 2019 end-page: 768 ident: b15 article-title: Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting publication-title: Renew. Energy – volume: 255 year: 2020 ident: b22 article-title: An innovative hybrid model based on outlier detection and correction algorithm and heuristic intelligent optimization algorithm for daily air quality index forecasting publication-title: J. Environ. Manag. – volume: 108 start-page: 375 year: 2017 end-page: 383 ident: b31 article-title: An ensemble of kernel ridge regression for multi-class classification publication-title: Procedia Comput. Sci. – volume: 107 start-page: 340 year: 2017 end-page: 351 ident: b11 article-title: Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation publication-title: Renew. Energy – volume: 260 year: 2020 ident: b23 article-title: A novel hybrid air quality early-warning system based on phase-space reconstruction and multi-objective optimization: A case study in China publication-title: J. Clean. Prod. – year: 2021 ident: b24 article-title: A novel hybrid fine particulate matter (PM publication-title: J. Forecast. – volume: 29 start-page: 939 year: 2004 end-page: 947 ident: b38 article-title: Support vector machines for wind speed prediction publication-title: Renew. Energy – volume: vol. 2 start-page: 1051 year: 2002 end-page: 1056 ident: b46 article-title: MOPSO: a proposal for multiple objective particle swarm optimization publication-title: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600) – volume: 101 start-page: 393 year: 2015 end-page: 401 ident: b30 article-title: Short-term wind power prediction based on LSSVM–GSA model publication-title: Energy Convers. Manage. – volume: 167 start-page: 203 year: 2018 end-page: 219 ident: b37 article-title: Multi-step wind speed forecasting using EWT decomposition, LSTM principal computing, RELM subordinate computing and IEWT reconstruction publication-title: Energy Convers. Manage. – volume: 35 start-page: 148 year: 2019 end-page: 159 ident: b4 article-title: In case study: Investigation of tower shadow disturbance and wind shear variations effects on energy production, wind speed and power characteristics publication-title: Sustain. Energy Technol. Assess. – volume: 228 start-page: 2207 year: 2018 end-page: 2220 ident: b29 article-title: A wind speed interval prediction system based on multi-objective optimization for machine learning method publication-title: Appl. Energy – volume: 158 start-page: 217 year: 2019 end-page: 222 ident: b42 article-title: A hybrid wind speed forecasting model based on a decomposition method and an improved regularized extreme learning machine publication-title: Energy Procedia – volume: 109 start-page: 529 year: 2017 end-page: 541 ident: b19 article-title: Hour-ahead wind power forecast based on random forests publication-title: Renew. Energy – volume: 12 start-page: 537 year: 2011 end-page: 547 ident: b25 article-title: Prediction intervals to account for uncertainties in travel time prediction publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 21 start-page: 1 year: 2015 end-page: 23 ident: b44 article-title: Novel performance metrics for robust multi-objective optimization algorithms publication-title: Swarm Evol. Comput. – volume: 24 start-page: 1048 year: 2011 end-page: 1056 ident: b39 article-title: A case study on a hybrid wind speed forecasting method using BP neural network publication-title: Knowl.-Based Syst. – volume: 15 start-page: 1545 year: 2011 end-page: 1555 ident: b33 article-title: Evaluation of NWP performance for wind energy resource assessment in Oman publication-title: Renew. Sustain. Energy Rev. – volume: 62 start-page: 676 year: 2014 end-page: 685 ident: b10 article-title: Simplified method to derive the Kalman filter covariance matrices to predict wind speeds from a NWP model publication-title: Energy Procedia – volume: 88 start-page: 1405 year: 2011 end-page: 1414 ident: b13 article-title: ARMA based approaches for forecasting the tuple of wind speed and direction publication-title: Appl. Energy – volume: 164 start-page: 560 year: 2018 end-page: 569 ident: b8 article-title: One-day-ahead probabilistic wind speed forecast based on optimized numerical weather prediction data publication-title: Energy Convers. Manage. – volume: 178 start-page: 886 year: 2016 end-page: 901 ident: b12 article-title: One day ahead wind speed forecasting: A resampling-based approach publication-title: Appl. Energy – volume: 81 start-page: 197 year: 2015 end-page: 208 ident: b6 article-title: Minimizing asymmetric loss in medium-term wind power forecasting publication-title: Renew. Energy – volume: 136 start-page: 439 year: 2017 ident: 10.1016/j.asoc.2021.107848_b21 article-title: A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.01.022 – volume: 29 start-page: 939 year: 2004 ident: 10.1016/j.asoc.2021.107848_b38 article-title: Support vector machines for wind speed prediction publication-title: Renew. Energy doi: 10.1016/j.renene.2003.11.009 – start-page: 1 year: 2011 ident: 10.1016/j.asoc.2021.107848_b36 article-title: Short term wind speed predictions by using the grey prediction model based forecast method – volume: 137 start-page: 545 year: 2015 ident: 10.1016/j.asoc.2021.107848_b2 article-title: Review of energy storage system for wind power integration support publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.04.103 – volume: 173 start-page: 123 year: 2018 ident: 10.1016/j.asoc.2021.107848_b20 article-title: A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and differential evolution algorithm publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.07.070 – volume: 190 year: 2020 ident: 10.1016/j.asoc.2021.107848_b40 article-title: An adaptive hybrid model for short term wind speed forecasting publication-title: Energy doi: 10.1016/j.energy.2019.06.132 – volume: 72 start-page: 321 year: 2018 ident: 10.1016/j.asoc.2021.107848_b16 article-title: An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.07.022 – volume: 174 start-page: 1219 year: 2019 ident: 10.1016/j.asoc.2021.107848_b41 article-title: An innovative hybrid system for wind speed forecasting based on fuzzy preprocessing scheme and multi-objective optimization publication-title: Energy doi: 10.1016/j.energy.2019.02.194 – volume: 129 start-page: 357 year: 2018 ident: 10.1016/j.asoc.2021.107848_b43 article-title: Prediction interval forecasting of wind speed and wind power using modes decomposition based low rank multi-kernel ridge regression publication-title: Renew. Energy doi: 10.1016/j.renene.2018.05.031 – volume: 34 start-page: 1388 year: 2009 ident: 10.1016/j.asoc.2021.107848_b34 article-title: Day-ahead wind speed forecasting using f-ARIMA models publication-title: Renew. Energy doi: 10.1016/j.renene.2008.09.006 – volume: 24 start-page: 1048 year: 2011 ident: 10.1016/j.asoc.2021.107848_b39 article-title: A case study on a hybrid wind speed forecasting method using BP neural network publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2011.04.019 – volume: 12 start-page: 537 year: 2011 ident: 10.1016/j.asoc.2021.107848_b25 article-title: Prediction intervals to account for uncertainties in travel time prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2011.2106209 – volume: 78 start-page: 599 year: 2015 ident: 10.1016/j.asoc.2021.107848_b5 article-title: Short-term wind speed forecasting based on spectral clustering and optimised echo state networks publication-title: Renew. Energy doi: 10.1016/j.renene.2015.01.022 – volume: 62 start-page: 676 year: 2014 ident: 10.1016/j.asoc.2021.107848_b10 article-title: Simplified method to derive the Kalman filter covariance matrices to predict wind speeds from a NWP model publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.12.431 – volume: 35 start-page: 148 year: 2019 ident: 10.1016/j.asoc.2021.107848_b4 article-title: In case study: Investigation of tower shadow disturbance and wind shear variations effects on energy production, wind speed and power characteristics publication-title: Sustain. Energy Technol. Assess. – volume: 167 start-page: 203 year: 2018 ident: 10.1016/j.asoc.2021.107848_b37 article-title: Multi-step wind speed forecasting using EWT decomposition, LSTM principal computing, RELM subordinate computing and IEWT reconstruction publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.04.082 – volume: 178 start-page: 886 year: 2016 ident: 10.1016/j.asoc.2021.107848_b12 article-title: One day ahead wind speed forecasting: A resampling-based approach publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.06.098 – volume: 255 year: 2020 ident: 10.1016/j.asoc.2021.107848_b22 article-title: An innovative hybrid model based on outlier detection and correction algorithm and heuristic intelligent optimization algorithm for daily air quality index forecasting publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.109855 – volume: vol. 1 start-page: 55 year: 1994 ident: 10.1016/j.asoc.2021.107848_b27 article-title: Estimating the mean and variance of the target probability distribution – volume: 158 start-page: 217 year: 2019 ident: 10.1016/j.asoc.2021.107848_b42 article-title: A hybrid wind speed forecasting model based on a decomposition method and an improved regularized extreme learning machine publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.01.079 – volume: 164 start-page: 560 year: 2018 ident: 10.1016/j.asoc.2021.107848_b8 article-title: One-day-ahead probabilistic wind speed forecast based on optimized numerical weather prediction data publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.03.030 – volume: 228 start-page: 2207 year: 2018 ident: 10.1016/j.asoc.2021.107848_b29 article-title: A wind speed interval prediction system based on multi-objective optimization for machine learning method publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.07.032 – volume: 107 start-page: 191 year: 2013 ident: 10.1016/j.asoc.2021.107848_b18 article-title: Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.02.002 – volume: 88 start-page: 1405 year: 2011 ident: 10.1016/j.asoc.2021.107848_b13 article-title: ARMA based approaches for forecasting the tuple of wind speed and direction publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.10.031 – volume: 109 start-page: 529 year: 2017 ident: 10.1016/j.asoc.2021.107848_b19 article-title: Hour-ahead wind power forecast based on random forests publication-title: Renew. Energy doi: 10.1016/j.renene.2017.03.064 – volume: 136 start-page: 701 year: 2019 ident: 10.1016/j.asoc.2021.107848_b28 article-title: A multi-objective wind speed and wind power prediction interval forecasting using variational modes decomposition based Multi-kernel robust ridge regression publication-title: Renew. Energy doi: 10.1016/j.renene.2019.01.006 – volume: 237 start-page: 1 year: 2019 ident: 10.1016/j.asoc.2021.107848_b9 article-title: Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.12.076 – volume: 108 start-page: 375 year: 2017 ident: 10.1016/j.asoc.2021.107848_b31 article-title: An ensemble of kernel ridge regression for multi-class classification publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.05.109 – volume: 101 start-page: 393 year: 2015 ident: 10.1016/j.asoc.2021.107848_b30 article-title: Short-term wind power prediction based on LSSVM–GSA model publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2015.05.065 – volume: 21 start-page: 1 year: 2015 ident: 10.1016/j.asoc.2021.107848_b44 article-title: Novel performance metrics for robust multi-objective optimization algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2014.10.005 – volume: 231 start-page: 301 year: 2018 ident: 10.1016/j.asoc.2021.107848_b1 article-title: A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.012 – volume: 203 year: 2020 ident: 10.1016/j.asoc.2021.107848_b14 article-title: A new prediction method based on VMD-PRBF-ARMA-E model considering wind speed characteristic publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2019.112254 – volume: 88 start-page: 2463 year: 2011 ident: 10.1016/j.asoc.2021.107848_b35 article-title: Multiple architecture system for wind speed prediction publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.01.037 – volume: 136 start-page: 758 year: 2019 ident: 10.1016/j.asoc.2021.107848_b15 article-title: Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting publication-title: Renew. Energy doi: 10.1016/j.renene.2019.01.031 – volume: vol. 2 start-page: 1051 year: 2002 ident: 10.1016/j.asoc.2021.107848_b46 article-title: MOPSO: a proposal for multiple objective particle swarm optimization – volume: 81 