A New Approach for Multiple Loads Identification Based on the Segmental Area of the Influence Lines
The dynamic responses of bridges under multi moving loads are an essential precursor for their structural health monitoring (SHM). To enable the precise identification of the main moving load(s) among multiple moving loads, this study proposes an improved multi-source dynamic load identification alg...
Gespeichert in:
| Veröffentlicht in: | Infrastructures (Basel) Jg. 10; H. 11; S. 308 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.11.2025
|
| Schlagworte: | |
| ISSN: | 2412-3811, 2412-3811 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The dynamic responses of bridges under multi moving loads are an essential precursor for their structural health monitoring (SHM). To enable the precise identification of the main moving load(s) among multiple moving loads, this study proposes an improved multi-source dynamic load identification algorithm based on the segmental area of the influence line (SAI). Firstly, the segmental area of the influence line was calculated according to the velocity of loads and the distance between two loads, and then, the moving load could be isolated based on the law of the minimal error combining the base area of the original influence line. In addition, experiments were conducted employing laser displacement sensor systems to acquire structural dynamic responses. The results showed the following for the segmental area of the influence line: (1) identification errors for a single moving load could be controlled within 5%, while an error within 10% was achieved under two moving loads; (2) vehicle displacement identification error remained consistently below 5%; and (3) the proposed algorithm exhibited a speed-insensitive characteristic, enabling effective load identification across varying vehicle speeds. The experimental findings confirm that this method accurately identifies the main moving loads in a small deformation condition and can be extended to similar applications. |
|---|---|
| AbstractList | The dynamic responses of bridges under multi moving loads are an essential precursor for their structural health monitoring (SHM). To enable the precise identification of the main moving load(s) among multiple moving loads, this study proposes an improved multi-source dynamic load identification algorithm based on the segmental area of the influence line (SAI). Firstly, the segmental area of the influence line was calculated according to the velocity of loads and the distance between two loads, and then, the moving load could be isolated based on the law of the minimal error combining the base area of the original influence line. In addition, experiments were conducted employing laser displacement sensor systems to acquire structural dynamic responses. The results showed the following for the segmental area of the influence line: (1) identification errors for a single moving load could be controlled within 5%, while an error within 10% was achieved under two moving loads; (2) vehicle displacement identification error remained consistently below 5%; and (3) the proposed algorithm exhibited a speed-insensitive characteristic, enabling effective load identification across varying vehicle speeds. The experimental findings confirm that this method accurately identifies the main moving loads in a small deformation condition and can be extended to similar applications. |
| Audience | Academic |
| Author | Kaewunruen, Sakdirat Qiu, Weiwei Liu, Ping |
| Author_xml | – sequence: 1 givenname: Ping orcidid: 0000-0003-2624-4567 surname: Liu fullname: Liu, Ping – sequence: 2 givenname: Weiwei surname: Qiu fullname: Qiu, Weiwei – sequence: 3 givenname: Sakdirat orcidid: 0000-0003-2153-3538 surname: Kaewunruen fullname: Kaewunruen, Sakdirat |
| BookMark | eNp1kU-PFCEQxTtmTVzX_QySeJ61aGCgj-3GP5OMelDPpBqKWSY9zQh0jN9e3DHGi-FA5VH146Xe8-5qSQt13UsOd0IM8DouIWOpeXV1zVQ4cA4CzJPuupe83wjD-dU_9bPutpQjAPRgtDH8unMj-0Q_2Hg-54TugYWU2cd1rvE8E9sn9IXtPC01huiwxrSwN1jIs1bUB2Jf6HBqrzizMROyFB7V3RLmlRbXCHGh8qJ7GnAudPvnvum-vXv79f7DZv_5_e5-3G9c3zxvJj9JkGbwetBiq51C2QtnOKFRBBMQCCmFUUDDABoHnBwGIwToaRsQSNx0uwvXJzzac44nzD9twmgfhZQPFnONbiYLkrgip6XTSqJsv7gtKdV7UCoM3jXWqwur7eX7SqXaY1rz0uxb0Wul2vaVbF13l64DNmgLI9WMrh1Pp-haVCE2fTRbpZQxoNqAvgy4nErJFP7a5GB_J2r_k6j4BXCImPg |
| Cites_doi | 10.1109/ACCESS.2022.3179517 10.1016/j.ymssp.2020.107586 10.1016/j.ymssp.2022.109757 10.1007/s13349-024-00859-w 10.1016/j.apenergy.2024.122740 10.1115/1.2802487 10.1016/j.ymssp.2021.107881 10.1142/S0219455423501262 10.1016/j.ress.2024.110493 10.3390/app11020853 10.1016/j.measurement.2023.112599 10.1016/j.engstruct.2020.110619 10.1007/s11831-022-09815-7 10.1021/acsmeasuresciau.1c00054 10.1016/j.istruc.2023.105840 10.1016/j.measurement.2024.114528 10.3390/buildings14020392 10.1006/jsvi.1996.0774 10.1016/j.ymssp.2023.110987 10.1016/j.engappai.2021.104244 10.1016/j.csite.2023.103897 10.1016/j.istruc.2025.108549 10.1061/JBENF2.BEENG-5604 10.1007/s11831-021-09594-7 10.1177/14759217241255042 10.1007/s00158-019-02448-8 10.1016/S0022-460X(02)01557-2 10.1002/stc.2464 10.1016/j.ymssp.2025.113180 10.1016/j.ymssp.2022.108872 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/infrastructures10110308 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2412-3811 |
| ExternalDocumentID | oai_doaj_org_article_04e15ec74c754a4c81c6e552d055f9dc A865558805 10_3390_infrastructures10110308 |
| GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IGS ITC MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c2308-bdb40489d797367c5a423c81ea85e0b0e03443850e9907a9abcaf83307b6fa0e3 |
| IEDL.DBID | P5Z |
| ISSN | 2412-3811 |
| IngestDate | Mon Dec 01 19:29:33 EST 2025 Thu Nov 27 00:10:40 EST 2025 Tue Dec 02 03:52:51 EST 2025 Thu Nov 20 00:29:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2308-bdb40489d797367c5a423c81ea85e0b0e03443850e9907a9abcaf83307b6fa0e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2153-3538 0000-0003-2624-4567 |
| OpenAccessLink | https://www.proquest.com/docview/3275533954?pq-origsite=%requestingapplication% |
| PQID | 3275533954 |
| PQPubID | 2055405 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_04e15ec74c754a4c81c6e552d055f9dc proquest_journals_3275533954 gale_infotracacademiconefile_A865558805 crossref_primary_10_3390_infrastructures10110308 |
| PublicationCentury | 2000 |
| PublicationDate | 20251101 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 20251101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Infrastructures (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Law (ref_8) 1997; 201 Li (ref_15) 2020; 27 Wang (ref_14) 2020; 61 Wang (ref_20) 2021; 102 ref_34 Law (ref_9) 1999; 121 Yang (ref_19) 2023; 185 ref_30 Jiang (ref_12) 2024; 208 Deng (ref_31) 2023; 28 Moslehi (ref_27) 2025; 74 Zhu (ref_28) 2023; 211 Li (ref_16) 2025; 238 Huang (ref_22) 2024; 24 Guo (ref_7) 2022; 10 Li (ref_10) 2024; 60 Zhu (ref_2) 2003; 268 Khodarahmi (ref_6) 2023; 30 Wei (ref_26) 2023; 23 Zhang (ref_25) 2024; 231 Schmid (ref_33) 2022; 2 Huang (ref_24) 2024; 53 Purwanto (ref_32) 2021; 2 ref_1 Jiang (ref_13) 2021; 160 Aloisio (ref_3) 2020; 215 ref_29 Mazumder (ref_5) 2010; 11 Song (ref_21) 2022; 171 Liu (ref_4) 2022; 29 Liu (ref_17) 2024; 359 Huang (ref_23) 2025; 15 Wang (ref_11) 2021; 156 Ji (ref_18) 2025; 253 |
| References_xml | – volume: 10 start-page: 58869 year: 2022 ident: ref_7 article-title: A review of wavelet analysis and its applications: Challenges and opportunities publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3179517 – ident: ref_34 – volume: 156 start-page: 107586 year: 2021 ident: ref_11 article-title: A new iteration regularization method for dynamic load identification of stochastic structures publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107586 – volume: 185 start-page: 109757 year: 2023 ident: ref_19 article-title: Dynamic load identification based on deep convolution neural network publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109757 – volume: 15 start-page: 985 year: 2025 ident: ref_23 article-title: Reconstruction of structural acceleration response based on CNN-BiGRU with squeeze-and-excitation under environmental temperature effects publication-title: J. Civ. Struct. Health Monit. doi: 10.1007/s13349-024-00859-w – volume: 359 start-page: 122740 year: 2024 ident: ref_17 article-title: A hybrid model-data-driven framework for inverse load identification of interval structures based on physics-informed neural network and improved Kalman filter algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.122740 – volume: 11 start-page: 2287 year: 2010 ident: ref_5 article-title: Spectral regularization algorithms for learning large incomplete matrices publication-title: J. Mach. Learn. Res. – volume: 121 start-page: 394 year: 1999 ident: ref_9 article-title: Moving force identification—A frequency and time domains analysis publication-title: J. Dyn. Syst. Meas. Control doi: 10.1115/1.2802487 – volume: 160 start-page: 107881 year: 2021 ident: ref_13 article-title: A novel time-domain dynamic load identification numerical algorithm for continuous systems publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.107881 – volume: 23 start-page: 2350126 year: 2023 ident: ref_26 article-title: Bridge static influence line identification based on structural dynamic responses under high-speed trains publication-title: Int. J. Struct. Stab. Dyn. doi: 10.1142/S0219455423501262 – volume: 253 start-page: 110493 year: 2025 ident: ref_18 article-title: A physical–data-driven combined strategy for load identification of tire type rail transit vehicle publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2024.110493 – ident: ref_1 – ident: ref_29 doi: 10.3390/app11020853 – volume: 211 start-page: 112599 year: 2023 ident: ref_28 article-title: Structural damage detection of the bridge under moving loads with the quasi-static displacement influence line from one sensor publication-title: Measurement doi: 10.1016/j.measurement.2023.112599 – volume: 215 start-page: 110619 year: 2020 ident: ref_3 article-title: Time-domain identification of the elastic modulus of simply supported box girders under moving loads: Method and full-scale validation publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.110619 – volume: 30 start-page: 727 year: 2023 ident: ref_6 article-title: A review on Kalman filter models publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-022-09815-7 – volume: 2 start-page: 185 year: 2022 ident: ref_33 article-title: Why and how Savitzky–Golay filters should be replaced publication-title: ACS Meas. Sci. Au doi: 10.1021/acsmeasuresciau.1c00054 – volume: 60 start-page: 105840 year: 2024 ident: ref_10 article-title: A new improved fractional Tikhonov regularization method for moving force identification publication-title: Structures doi: 10.1016/j.istruc.2023.105840 – volume: 231 start-page: 114528 year: 2024 ident: ref_25 article-title: Missing Measurement Data Recovery Methods in Structural Health Monitoring: The State, Challenges and Case Study publication-title: Measurement doi: 10.1016/j.measurement.2024.114528 – ident: ref_30 doi: 10.3390/buildings14020392 – volume: 201 start-page: 1 year: 1997 ident: ref_8 article-title: Moving force identification: A time domain method publication-title: J. Sound Vib. doi: 10.1006/jsvi.1996.0774 – volume: 208 start-page: 110987 year: 2024 ident: ref_12 article-title: A novel dynamic load identification method based on improved basis functions and implicit Newmark-β for continuous system with unknown initial conditions publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2023.110987 – volume: 102 start-page: 104244 year: 2021 ident: ref_20 article-title: Deep regression adaptation networks with model-based transfer learning for dynamic load identification in the frequency domain publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104244 – volume: 2 start-page: 114 year: 2021 ident: ref_32 article-title: Partial least squares structural equation modeling (PLS-SEM) analysis for social and management research: A literature review publication-title: J. Ind. Eng. Manag. Res. – volume: 53 start-page: 103897 year: 2024 ident: ref_24 article-title: Nonlinear Modeling of Temperature-Induced Bearing Displacement of Long-Span Single-Pier Rigid Frame Bridge Based on DCNN-LSTM publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2023.103897 – volume: 74 start-page: 108549 year: 2025 ident: ref_27 article-title: Identification of high-speed moving loads using weakened modal shape functions conceptualised by the dynamic influence line publication-title: Structures doi: 10.1016/j.istruc.2025.108549 – volume: 28 start-page: 04022145 year: 2023 ident: ref_31 article-title: Genuine influence line and influence surface identification from measured bridge response considering vehicular wheel loads publication-title: J. Bridge Eng. doi: 10.1061/JBENF2.BEENG-5604 – volume: 29 start-page: 831 year: 2022 ident: ref_4 article-title: Dynamic Load Identification for Mechanical Systems: A Review publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-021-09594-7 – volume: 24 start-page: 1674 year: 2024 ident: ref_22 article-title: Damage Identification of Steel Bridge Based on Data Augmentation and Adaptive Optimization Neural Network publication-title: Struct. Health Monit. doi: 10.1177/14759217241255042 – volume: 61 start-page: 1929 year: 2020 ident: ref_14 article-title: A novel method of distributed dynamic load identification for aircraft structure considering multi-source uncertainties publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-019-02448-8 – volume: 268 start-page: 855 year: 2003 ident: ref_2 article-title: Dynamic axle and wheel loads identification: Laboratory studies publication-title: J. Sound Vib. doi: 10.1016/S0022-460X(02)01557-2 – volume: 27 start-page: e2464 year: 2020 ident: ref_15 article-title: Identification of earthquake ground motion based on limited acceleration measurements of structure using Kalman filtering technique publication-title: Struct. Control Health Monit. doi: 10.1002/stc.2464 – volume: 238 start-page: 113180 year: 2025 ident: ref_16 article-title: Structured Bayesian framework for distributed dynamic load identification: Exploiting joint sparsity and spatial correlation priors publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2025.113180 – volume: 171 start-page: 108872 year: 2022 ident: ref_21 article-title: Research on identification and active vibration control of cantilever structure based on NARX neural network publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.108872 |
| SSID | ssj0002087881 |
| Score | 2.3079066 |
| Snippet | The dynamic responses of bridges under multi moving loads are an essential precursor for their structural health monitoring (SHM). To enable the precise... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 308 |
| SubjectTerms | Accuracy Algorithms Bridges Deep learning dynamic load inversion algorithm Dynamic loads Errors Fourier transforms Identification influence line Influence lines Inverse problems Kalman filters Laws, regulations and rules Load load identification Moving loads Neural networks Regularization methods Sensors Strain gauges Structural health monitoring Traffic speed Vehicles Vision systems |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPOhBfGK1Sg6Cp6XZ3aRJjluxKNQiqNBbyFP00JW2-vudZLeyF_HibQkLyc5sZuZLZr5B6Cp38TRf2wwsn8mozGmmPQBXYYkzrgAHyFKh8JTPZmI-l4-dVl8xJ6yhB24ENyTU58xbTi1nVFMrcjvyjBWOMBaks9H6QtTTAVPv6XpNRJ70JqGrBFw_BH0tdcPJ-glANo9-r4xNJTvuKLH2_2abk8OZ7KO9NlLEVbPCA7TlF4dot8MfeIRshcFI4arlBccQgOKHNkMQT2vtVrgpxA3tyRweg9NyGB4g7sNP_rWh9odJvMZ1SKP3m7YleBpT4o_Ry-T2-eYua7smZBbghMiMMxS2pXRc8nLELdMQMYHYvBbME0N8JPkrBSMeHBHXUhurgyhhr5tR0MSXJ6i3qBf-FGEirQ_GCSuFoLkJGmINkL8ODFBQYUIfkY3w1EdDjqEAVER5q1_k3UfjKOSf1yO7dRoAnatW5-ovnffRdVRRnKNeL7XVbSkBrDqyWakqVtsysEysjwYbLap2c65UWXAGUa5k9Ow_VnOOdorYFDgVKA5QD77ZX6Bt-7V-Wy0v03_5DWpz6Ow priority: 102 providerName: Directory of Open Access Journals |
| Title | A New Approach for Multiple Loads Identification Based on the Segmental Area of the Influence Lines |
| URI | https://www.proquest.com/docview/3275533954 https://doaj.org/article/04e15ec74c754a4c81c6e552d055f9dc |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2412-3811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002087881 issn: 2412-3811 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2412-3811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002087881 issn: 2412-3811 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 2412-3811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002087881 issn: 2412-3811 databaseCode: P5Z dateStart: 20161201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2412-3811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002087881 issn: 2412-3811 databaseCode: BENPR dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2412-3811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002087881 issn: 2412-3811 databaseCode: PIMPY dateStart: 20161201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH_ayg7jMPaF6MYqH5B2inASu7FPU4tAQypVxDaJ7RL5KxWXBlrY37_3HLfjAhdukePITp7fZ977PYCj3FM037gMJZ_NhM5FZgI6rspxb32BClDGQuFZNZ-rqytdp4DbOqVVbmRiFNS-cxQjPy6LSqJpoqX4dnObUdco-ruaWmi8hB1CSSDGrOWfbYyl4IrQ0vu0LnyWHyPVVqZHZr1HdzYn7VdSa8kHSili9z8moaPaOdt77obfwptkcLJJf0LewYuwfA-7D2AIP4CbMJR1bJLgxRnasewiJRqyWWf8mvX1vG0K8LEp6j7P8ALNR_YjLPoOAbhIMKxr4-j5pvsJm1Fm_Uf4dXb68-R7lpovZA69EpVZbwVyt_aVrspx5aRBw8upPBglA7c8EFZgqSQPqM8qo411plUligw7bg0P5T4Mlt0yHADj2oXWeuW0UiK3rUGTReU4XaIzVdh2CHzz9ZubHmOjQd-ECNY8QrAhTIlK2-kEkh0HutWiSTzXcBFyGVwlXCWFEbh5Nw5SFp5L2WrvhvCVaExrdHcr40yqSMBdEyhWM6GiXYkCTg7hcEPjJvH4uvlP4E9P3_4MrwvqGhwrGA9hgG8TvsAr9_fuer0awc70dF5fjmI0YBQPMI7V5xf173-T4PtK |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQ98CzqQgEfQJyiOom9tg8V2gJVV01XlShSxcX4lYrLpuy2RfwpfmNn8ii9lFsP3CLHSuz487zimQ_gbR4pmu9ChpLPZ8LkInMJHVcdePSxQAUo20ThSs1m-vjYHK7AnyEXho5VDjKxFdSxCRQj3yoLJdE0MVJ8OP2ZEWsU_V0dKDQ6WOyn37_QZVtuTz_h-r4rit3PRx_3sp5VIAtobuvMRy8QtiYqo8qxCtKhRRF0npyWiXueqAheqSVPKKiVM84HV2t0-5Uf146nEp97B-4Kgc4S7p9D-e0qplNwTdXZu2NkOFa-hShZuK4S7Dm6zzlp25KoLK8pwZYr4CaN0Kq53Uf_2wd6DA97g5pNuh3wBFbS_CmsXSuz-AzChKEsZ5O-fDpDO50d9AcpWdW4uGRdvnLdBzDZDur2yPACzWP2JZ10DAj4kuRYU7et04HdhVWUObAOX29lls9hdd7M0wYwbkKqfdTBaC1yXzs0yXSO3SU6i4WvR8CH1banXQ0Ri74XAcTeAJAR7BAqrrpTEfC2oVmc2F6mWC5SLlNQIigpnMDBh3GSsohcytrEMIL3hCl6R3O2cMH1GRc4air6ZSeUlCxRgMsRbA6Ysr0MW9q_gHrx79tv4P7e0UFlq-ls_yU8KIghuc3W3IRVnFl6BffCxdmP5eJ1u10YfL9t-F0C1bFSUA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghA98CzqQgEfQJyidRJ77RwqtKWsWHVZrQRIFRfjVyoum7LbFvHX-HWdSZzSS7n1wC1yrMSOP88rnvkAXueBovnWZyj5XCaqXGQ2ouOqPQ8uFKgAZZsoPFPzuT46qhYb8KfPhaFjlb1MbAV1aDzFyIdloSSaJpUUwzodi1gcTN6d_MyIQYr-tPZ0Gh1EDuPvX-i-rfemB7jWb4pi8uHL-49ZYhjIPJreOnPBCYRwFVSlypHy0qJ14XUerZaROx6pIF6pJY8otJWtrPO21iXuCzeqLY8lPvcW3FboY5Ljt5DfLuM7BddUqb07Uobj5kNEzMp2VWHP0JXOSfOWRGt5RSG2vAHXaYdW5U0e_M8f6yHcT4Y2G3c74xFsxOVj2LpSfvEJ-DFDGc_Gqaw6Q_udfUoHLNmssWHNujzmOgU22T7q_MDwAs1m9jked8wI-JJoWVO3rdOe9YXNKKNgG77eyCyfwuayWcYdYLzysXZB-0prkbvaoqmmc-wu0YksXD0A3q-8Oelqixj0yQgs5hqwDGCfEHLZnYqDtw3N6tgkWWO4iLmMXgmvpLACB-9HUcoicCnrKvgBvCV80Tua05X1NmVi4KipGJgZU7KyRMEuB7Db48sk2bY2f8H17N-3X8FdRJ2ZTeeHz-FeQcTJbRLnLmzixOILuOPPT3-sVy_bncPg-02j7wIU5Fsk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Approach+for+Multiple+Loads+Identification+Based+on+the+Segmental+Area+of+the+Influence+Lines&rft.jtitle=Infrastructures+%28Basel%29&rft.au=Liu%2C+Ping&rft.au=Qiu%2C+Weiwei&rft.au=Kaewunruen%2C+Sakdirat&rft.date=2025-11-01&rft.pub=MDPI+AG&rft.issn=2412-3811&rft.eissn=2412-3811&rft.volume=10&rft.issue=11&rft_id=info:doi/10.3390%2Finfrastructures10110308&rft.externalDocID=A865558805 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2412-3811&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2412-3811&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2412-3811&client=summon |