Neural algorithm for optimization of multidimensional object controller parameters
Optimal control of multivariable systems is a complex dynamic process that minimizes the cost function to obtain the optimal control strategy. Unfortunately, for nonlinear systems, it is not possible to use the traditional linear quadratic regulator (LQR), which would be optimal over the entire rang...
Uloženo v:
| Vydáno v: | Neural computing & applications Ročník 36; číslo 25; s. 15907 - 15924 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
01.09.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 0941-0643, 1433-3058 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Optimal control of multivariable systems is a complex dynamic process that minimizes the cost function to obtain the optimal control strategy. Unfortunately, for nonlinear systems, it is not possible to use the traditional linear quadratic regulator (LQR), which would be optimal over the entire range of parameter variation. The problem of nonlinear multivariable systems and their optimal control is very momentous. The solution presented in this paper is based on the application of Reinforcement Learning (RL) networks in controlling a five-degree-of-freedom overhead crane system. Additionally, unlike the classical approach, the algorithm is adapted to directly analyze tabular data of inputs and outputs of the controlled model instead of analyzing its state as feedback (model-free). Implementing the new control structure for the multivariable system improved control quality compared to the classical LQR controller with linearization at the operating point. In addition to quality, the resource indicators, which in the LQR controller are represented by the matrix
R
, have been significantly improved. The architecture of the neural control system is presented, ensuring that over the entire range of nonlinearity, the quality of control is preserved while reducing the cost of its resource intensity. Obtaining optimal control with reduced resources for its implementation induces a wide range of applications of such neural control in engineering systems. The effectiveness of the proposed control system has been demonstrated in simulation studies. The simulation results present the system’s excellent control performance and adaptability over the entire range of object nonlinearity. The neural algorithm resulted in significantly shorter adjustment time and better control quality with significantly less system resource consumption and increased system dynamics. |
|---|---|
| AbstractList | Optimal control of multivariable systems is a complex dynamic process that minimizes the cost function to obtain the optimal control strategy. Unfortunately, for nonlinear systems, it is not possible to use the traditional linear quadratic regulator (LQR), which would be optimal over the entire range of parameter variation. The problem of nonlinear multivariable systems and their optimal control is very momentous. The solution presented in this paper is based on the application of Reinforcement Learning (RL) networks in controlling a five-degree-of-freedom overhead crane system. Additionally, unlike the classical approach, the algorithm is adapted to directly analyze tabular data of inputs and outputs of the controlled model instead of analyzing its state as feedback (model-free). Implementing the new control structure for the multivariable system improved control quality compared to the classical LQR controller with linearization at the operating point. In addition to quality, the resource indicators, which in the LQR controller are represented by the matrix
R