start-page: 197 year: 2015 ident: 10.1016/j.asoc.2021.107848_b6 article-title: Minimizing asymmetric loss in medium-term wind power forecasting publication-title: Renew. Energy doi: 10.1016/j.renene.2015.03.049 – year: 2021 ident: 10.1016/j.asoc.2021.107848_b24 article-title: A novel hybrid fine particulate matter (PM 2.5 ) forecasting and its further application system: Case studies in China publication-title: J. Forecast. – volume: 107 start-page: 340 year: 2017 ident: 10.1016/j.asoc.2021.107848_b11 article-title: Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation publication-title: Renew. Energy doi: 10.1016/j.renene.2017.02.014 – volume: 12 start-page: 852 year: 2008 ident: 10.1016/j.asoc.2021.107848_b3 article-title: Technical challenges associated with the integration of wind power into power systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2006.10.007 – volume: 29 start-page: 1033 year: 2014 ident: 10.1016/j.asoc.2021.107848_b26 article-title: Probabilistic forecasting of wind power generation using extreme learning machine publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2013.2287871 – volume: 80 start-page: 93 year: 2019 ident: 10.1016/j.asoc.2021.107848_b7 article-title: A novel hybrid model for short-term wind power forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.03.035 – volume: 52 start-page: 1990 year: 2011 ident: 10.1016/j.asoc.2021.107848_b17 article-title: Fine tuning support vector machines for short-term wind speed forecasting publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2010.11.007 – volume: 260 year: 2020 ident: 10.1016/j.asoc.2021.107848_b23 article-title: A novel hybrid air quality early-warning system based on phase-space reconstruction and multi-objective optimization: A case study in China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.121027 – volume: 99 start-page: 154 year: 2012 ident: 10.1016/j.asoc.2021.107848_b32 article-title: Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.03.054 – volume: 15 start-page: 1545 year: 2011 ident: 10.1016/j.asoc.2021.107848_b33 article-title: Evaluation of NWP performance for wind energy resource assessment in Oman publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.11.055 – start-page: 155 year: 1997 ident: 10.1016/j.asoc.2021.107848_b45 article-title: Support vector regression machines |
| SSID | ssj0016928 |
| Score | 2.4844117 |
| Snippet | As a potential new energy power generation technology, wind power is gradually developing into the world’s mainstream energy. In the research on wind power... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107848 |
| SubjectTerms | Combined models Interval prediction Multi-objective optimization algorithm Wind speed |
| Title | Wind speed interval prediction model based on variational mode decomposition and multi-objective optimization |
| URI | https://dx.doi.org/10.1016/j.asoc.2021.107848 |
| Volume | 113 |
| WOSCitedRecordID | wos000760655500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBcj3WGXdes21m4tOvQWXCzHtqRjGR1rGaXQbgu7GFmSaULrhHxR9tfvPUl23HSUbrCLSaTICno_nt73I-SQM5XHVZlGFcxHaTmQkTQiw2ZmIMtpU3mP6fev_PxcDIfyIhRUmLt2Aryuxd2dnP5XUsMYEBtTZ_-C3O1LYQA-A9HhCWSH55MI_2OEpvAp3EquFsRshblWM_THOFK71jd9vLwMOgpWoCs39kCc6huLUeYhlMu5FlzMYTQpx5439ifAZW5D-mZXtm0E2jlwdheqvlw096Kz2IfYX8Djr-vJch1XYP3Ez9H8etk1QiRsI6DjYXaMZ6a5AKIHE6P1Y4Inkcx9m5aWA_t01Afc3BsWxkcKgHqE28IQF74y50aV7EvcDPdKMOyDY1XbrYRnUvTI1vHpyfCsdS3l0jXcbf9cyKTyQX-bO_1ZWulIIFevyMugOtBjT_LX5Jmtd8h205aDBi79htwiAqhDAG0QQNcIoA4B1CGAwtcOAtwUvYcACgigGwigXQS8Jd8-n1x9-hKFrhqRBnVzEYHMXDGeVwlImlmcl9LYPDYZV4LpLOW5YaUCpl5qw5WSNjXSytipBVqxKraDd6RXT2r7nlBmYIlOmYYTS6u0UtYkyoACbaTgA6N2CWtOr9Ch5Dx2PrkpmtjCcYEnXuCJF_7Ed0m_XTP1BVce_XXWEKUIIqMXBQvA0CPr9v5x3QfyYg3_j6S3mC3tPnmuV4vRfHYQoPYbfbCVKA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+speed+interval+prediction+model+based+on+variational+mode+decomposition+and+multi-objective+optimization&rft.jtitle=Applied+soft+computing&rft.au=Wang%2C+Jianzhou&rft.au=Cheng%2C+Zishu&rft.date=2021-12-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=113&rft_id=info:doi/10.1016%2Fj.asoc.2021.107848&rft.externalDocID=S1568494621007705 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |