Distributed identification of stable large-scale isomorphic nonlinear networks using partial observations

Distributed parameter identification in large-scale isomorphic nonlinear multi-agent networks encounters challenges due to inherent nonlinear dynamics and partial observations. Ensuring stability is crucial for stable parameter identification, especially under uncertainties in data and models. To ad...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Automatica (Oxford) Ročník 184; s. 112702
Hlavní autori: Li, Chunhui, Yu, Chengpu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.02.2026
Predmet:
ISSN:0005-1098
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Distributed parameter identification in large-scale isomorphic nonlinear multi-agent networks encounters challenges due to inherent nonlinear dynamics and partial observations. Ensuring stability is crucial for stable parameter identification, especially under uncertainties in data and models. To address these challenges, this paper proposes a particle consensus-based expectation maximization (EM) algorithm. The E-step employs a distributed particle filtering approach to achieve global consensus state estimation, approximating the analytically intractable likelihood function arising from unknown dynamic interactions and multiple integrals. The M-step imposes prior contraction-stabilization constraints during likelihood function maximization to ensure stable parameter identification under data and model uncertainties. Performance analysis and simulation results confirm the effectiveness of the proposed method in accurately identifying parameters for nonlinear networks.
ISSN:0005-1098
DOI:10.1016/j.automatica.2025.112702