, have been significantly improved. The architecture of the neural control system is presented, ensuring that over the entire range of nonlinearity, the quality of control is preserved while reducing the cost of its resource intensity. Obtaining optimal control with reduced resources for its implementation induces a wide range of applications of such neural control in engineering systems. The effectiveness of the proposed control system has been demonstrated in simulation studies. The simulation results present the system’s excellent control performance and adaptability over the entire range of object nonlinearity. The neural algorithm resulted in significantly shorter adjustment time and better control quality with significantly less system resource consumption and increased system dynamics. Optimal control of multivariable systems is a complex dynamic process that minimizes the cost function to obtain the optimal control strategy. Unfortunately, for nonlinear systems, it is not possible to use the traditional linear quadratic regulator (LQR), which would be optimal over the entire range of parameter variation. The problem of nonlinear multivariable systems and their optimal control is very momentous. The solution presented in this paper is based on the application of Reinforcement Learning (RL) networks in controlling a five-degree-of-freedom overhead crane system. Additionally, unlike the classical approach, the algorithm is adapted to directly analyze tabular data of inputs and outputs of the controlled model instead of analyzing its state as feedback (model-free). Implementing the new control structure for the multivariable system improved control quality compared to the classical LQR controller with linearization at the operating point. In addition to quality, the resource indicators, which in the LQR controller are represented by the matrix R, have been significantly improved. The architecture of the neural control system is presented, ensuring that over the entire range of nonlinearity, the quality of control is preserved while reducing the cost of its resource intensity. Obtaining optimal control with reduced resources for its implementation induces a wide range of applications of such neural control in engineering systems. The effectiveness of the proposed control system has been demonstrated in simulation studies. The simulation results present the system’s excellent control performance and adaptability over the entire range of object nonlinearity. The neural algorithm resulted in significantly shorter adjustment time and better control quality with significantly less system resource consumption and increased system dynamics. |
| Author | Lalik, Krzysztof Knap, Paweł Bałazy, Patryk |
| Author_xml | – sequence: 1 givenname: Patryk surname: Bałazy fullname: Bałazy, Patryk organization: Faculty of Mechanical Engineering and Robotics, AGH University of Krakow – sequence: 2 givenname: Krzysztof orcidid: 0000-0003-4277-9801 surname: Lalik fullname: Lalik, Krzysztof email: klalik@agh.edu.pl organization: Faculty of Mechanical Engineering and Robotics, AGH University of Krakow – sequence: 3 givenname: Paweł surname: Knap fullname: Knap, Paweł organization: Faculty of Mechanical Engineering and Robotics, AGH University of Krakow |
| BookMark | eNp9kE1LxDAQhoOs4O7qH_AU8FydfLXNURZ1hUVB9BzSNlm7tE1N0oP-erNW8OZphnk_GJ4VWgxuMAhdErgmAMVNABCUZEB5RoASltETtCScsYyBKBdoCZInOefsDK1COAAAz0uxRC9PZvK6w7rbO9_G9x5b57EbY9u3Xzq2bsDO4n7qYtu0vRlCuiS7qw6mjrh2Q_Su64zHo_a6N9H4cI5Ore6Cufida_R2f_e62Wa754fHze0uqymVNGsqkKaEuiHc2Fo2QhS2Slshda3LdNBW0JxoyHVeMXFUgGhecEYos8KyNbqae0fvPiYTojq4yafvgmIgRSGLHGRy0dlVexeCN1aNvu21_1QE1JGdmtmpxE79sFM0hdgcCsk87I3_q_4n9Q3mL3Vw |
| Cites_doi | 10.1016/j.ins.2021.05.018 10.1109/TCST.2007.903392 10.1109/ACCESS.2021.3090907 10.1109/TSMC.2016.2640950 10.1049/iet-cta.2020.0073 10.1080/10798587.2017.1329245 10.1146/annurev-control-053018-023825 10.1109/TCYB.2020.2998505 10.1002/rnc.4469 10.3390/s21186247 10.1002/rnc.4396 10.1016/j.jfranklin.2011.05.009 10.1109/TFUZZ.2020.2973950 10.4028/www.scientific.net/SSP.164.95 10.1049/iet-cta.2017.0154 10.1177/1045389X15610907 10.1109/ACCESS.2020.3009357 10.1137/S0363012902400713 10.5121/ijccms.2013.2301 10.1007/978-981-16-6448-9_2 10.1016/j.ymssp.2017.03.015 10.1016/j.sna.2016.01.047 10.1016/j.ifacol.2018.09.373 10.1109/TFUZZ.2019.2915192 10.3390/e23111487 10.1109/TFUZZ.2021.3119750 10.1002/rnc.3987 10.1049/iet-cta.2011.0348 10.1002/rnc.4352 10.1515/ecce-2015-0006 10.1016/j.measurement.2017.01.041 10.1016/j.neucom.2021.12.091 10.2514/1.G004226 10.1109/AIM43001.2020.9158838 10.1109/ICSTCC.2019.8886157 10.1007/978-81-322-2217-0_41 10.1609/aaai.v33i01.33013870 10.1109/EPEC52095.2021.9621395 10.1109/ICRA40945.2020.9196673 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00521-024-10213-2 |
| DatabaseName | Springer Nature Link CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 15924 |
| ExternalDocumentID | 10_1007_s00521_024_10213_2 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c2292-db09e80cd14efc9d557fbefc79aca8c9daf5261a06a6b35efc701a4743123f5f3 |
| IEDL.DBID | RSV |
| ISSN | 0941-0643 |
| IngestDate | Wed Nov 05 07:39:19 EST 2025 Sat Nov 29 04:30:44 EST 2025 Fri Feb 21 02:38:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25 |
| Keywords | Model-free Neural network Adaptive control Reinforcement learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2292-db09e80cd14efc9d557fbefc79aca8c9daf5261a06a6b35efc701a4743123f5f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4277-9801 |
| OpenAccessLink | https://link.springer.com/10.1007/s00521-024-10213-2 |
| PQID | 3095797609 |
| PQPubID | 2043988 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_3095797609 crossref_primary_10_1007_s00521_024_10213_2 springer_journals_10_1007_s00521_024_10213_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20240900 2024-09-00 20240901 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 9 year: 2024 text: 20240900 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2024 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Janusz, Ireneusz, Filip (CR15) 2014; 23 Roopaei, Rad, Jamshidi (CR17) 2017; 23 Aksjonov, Vodovozov, Petlenkov (CR7) 2015; 9 Ireneusz (CR6) 2010; 164 Huang, Zhou, Di, Zhou, Li (CR1) 2019; 29 Yuhao, Xin (CR25) 2022; 493 Dominik (CR9) 2016; 27 CR14 CR36 CR34 Jin (CR22) 2018; 28 Bae, Kim, Lee, Shim (CR37) 2021; 9 Sudarsana Reddy, Mahalakshmi (CR23) 2022 CR31 Milovanović, Antić, Milojković, Spasić (CR13) 2020; 52 Kumar, Tulsyan, Gopaluni, Loewen (CR18) 2018; 51 Konieczny, Stojek (CR11) 2021; 21 Lv, De Schutter, Wenwu, Zhang, Baldi (CR28) 2019; 28 Yang, He, Liu, Zhu (CR2) 2017; 11 Ito, Fujimoto, Tadokoro (CR38) 2020; 8 Moritz, Georg, Schlöder Johannes (CR39) 2005; 43 Janusz, Ireneusz, Krzysztof (CR24) 2012; 14 Recht (CR35) 2019; 2 Lalik, Dominik, Ćwiakała, Kwaśniewski (CR32) 2017; 102 Anderson, Buehner, Young, Hittle, Anderson, Jilin, Hodgson (CR8) 2008; 16 Riyadh, Ahmed, Al Mhdawi Ammar, Nik, Kasim, Ibraheem, Humaidi Amjad, Al-Qassar Arif (CR19) 2021; 23 Sutton, Barto Andrew (CR46) 2018 de Jesús, Lughofer, Pieper, Cruz, Martinez, Ochoa, Islas, Garcia (CR3) 2021; 569 Alireza, Mohammad, Ehsan, Ali (CR30) 2018; 28 Dominik, Kwaśniewski, Kaszuba (CR10) 2016; 240 CR47 Liu, Pan, Li, Chen (CR41) 2017; 47 Win, Hesketh, Eaton (CR45) 2013; 2 CR44 Liu, Hou, Zhang, Ji (CR12) 2020; 14 CR43 CR20 Sui, Xu, Tong, Chen (CR27) 2021; 30 CR42 Alexis, Nikolakopoulos, Tzes (CR40) 2012; 6 Iswanto, Ahmad (CR16) 2021; 2 Aksu, Coban (CR21) 2019; 29 Zhu, Pan, Zhou, Changxin (CR29) 2020; 29 Yuksel, Ziya, Nurkan (CR5) 2011; 348 Liyana, Zaharuddin, Abdullahi Auwalu, Izzuan, Lazim Izzuddin (CR4) 2017; 95 Fanghua, Ben, Huanqing, Liang, Xudong (CR26) 2022; 69 Biggs, Hugo (CR33) 2020; 43 I Dominik (10213_CR9) 2016; 27 I Iswanto (10213_CR16) 2021; 2 R Liyana (10213_CR4) 2017; 95 D Ireneusz (10213_CR6) 2010; 164 10213_CR20 10213_CR42 10213_CR44 M Roopaei (10213_CR17) 2017; 23 10213_CR43 K Sudarsana Reddy (10213_CR23) 2022 Z Zhu (10213_CR29) 2020; 29 10213_CR47 D Moritz (10213_CR39) 2005; 43 K Janusz (10213_CR15) 2014; 23 K Alexis (10213_CR40) 2012; 6 X Jin (10213_CR22) 2018; 28 RS Sutton (10213_CR46) 2018 JD Biggs (10213_CR33) 2020; 43 S Sui (10213_CR27) 2021; 30 K Janusz (10213_CR24) 2012; 14 T Fanghua (10213_CR26) 2022; 69 J Konieczny (10213_CR11) 2021; 21 M Lv (10213_CR28) 2019; 28 MS Alireza (10213_CR30) 2018; 28 X Yang (10213_CR2) 2017; 11 Z Yuhao (10213_CR25) 2022; 493 H Yuksel (10213_CR5) 2011; 348 I Dominik (10213_CR10) 2016; 240 Y Ito (10213_CR38) 2020; 8 MB Milovanović (10213_CR13) 2020; 52 J Bae (10213_CR37) 2021; 9 10213_CR31 K Lalik (10213_CR32) 2017; 102 10213_CR34 B Recht (10213_CR35) 2019; 2 TM Win (10213_CR45) 2013; 2 10213_CR14 10213_CR36 IO Aksu (10213_CR21) 2019; 29 M Anderson (10213_CR8) 2008; 16 A-AW Riyadh (10213_CR19) 2021; 23 A Aksjonov (10213_CR7) 2015; 9 Rubio J de Jesús (10213_CR3) 2021; 569 H Liu (10213_CR41) 2017; 47 SSP Kumar (10213_CR18) 2018; 51 H Huang (10213_CR1) 2019; 29 S Liu (10213_CR12) 2020; 14 |
| References_xml | – volume: 569 start-page: 669 year: 2021 end-page: 686 ident: CR3 article-title: Adapting h-infinity controller for the desired reference tracking of the sphere position in the maglev process publication-title: Inf Sci doi: 10.1016/j.ins.2021.05.018 – volume: 16 start-page: 475 issue: 3 year: 2008 end-page: 483 ident: CR8 article-title: MIMO robust control for HVAC systems publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2007.903392 – volume: 2 start-page: 594 issue: 6 year: 2021 end-page: 604 ident: CR16 article-title: Second order integral fuzzy logic control based rocket tracking control publication-title: J Robot Control (JRC) – ident: CR43 – volume: 9 start-page: 89249 year: 2021 end-page: 89262 ident: CR37 article-title: Curriculum learning for vehicle lateral stability estimations publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3090907 – volume: 47 start-page: 2209 issue: 8 year: 2017 end-page: 2217 ident: CR41 article-title: Adaptive fuzzy backstepping control of fractional-order nonlinear systems publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2016.2640950 – ident: CR47 – volume: 14 start-page: 2084 issue: 15 year: 2020 end-page: 2096 ident: CR12 article-title: Model-free adaptive control method for a class of unknown MIMO systems with measurement noise and application to quadrotor aircraft publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2020.0073 – volume: 23 start-page: 389 issue: 3 year: 2017 end-page: 391 ident: CR17 article-title: Deep learning control for complex and large scale cloud systems publication-title: Intell Autom Soft Comput doi: 10.1080/10798587.2017.1329245 – volume: 14 start-page: 61 issue: 1 year: 2012 ident: CR24 article-title: Application of self-oscillating system for stress measurement in metal publication-title: J Vibroeng – volume: 2 start-page: 253 year: 2019 end-page: 279 ident: CR35 article-title: A tour of reinforcement learning: the view from continuous control publication-title: Ann Rev Control Robot Auton Syst doi: 10.1146/annurev-control-053018-023825 – ident: CR14 – volume: 52 start-page: 1221 year: 2020 ident: CR13 article-title: Adaptive control of nonlinear MIMO system with orthogonal endocrine intelligent controller publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2020.2998505 – volume: 29 start-page: 1854 issue: 6 year: 2019 end-page: 1871 ident: CR21 article-title: Sliding mode PI control with backstepping approach for MIMO nonlinear cross-coupled tank systems publication-title: Int J Robust Nonlinear Control doi: 10.1002/rnc.4469 – volume: 21 start-page: 6247 issue: 18 year: 2021 ident: CR11 article-title: Use of the k-nearest neighbour classifier in wear condition classification of a positive displacement pump publication-title: Sensors doi: 10.3390/s21186247 – volume: 29 start-page: 375 issue: 2 year: 2019 end-page: 392 ident: CR1 article-title: Robust neural network-based tracking control and stabilization of a wheeled mobile robot with input saturation publication-title: Int J Robust Nonlinear Control doi: 10.1002/rnc.4396 – volume: 348 start-page: 1886 issue: 8 year: 2011 end-page: 1902 ident: CR5 article-title: Mimo fuzzy sliding mode controlled dual arm robot in load transportation publication-title: J Frankl Inst doi: 10.1016/j.jfranklin.2011.05.009 – volume: 29 start-page: 1273 issue: 5 year: 2020 end-page: 1283 ident: CR29 article-title: Event-triggered adaptive fuzzy control for stochastic nonlinear systems with unmeasured states and unknown backlash-like hysteresis publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2020.2973950 – volume: 164 start-page: 95 year: 2010 end-page: 98 ident: CR6 article-title: Implementation of the type-2 fuzzy controller in PLC publication-title: Solid State Phenom doi: 10.4028/www.scientific.net/SSP.164.95 – ident: CR42 – volume: 11 start-page: 2307 issue: 14 year: 2017 end-page: 2316 ident: CR2 article-title: Adaptive dynamic programming for robust neural control of unknown continuous-time non-linear systems publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2017.0154 – volume: 27 start-page: 1917 issue: 14 year: 2016 end-page: 1926 ident: CR9 article-title: Type-2 fuzzy logic controller for position control of shape memory alloy wire actuator publication-title: J Intell Mater Syst Struct doi: 10.1177/1045389X15610907 – volume: 8 start-page: 131047 year: 2020 end-page: 131062 ident: CR38 article-title: Kernel-based Hamilton-Jacobi equations for data-driven optimal and h-infinity control publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3009357 – volume: 43 start-page: 1714 issue: 5 year: 2005 end-page: 1736 ident: CR39 article-title: A real-time iteration scheme for nonlinear optimization in optimal feedback control publication-title: SIAM J Control Optim doi: 10.1137/S0363012902400713 – volume: 2 start-page: 1 issue: 3 year: 2013 end-page: 16 ident: CR45 article-title: Simmechanics visualization of experimental model overhead crane, its linearization and reference tracking-LQR control publication-title: AIRCC Int J Chaos Control Model Simul (IJCCMS) doi: 10.5121/ijccms.2013.2301 – year: 2018 ident: CR46 publication-title: Reinforcement learning: an introduction – ident: CR44 – start-page: 11 year: 2022 end-page: 27 ident: CR23 article-title: A MIMO-based compatible fuzzy logic controller for DFIG-based wind turbine generator publication-title: Artificial intelligence and technologies doi: 10.1007/978-981-16-6448-9_2 – volume: 95 start-page: 1 year: 2017 end-page: 23 ident: CR4 article-title: Control strategies for crane systems: a comprehensive review publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.03.015 – volume: 240 start-page: 10 year: 2016 end-page: 16 ident: CR10 article-title: Ionic polymer-metal composite displacement sensors publication-title: Sens Actuators A doi: 10.1016/j.sna.2016.01.047 – volume: 51 start-page: 512 issue: 18 year: 2018 end-page: 517 ident: CR18 article-title: A deep learning architecture for predictive control publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.09.373 – volume: 28 start-page: 746 issue: 4 year: 2019 end-page: 757 ident: CR28 article-title: Nonlinear systems with uncertain periodically disturbed control gain functions: adaptive fuzzy control with invariance properties publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2019.2915192 – volume: 23 start-page: 1487 issue: 11 year: 2021 ident: CR19 article-title: Anti-disturbance compensation-based nonlinear control for a class of MIMO uncertain nonlinear systems publication-title: Entropy doi: 10.3390/e23111487 – ident: CR31 – volume: 30 start-page: 3633 year: 2021 ident: CR27 article-title: A novel prescribed performance fuzzy adaptive output feedback control for nonlinear MIMO systems in finite-time publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2021.3119750 – volume: 23 start-page: 2339 issue: 6 year: 2014 ident: CR15 article-title: Energy harvesting system based on ionic polymer-metal composites-identification of electrical parameters publication-title: Pol J Environ Stud – volume: 69 start-page: 2912 year: 2022 ident: CR26 article-title: Adaptive fuzzy tracking control of switched MIMO nonlinear systems with full state constraints and unknown control directions publication-title: IEEE Trans Circuits Syst II Express Briefs – ident: CR34 – ident: CR36 – volume: 28 start-page: 1808 issue: 5 year: 2018 end-page: 1829 ident: CR22 article-title: Adaptive decentralized finite-time output tracking control for MIMO interconnected nonlinear systems with output constraints and actuator faults publication-title: Int J Robust Nonlinear Control doi: 10.1002/rnc.3987 – volume: 6 start-page: 1812 issue: 12 year: 2012 end-page: 1827 ident: CR40 article-title: Model predictive quadrotor control: attitude, altitude and position experimental studies publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2011.0348 – volume: 28 start-page: 5981 issue: 18 year: 2018 end-page: 5996 ident: CR30 article-title: Adaptive prescribed performance control of switched MIMO uncertain nonlinear systems subject to unmodeled dynamics and input nonlinearities publication-title: Int J Robust Nonlinear Control doi: 10.1002/rnc.4352 – volume: 9 start-page: 5 issue: 1 year: 2015 end-page: 13 ident: CR7 article-title: Three-dimensional crane modelling and control using Euler-Lagrange state-space approach and anti-swing fuzzy logic publication-title: Sci J Riga Tech Univ Electr Control Commun Eng doi: 10.1515/ecce-2015-0006 – volume: 102 start-page: 47 year: 2017 end-page: 56 ident: CR32 article-title: Integrated stress measurement system in tower crane mast publication-title: Measurement doi: 10.1016/j.measurement.2017.01.041 – ident: CR20 – volume: 493 start-page: 474 year: 2022 ident: CR25 article-title: Adaptive fuzzy command filtering control for nonlinear MIMO systems with full state constraints and unknown control direction publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.12.091 – volume: 43 start-page: 299 issue: 2 year: 2020 end-page: 309 ident: CR33 article-title: Neural-network-based optimal attitude control using four impulsive thrusters publication-title: J Guid Control Dyn doi: 10.2514/1.G004226 – ident: 10213_CR47 – volume: 14 start-page: 61 issue: 1 year: 2012 ident: 10213_CR24 publication-title: J Vibroeng – volume: 569 start-page: 669 year: 2021 ident: 10213_CR3 publication-title: Inf Sci doi: 10.1016/j.ins.2021.05.018 – volume: 95 start-page: 1 year: 2017 ident: 10213_CR4 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.03.015 – volume: 69 start-page: 2912 year: 2022 ident: 10213_CR26 publication-title: IEEE Trans Circuits Syst II Express Briefs – volume: 28 start-page: 746 issue: 4 year: 2019 ident: 10213_CR28 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2019.2915192 – volume: 2 start-page: 253 year: 2019 ident: 10213_CR35 publication-title: Ann Rev Control Robot Auton Syst doi: 10.1146/annurev-control-053018-023825 – volume: 52 start-page: 1221 year: 2020 ident: 10213_CR13 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2020.2998505 – ident: 10213_CR31 doi: 10.1109/AIM43001.2020.9158838 – volume: 29 start-page: 1273 issue: 5 year: 2020 ident: 10213_CR29 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2020.2973950 – volume: 21 start-page: 6247 issue: 18 year: 2021 ident: 10213_CR11 publication-title: Sensors doi: 10.3390/s21186247 – volume: 23 start-page: 1487 issue: 11 year: 2021 ident: 10213_CR19 publication-title: Entropy doi: 10.3390/e23111487 – volume: 6 start-page: 1812 issue: 12 year: 2012 ident: 10213_CR40 publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2011.0348 – volume-title: Reinforcement learning: an introduction year: 2018 ident: 10213_CR46 – volume: 493 start-page: 474 year: 2022 ident: 10213_CR25 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.12.091 – volume: 2 start-page: 1 issue: 3 year: 2013 ident: 10213_CR45 publication-title: AIRCC Int J Chaos Control Model Simul (IJCCMS) doi: 10.5121/ijccms.2013.2301 – volume: 29 start-page: 375 issue: 2 year: 2019 ident: 10213_CR1 publication-title: Int J Robust Nonlinear Control doi: 10.1002/rnc.4396 – ident: 10213_CR20 doi: 10.1109/ICSTCC.2019.8886157 – ident: 10213_CR14 doi: 10.1007/978-81-322-2217-0_41 – volume: 43 start-page: 1714 issue: 5 year: 2005 ident: 10213_CR39 publication-title: SIAM J Control Optim doi: 10.1137/S0363012902400713 – volume: 14 start-page: 2084 issue: 15 year: 2020 ident: 10213_CR12 publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2020.0073 – volume: 16 start-page: 475 issue: 3 year: 2008 ident: 10213_CR8 publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2007.903392 – volume: 9 start-page: 5 issue: 1 year: 2015 ident: 10213_CR7 publication-title: Sci J Riga Tech Univ Electr Control Commun Eng doi: 10.1515/ecce-2015-0006 – volume: 30 start-page: 3633 year: 2021 ident: 10213_CR27 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2021.3119750 – volume: 27 start-page: 1917 issue: 14 year: 2016 ident: 10213_CR9 publication-title: J Intell Mater Syst Struct doi: 10.1177/1045389X15610907 – volume: 23 start-page: 389 issue: 3 year: 2017 ident: 10213_CR17 publication-title: Intell Autom Soft Comput doi: 10.1080/10798587.2017.1329245 – ident: 10213_CR43 doi: 10.1609/aaai.v33i01.33013870 – volume: 164 start-page: 95 year: 2010 ident: 10213_CR6 publication-title: Solid State Phenom doi: 10.4028/www.scientific.net/SSP.164.95 – volume: 29 start-page: 1854 issue: 6 year: 2019 ident: 10213_CR21 publication-title: Int J Robust Nonlinear Control doi: 10.1002/rnc.4469 – volume: 43 start-page: 299 issue: 2 year: 2020 ident: 10213_CR33 publication-title: J Guid Control Dyn doi: 10.2514/1.G004226 – volume: 9 start-page: 89249 year: 2021 ident: 10213_CR37 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3090907 – volume: 23 start-page: 2339 issue: 6 year: 2014 ident: 10213_CR15 publication-title: Pol J Environ Stud – ident: 10213_CR36 doi: 10.1109/EPEC52095.2021.9621395 – volume: 348 start-page: 1886 issue: 8 year: 2011 ident: 10213_CR5 publication-title: J Frankl Inst doi: 10.1016/j.jfranklin.2011.05.009 – start-page: 11 volume-title: Artificial intelligence and technologies year: 2022 ident: 10213_CR23 doi: 10.1007/978-981-16-6448-9_2 – volume: 28 start-page: 5981 issue: 18 year: 2018 ident: 10213_CR30 publication-title: Int J Robust Nonlinear Control doi: 10.1002/rnc.4352 – volume: 8 start-page: 131047 year: 2020 ident: 10213_CR38 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3009357 – volume: 102 start-page: 47 year: 2017 ident: 10213_CR32 publication-title: Measurement doi: 10.1016/j.measurement.2017.01.041 – ident: 10213_CR34 – volume: 28 start-page: 1808 issue: 5 year: 2018 ident: 10213_CR22 publication-title: Int J Robust Nonlinear Control doi: 10.1002/rnc.3987 – volume: 51 start-page: 512 issue: 18 year: 2018 ident: 10213_CR18 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.09.373 – volume: 11 start-page: 2307 issue: 14 year: 2017 ident: 10213_CR2 publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2017.0154 – ident: 10213_CR42 – volume: 2 start-page: 594 issue: 6 year: 2021 ident: 10213_CR16 publication-title: J Robot Control (JRC) – volume: 240 start-page: 10 year: 2016 ident: 10213_CR10 publication-title: Sens Actuators A doi: 10.1016/j.sna.2016.01.047 – ident: 10213_CR44 doi: 10.1109/ICRA40945.2020.9196673 – volume: 47 start-page: 2209 issue: 8 year: 2017 ident: 10213_CR41 publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2016.2640950 |
| SSID | ssj0004685 |
| Score | 2.3829336 |
| Snippet | Optimal control of multivariable systems is a complex dynamic process that minimizes the cost function to obtain the optimal control strategy. Unfortunately,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 15907 |
| SubjectTerms | Algorithms Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Control systems Controllers Cost analysis Cost function Cranes Data Mining and Knowledge Discovery Image Processing and Computer Vision Linear quadratic regulator Multivariable control Nonlinear control Nonlinear systems Nonlinearity Optimal control Original Article Parameters Probability and Statistics in Computer Science System dynamics System effectiveness |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA5aPXixrlitkoM3DaZJZjuJiMWDlCIKxcuQVQXbqW3195uXZqwKevE2JOEx5GV5ecv3IXTMKZX-msxIJp0kgCFFlDMJMbnMlVFKGxsKhW-yXi8fDIp-dLhNY1plfSaGg9pUGnzkZ5xCQClLaXE-fiXAGgXR1UihsYxWACUBqBv6ycOXushAyelfMJDdI3gsmgmlc-AP9a1MECC35oR9v5gW1uaPAGm4d7rN__7xBlqPFie-mC-RTbRkR1uoWbM54Li5t9Et4HT4gfLl0UuZPQ2xt2dx5Y-UYazVxJXDIQHRACXAHM4DVwo8OTimvL94iYAmPoQsm-kOuu9e3V1ek8i4QDRjBSNG0cLmVJuOsE4XJkkyp_xXVkgtc98gXeKfXJKmMlU8gR7akQKsEMZd4vguaoyqkd1D2ErBrbQqE4kRKRVSc5NC1S5Nc6WMbaGTerrL8RxYo_yEUA7KKb1yyqCckrVQu57jMm6yabmY4BY6rbW06P5d2v7f0g7QGoOFETLJ2qgxm7zZQ7Sq32fP08lRWGIfcpvaGA priority: 102 providerName: ProQuest |
| Title | Neural algorithm for optimization of multidimensional object controller parameters |
| URI | https://link.springer.com/article/10.1007/s00521-024-10213-2 https://www.proquest.com/docview/3095797609 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-3058 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwMhEJ5o68GL9RmrteHgTUnoAvs4qmnjwTRNfaTxsoEF1KTtmm719wt0t1WjB71tgJDNAPOA-b4BOKWECGsmIxwJI7DjkMLSKI5VLGKppMyU9kDhm6jfj0ejZFCCwooq2716kvSaegl2czeYNvQNGHblqCm2irduzV3sCjYMbx8-oSF9IU4bt7icHkZLqMzPc3w1Rysf89uzqLc2vcb__nMbtkrvEl0stsMOrOnpLjSqyg2oPMh7MHScHHagGD_ls5f58wRZ3xXlVn1MSlwmyg3yyYbK0f8vqDtQLt2tDSrT28d2RsccPnEZNcU-3Pe6d1fXuKyugLMgSAKsJEl0TDLVYdpkieI8MtJ-RYnIRGwbhOE2vBIkFKGk3PWQjmDO4wio4YYeQG2aT_UhIC0Y1ULLiHHFQsJERlXoELokjKVUuglnlZDT1wWJRrqkS_biSq24Ui-uNGhCq1qHtDxQRUqJe0-MQpI04byS-6r799mO_jb8GDYDt3Q-i6wFtfnsTZ_ARvY-fylmbahfdvuDYRvWB_yx7bfdB52w0jM |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB5BikQvUF4ilIcPcAILx_a-DhVCFAQiRAgFKeKy2Gtvi5Rk0yRt1T_V31iPs0sKEtw4cFvZq9Gu5_OMH_PNAOwKxpRzkxGNVK4o5pCiOjcBNbGKtdE6M9YThZtRqxV3Osn1DPytuDAYVlnZRG-oTZHhGfmhYHihFIUsORr8oFg1Cm9XqxIaE1hc2j-_3ZZt9OXiq9PvHudnp-2Tc1pWFaAZ5wmnRrPExiwzDWnzLDFBEOXaPUWJylTsGlQeuG2FYqEKtQiwhzWURE_LRR7kwsmdhQ9Scoaz6Dq4-4-H6UuAuh0TRhNJUZJ0PFUPz19dK5cUi2kLyp86wunq9tmFrPdzZ4vvbYQ-wUK5oibHkymwBDO2vwyLVbUKUhqvFbjBPCTuRdX95r56_L1H3HqdFM5k9kouKily4gMsDZY8mKQrIYXGkypShvR3nUTMlt7DKKLRKty-yZ-tQa1f9O06EKuksMrqSAZGhkyqTJgQWcksjLU2tg77lXrTwSRxSPqYItqDIXVgSD0YUl6HzUqnaWlERulUoXU4qFAx7X5Z2sbr0nZg_rx91UybF63Lz_CRIyh91Nwm1MbDn3YL5rJf44fRcNvDm8D9W6PlH8XUOWQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SRbxYn1itmoM3DU032ddR1KJYSvFFb0uySbTQdku7-vvNpLttFT2ItyUJYZm8ZpLv-wahM0apsMdkSEJhBAENKSKN8omKRCSVlKnSjijcDjudqNeLu0ssfod2L58kZ5wGUGka5Y2xMo058Q1uM20Y7HECqakZsZvwKgcgPcTrjy9LzEiXlNPGMIDv4aygzfzcx9ejaeFvfnsidSdPq_r_f95Cm4XXiS9n02QbrejRDqqWGR1wscB30QNoddiGYvCaTfr52xBbnxZndlsZFnxNnBnsQIgK0gLMJD1wJuE2Bxew94HtERTFh4C0me6h59bN09UtKbIukNTzYo8oSWMd0VQ1uTZprHw_NNJ-hbFIRWQLhPFt2CVoIALJfKihTcHBE_GY8Q3bR5VRNtIHCGvBmRZahtxXPKBcpEwFwNylQSSl0jV0Xho8Gc_ENZK5jLIzV2LNlThzJV4N1csxSYqFNk0YhXfGMKBxDV2UY7Co_r23w781P0Xr3etW0r7r3B-hDQ9G0QHN6qiST971MVpLP_L-dHLi5t8nsrTbYQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+algorithm+for+optimization+of+multidimensional+object+controller+parameters&rft.jtitle=Neural+computing+%26+applications&rft.au=Ba%C5%82azy%2C+Patryk&rft.au=Lalik%2C+Krzysztof&rft.au=Knap%2C+Pawe%C5%82&rft.date=2024-09-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=36&rft.issue=25&rft.spage=15907&rft.epage=15924&rft_id=info:doi/10.1007%2Fs00521-024-10213-2&rft.externalDocID=10_1007_s00521_024_10213_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |