Neural algorithm for optimization of multidimensional object controller parameters

Optimal control of multivariable systems is a complex dynamic process that minimizes the cost function to obtain the optimal control strategy. Unfortunately, for nonlinear systems, it is not possible to use the traditional linear quadratic regulator (LQR), which would be optimal over the entire rang...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 36; číslo 25; s. 15907 - 15924
Hlavní autoři: Bałazy, Patryk, Lalik, Krzysztof, Knap, Paweł
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.09.2024
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Optimal control of multivariable systems is a complex dynamic process that minimizes the cost function to obtain the optimal control strategy. Unfortunately, for nonlinear systems, it is not possible to use the traditional linear quadratic regulator (LQR), which would be optimal over the entire range of parameter variation. The problem of nonlinear multivariable systems and their optimal control is very momentous. The solution presented in this paper is based on the application of Reinforcement Learning (RL) networks in controlling a five-degree-of-freedom overhead crane system. Additionally, unlike the classical approach, the algorithm is adapted to directly analyze tabular data of inputs and outputs of the controlled model instead of analyzing its state as feedback (model-free). Implementing the new control structure for the multivariable system improved control quality compared to the classical LQR controller with linearization at the operating point. In addition to quality, the resource indicators, which in the LQR controller are represented by the matrix R , have been significantly improved. The architecture of the neural control system is presented, ensuring that over the entire range of nonlinearity, the quality of control is preserved while reducing the cost of its resource intensity. Obtaining optimal control with reduced resources for its implementation induces a wide range of applications of such neural control in engineering systems. The effectiveness of the proposed control system has been demonstrated in simulation studies. The simulation results present the system’s excellent control performance and adaptability over the entire range of object nonlinearity. The neural algorithm resulted in significantly shorter adjustment time and better control quality with significantly less system resource consumption and increased system dynamics.
AbstractList Optimal control of multivariable systems is a complex dynamic process that minimizes the cost function to obtain the optimal control strategy. Unfortunately, for nonlinear systems, it is not possible to use the traditional linear quadratic regulator (LQR), which would be optimal over the entire range of parameter variation. The problem of nonlinear multivariable systems and their optimal control is very momentous. The solution presented in this paper is based on the application of Reinforcement Learning (RL) networks in controlling a five-degree-of-freedom overhead crane system. Additionally, unlike the classical approach, the algorithm is adapted to directly analyze tabular data of inputs and outputs of the controlled model instead of analyzing its state as feedback (model-free). Implementing the new control structure for the multivariable system improved control quality compared to the classical LQR controller with linearization at the operating point. In addition to quality, the resource indicators, which in the LQR controller are represented by the matrix R , have been significantly improved. The architecture of the neural control system is presented, ensuring that over the entire range of nonlinearity, the quality of control is preserved while reducing the cost of its resource intensity. Obtaining optimal control with reduced resources for its implementation induces a wide range of applications of such neural control in engineering systems. The effectiveness of the proposed control system has been demonstrated in simulation studies. The simulation results present the system’s excellent control performance and adaptability over the entire range of object nonlinearity. The neural algorithm resulted in significantly shorter adjustment time and better control quality with significantly less system resource consumption and increased system dynamics.
Optimal control of multivariable systems is a complex dynamic process that minimizes the cost function to obtain the optimal control strategy. Unfortunately, for nonlinear systems, it is not possible to use the traditional linear quadratic regulator (LQR), which would be optimal over the entire range of parameter variation. The problem of nonlinear multivariable systems and their optimal control is very momentous. The solution presented in this paper is based on the application of Reinforcement Learning (RL) networks in controlling a five-degree-of-freedom overhead crane system. Additionally, unlike the classical approach, the algorithm is adapted to directly analyze tabular data of inputs and outputs of the controlled model instead of analyzing its state as feedback (model-free). Implementing the new control structure for the multivariable system improved control quality compared to the classical LQR controller with linearization at the operating point. In addition to quality, the resource indicators, which in the LQR controller are represented by the matrix R, have been significantly improved. The architecture of the neural control system is presented, ensuring that over the entire range of nonlinearity, the quality of control is preserved while reducing the cost of its resource intensity. Obtaining optimal control with reduced resources for its implementation induces a wide range of applications of such neural control in engineering systems. The effectiveness of the proposed control system has been demonstrated in simulation studies. The simulation results present the system’s excellent control performance and adaptability over the entire range of object nonlinearity. The neural algorithm resulted in significantly shorter adjustment time and better control quality with significantly less system resource consumption and increased system dynamics.
Author Lalik, Krzysztof
Knap, Paweł
Bałazy, Patryk
Author_xml – sequence: 1
  givenname: Patryk
  surname: Bałazy
  fullname: Bałazy, Patryk
  organization: Faculty of Mechanical Engineering and Robotics, AGH University of Krakow
– sequence: 2
  givenname: Krzysztof
  orcidid: 0000-0003-4277-9801
  surname: Lalik
  fullname: Lalik, Krzysztof
  email: klalik@agh.edu.pl
  organization: Faculty of Mechanical Engineering and Robotics, AGH University of Krakow
– sequence: 3
  givenname: Paweł
  surname: Knap
  fullname: Knap, Paweł
  organization: Faculty of Mechanical Engineering and Robotics, AGH University of Krakow
BookMark eNp9kE1LxDAQhoOs4O7qH_AU8FydfLXNURZ1hUVB9BzSNlm7tE1N0oP-erNW8OZphnk_GJ4VWgxuMAhdErgmAMVNABCUZEB5RoASltETtCScsYyBKBdoCZInOefsDK1COAAAz0uxRC9PZvK6w7rbO9_G9x5b57EbY9u3Xzq2bsDO4n7qYtu0vRlCuiS7qw6mjrh2Q_Su64zHo_a6N9H4cI5Ore6Cufida_R2f_e62Wa754fHze0uqymVNGsqkKaEuiHc2Fo2QhS2Slshda3LdNBW0JxoyHVeMXFUgGhecEYos8KyNbqae0fvPiYTojq4yafvgmIgRSGLHGRy0dlVexeCN1aNvu21_1QE1JGdmtmpxE79sFM0hdgcCsk87I3_q_4n9Q3mL3Vw
Cites_doi 10.1016/j.ins.2021.05.018
10.1109/TCST.2007.903392
10.1109/ACCESS.2021.3090907
10.1109/TSMC.2016.2640950
10.1049/iet-cta.2020.0073
10.1080/10798587.2017.1329245
10.1146/annurev-control-053018-023825
10.1109/TCYB.2020.2998505
10.1002/rnc.4469
10.3390/s21186247
10.1002/rnc.4396
10.1016/j.jfranklin.2011.05.009
10.1109/TFUZZ.2020.2973950
10.4028/www.scientific.net/SSP.164.95
10.1049/iet-cta.2017.0154
10.1177/1045389X15610907
10.1109/ACCESS.2020.3009357
10.1137/S0363012902400713
10.5121/ijccms.2013.2301
10.1007/978-981-16-6448-9_2
10.1016/j.ymssp.2017.03.015
10.1016/j.sna.2016.01.047
10.1016/j.ifacol.2018.09.373
10.1109/TFUZZ.2019.2915192
10.3390/e23111487
10.1109/TFUZZ.2021.3119750
10.1002/rnc.3987
10.1049/iet-cta.2011.0348
10.1002/rnc.4352
10.1515/ecce-2015-0006
10.1016/j.measurement.2017.01.041
10.1016/j.neucom.2021.12.091
10.2514/1.G004226
10.1109/AIM43001.2020.9158838
10.1109/ICSTCC.2019.8886157
10.1007/978-81-322-2217-0_41
10.1609/aaai.v33i01.33013870
10.1109/EPEC52095.2021.9621395
10.1109/ICRA40945.2020.9196673
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-024-10213-2
DatabaseName Springer Nature Link
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 15924
ExternalDocumentID 10_1007_s00521_024_10213_2
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2292-db09e80cd14efc9d557fbefc79aca8c9daf5261a06a6b35efc701a4743123f5f3
IEDL.DBID RSV
ISSN 0941-0643
IngestDate Wed Nov 05 07:39:19 EST 2025
Sat Nov 29 04:30:44 EST 2025
Fri Feb 21 02:38:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords Model-free
Neural network
Adaptive control
Reinforcement learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2292-db09e80cd14efc9d557fbefc79aca8c9daf5261a06a6b35efc701a4743123f5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4277-9801
OpenAccessLink https://link.springer.com/10.1007/s00521-024-10213-2
PQID 3095797609
PQPubID 2043988
PageCount 18
ParticipantIDs proquest_journals_3095797609
crossref_primary_10_1007_s00521_024_10213_2
springer_journals_10_1007_s00521_024_10213_2
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Janusz, Ireneusz, Filip (CR15) 2014; 23
Roopaei, Rad, Jamshidi (CR17) 2017; 23
Aksjonov, Vodovozov, Petlenkov (CR7) 2015; 9
Ireneusz (CR6) 2010; 164
Huang, Zhou, Di, Zhou, Li (CR1) 2019; 29
Yuhao, Xin (CR25) 2022; 493
Dominik (CR9) 2016; 27
CR14
CR36
CR34
Jin (CR22) 2018; 28
Bae, Kim, Lee, Shim (CR37) 2021; 9
Sudarsana Reddy, Mahalakshmi (CR23) 2022
CR31
Milovanović, Antić, Milojković, Spasić (CR13) 2020; 52
Kumar, Tulsyan, Gopaluni, Loewen (CR18) 2018; 51
Konieczny, Stojek (CR11) 2021; 21
Lv, De Schutter, Wenwu, Zhang, Baldi (CR28) 2019; 28
Yang, He, Liu, Zhu (CR2) 2017; 11
Ito, Fujimoto, Tadokoro (CR38) 2020; 8
Moritz, Georg, Schlöder Johannes (CR39) 2005; 43
Janusz, Ireneusz, Krzysztof (CR24) 2012; 14
Recht (CR35) 2019; 2
Lalik, Dominik, Ćwiakała, Kwaśniewski (CR32) 2017; 102
Anderson, Buehner, Young, Hittle, Anderson, Jilin, Hodgson (CR8) 2008; 16
Riyadh, Ahmed, Al Mhdawi Ammar, Nik, Kasim, Ibraheem, Humaidi Amjad, Al-Qassar Arif (CR19) 2021; 23
Sutton, Barto Andrew (CR46) 2018
de Jesús, Lughofer, Pieper, Cruz, Martinez, Ochoa, Islas, Garcia (CR3) 2021; 569
Alireza, Mohammad, Ehsan, Ali (CR30) 2018; 28
Dominik, Kwaśniewski, Kaszuba (CR10) 2016; 240
CR47
Liu, Pan, Li, Chen (CR41) 2017; 47
Win, Hesketh, Eaton (CR45) 2013; 2
CR44
Liu, Hou, Zhang, Ji (CR12) 2020; 14
CR43
CR20
Sui, Xu, Tong, Chen (CR27) 2021; 30
CR42
Alexis, Nikolakopoulos, Tzes (CR40) 2012; 6
Iswanto, Ahmad (CR16) 2021; 2
Aksu, Coban (CR21) 2019; 29
Zhu, Pan, Zhou, Changxin (CR29) 2020; 29
Yuksel, Ziya, Nurkan (CR5) 2011; 348
Liyana, Zaharuddin, Abdullahi Auwalu, Izzuan, Lazim Izzuddin (CR4) 2017; 95
Fanghua, Ben, Huanqing, Liang, Xudong (CR26) 2022; 69
Biggs, Hugo (CR33) 2020; 43
I Dominik (10213_CR9) 2016; 27
I Iswanto (10213_CR16) 2021; 2
R Liyana (10213_CR4) 2017; 95
D Ireneusz (10213_CR6) 2010; 164
10213_CR20
10213_CR42
10213_CR44
M Roopaei (10213_CR17) 2017; 23
10213_CR43
K Sudarsana Reddy (10213_CR23) 2022
Z Zhu (10213_CR29) 2020; 29
10213_CR47
D Moritz (10213_CR39) 2005; 43
K Janusz (10213_CR15) 2014; 23
K Alexis (10213_CR40) 2012; 6
X Jin (10213_CR22) 2018; 28
RS Sutton (10213_CR46) 2018
JD Biggs (10213_CR33) 2020; 43
S Sui (10213_CR27) 2021; 30
K Janusz (10213_CR24) 2012; 14
T Fanghua (10213_CR26) 2022; 69
J Konieczny (10213_CR11) 2021; 21
M Lv (10213_CR28) 2019; 28
MS Alireza (10213_CR30) 2018; 28
X Yang (10213_CR2) 2017; 11
Z Yuhao (10213_CR25) 2022; 493
H Yuksel (10213_CR5) 2011; 348
I Dominik (10213_CR10) 2016; 240
Y Ito (10213_CR38) 2020; 8
MB Milovanović (10213_CR13) 2020; 52
J Bae (10213_CR37) 2021; 9
10213_CR31
K Lalik (10213_CR32) 2017; 102
10213_CR34
B Recht (10213_CR35) 2019; 2
TM Win (10213_CR45) 2013; 2
10213_CR14
10213_CR36
IO Aksu (10213_CR21) 2019; 29
M Anderson (10213_CR8) 2008; 16
A-AW Riyadh (10213_CR19) 2021; 23
A Aksjonov (10213_CR7) 2015; 9
Rubio J de Jesús (10213_CR3) 2021; 569
H Liu (10213_CR41) 2017; 47
SSP Kumar (10213_CR18) 2018; 51
H Huang (10213_CR1) 2019; 29
S Liu (10213_CR12) 2020; 14
References_xml – volume: 569
  start-page: 669
  year: 2021
  end-page: 686
  ident: CR3
  article-title: Adapting h-infinity controller for the desired reference tracking of the sphere position in the maglev process
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.05.018
– volume: 16
  start-page: 475
  issue: 3
  year: 2008
  end-page: 483
  ident: CR8
  article-title: MIMO robust control for HVAC systems
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2007.903392
– volume: 2
  start-page: 594
  issue: 6
  year: 2021
  end-page: 604
  ident: CR16
  article-title: Second order integral fuzzy logic control based rocket tracking control
  publication-title: J Robot Control (JRC)
– ident: CR43
– volume: 9
  start-page: 89249
  year: 2021
  end-page: 89262
  ident: CR37
  article-title: Curriculum learning for vehicle lateral stability estimations
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3090907
– volume: 47
  start-page: 2209
  issue: 8
  year: 2017
  end-page: 2217
  ident: CR41
  article-title: Adaptive fuzzy backstepping control of fractional-order nonlinear systems
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2016.2640950
– ident: CR47
– volume: 14
  start-page: 2084
  issue: 15
  year: 2020
  end-page: 2096
  ident: CR12
  article-title: Model-free adaptive control method for a class of unknown MIMO systems with measurement noise and application to quadrotor aircraft
  publication-title: IET Control Theory Appl
  doi: 10.1049/iet-cta.2020.0073
– volume: 23
  start-page: 389
  issue: 3
  year: 2017
  end-page: 391
  ident: CR17
  article-title: Deep learning control for complex and large scale cloud systems
  publication-title: Intell Autom Soft Comput
  doi: 10.1080/10798587.2017.1329245
– volume: 14
  start-page: 61
  issue: 1
  year: 2012
  ident: CR24
  article-title: Application of self-oscillating system for stress measurement in metal
  publication-title: J Vibroeng
– volume: 2
  start-page: 253
  year: 2019
  end-page: 279
  ident: CR35
  article-title: A tour of reinforcement learning: the view from continuous control
  publication-title: Ann Rev Control Robot Auton Syst
  doi: 10.1146/annurev-control-053018-023825
– ident: CR14
– volume: 52
  start-page: 1221
  year: 2020
  ident: CR13
  article-title: Adaptive control of nonlinear MIMO system with orthogonal endocrine intelligent controller
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2020.2998505
– volume: 29
  start-page: 1854
  issue: 6
  year: 2019
  end-page: 1871
  ident: CR21
  article-title: Sliding mode PI control with backstepping approach for MIMO nonlinear cross-coupled tank systems
  publication-title: Int J Robust Nonlinear Control
  doi: 10.1002/rnc.4469
– volume: 21
  start-page: 6247
  issue: 18
  year: 2021
  ident: CR11
  article-title: Use of the k-nearest neighbour classifier in wear condition classification of a positive displacement pump
  publication-title: Sensors
  doi: 10.3390/s21186247
– volume: 29
  start-page: 375
  issue: 2
  year: 2019
  end-page: 392
  ident: CR1
  article-title: Robust neural network-based tracking control and stabilization of a wheeled mobile robot with input saturation
  publication-title: Int J Robust Nonlinear Control
  doi: 10.1002/rnc.4396
– volume: 348
  start-page: 1886
  issue: 8
  year: 2011
  end-page: 1902
  ident: CR5
  article-title: Mimo fuzzy sliding mode controlled dual arm robot in load transportation
  publication-title: J Frankl Inst
  doi: 10.1016/j.jfranklin.2011.05.009
– volume: 29
  start-page: 1273
  issue: 5
  year: 2020
  end-page: 1283
  ident: CR29
  article-title: Event-triggered adaptive fuzzy control for stochastic nonlinear systems with unmeasured states and unknown backlash-like hysteresis
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2020.2973950
– volume: 164
  start-page: 95
  year: 2010
  end-page: 98
  ident: CR6
  article-title: Implementation of the type-2 fuzzy controller in PLC
  publication-title: Solid State Phenom
  doi: 10.4028/www.scientific.net/SSP.164.95
– ident: CR42
– volume: 11
  start-page: 2307
  issue: 14
  year: 2017
  end-page: 2316
  ident: CR2
  article-title: Adaptive dynamic programming for robust neural control of unknown continuous-time non-linear systems
  publication-title: IET Control Theory Appl
  doi: 10.1049/iet-cta.2017.0154
– volume: 27
  start-page: 1917
  issue: 14
  year: 2016
  end-page: 1926
  ident: CR9
  article-title: Type-2 fuzzy logic controller for position control of shape memory alloy wire actuator
  publication-title: J Intell Mater Syst Struct
  doi: 10.1177/1045389X15610907
– volume: 8
  start-page: 131047
  year: 2020
  end-page: 131062
  ident: CR38
  article-title: Kernel-based Hamilton-Jacobi equations for data-driven optimal and h-infinity control
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3009357
– volume: 43
  start-page: 1714
  issue: 5
  year: 2005
  end-page: 1736
  ident: CR39
  article-title: A real-time iteration scheme for nonlinear optimization in optimal feedback control
  publication-title: SIAM J Control Optim
  doi: 10.1137/S0363012902400713
– volume: 2
  start-page: 1
  issue: 3
  year: 2013
  end-page: 16
  ident: CR45
  article-title: Simmechanics visualization of experimental model overhead crane, its linearization and reference tracking-LQR control
  publication-title: AIRCC Int J Chaos Control Model Simul (IJCCMS)
  doi: 10.5121/ijccms.2013.2301
– year: 2018
  ident: CR46
  publication-title: Reinforcement learning: an introduction
– ident: CR44
– start-page: 11
  year: 2022
  end-page: 27
  ident: CR23
  article-title: A MIMO-based compatible fuzzy logic controller for DFIG-based wind turbine generator
  publication-title: Artificial intelligence and technologies
  doi: 10.1007/978-981-16-6448-9_2
– volume: 95
  start-page: 1
  year: 2017
  end-page: 23
  ident: CR4
  article-title: Control strategies for crane systems: a comprehensive review
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.03.015
– volume: 240
  start-page: 10
  year: 2016
  end-page: 16
  ident: CR10
  article-title: Ionic polymer-metal composite displacement sensors
  publication-title: Sens Actuators A
  doi: 10.1016/j.sna.2016.01.047
– volume: 51
  start-page: 512
  issue: 18
  year: 2018
  end-page: 517
  ident: CR18
  article-title: A deep learning architecture for predictive control
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.09.373
– volume: 28
  start-page: 746
  issue: 4
  year: 2019
  end-page: 757
  ident: CR28
  article-title: Nonlinear systems with uncertain periodically disturbed control gain functions: adaptive fuzzy control with invariance properties
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2019.2915192
– volume: 23
  start-page: 1487
  issue: 11
  year: 2021
  ident: CR19
  article-title: Anti-disturbance compensation-based nonlinear control for a class of MIMO uncertain nonlinear systems
  publication-title: Entropy
  doi: 10.3390/e23111487
– ident: CR31
– volume: 30
  start-page: 3633
  year: 2021
  ident: CR27
  article-title: A novel prescribed performance fuzzy adaptive output feedback control for nonlinear MIMO systems in finite-time
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2021.3119750
– volume: 23
  start-page: 2339
  issue: 6
  year: 2014
  ident: CR15
  article-title: Energy harvesting system based on ionic polymer-metal composites-identification of electrical parameters
  publication-title: Pol J Environ Stud
– volume: 69
  start-page: 2912
  year: 2022
  ident: CR26
  article-title: Adaptive fuzzy tracking control of switched MIMO nonlinear systems with full state constraints and unknown control directions
  publication-title: IEEE Trans Circuits Syst II Express Briefs
– ident: CR34
– ident: CR36
– volume: 28
  start-page: 1808
  issue: 5
  year: 2018
  end-page: 1829
  ident: CR22
  article-title: Adaptive decentralized finite-time output tracking control for MIMO interconnected nonlinear systems with output constraints and actuator faults
  publication-title: Int J Robust Nonlinear Control
  doi: 10.1002/rnc.3987
– volume: 6
  start-page: 1812
  issue: 12
  year: 2012
  end-page: 1827
  ident: CR40
  article-title: Model predictive quadrotor control: attitude, altitude and position experimental studies
  publication-title: IET Control Theory Appl
  doi: 10.1049/iet-cta.2011.0348
– volume: 28
  start-page: 5981
  issue: 18
  year: 2018
  end-page: 5996
  ident: CR30
  article-title: Adaptive prescribed performance control of switched MIMO uncertain nonlinear systems subject to unmodeled dynamics and input nonlinearities
  publication-title: Int J Robust Nonlinear Control
  doi: 10.1002/rnc.4352
– volume: 9
  start-page: 5
  issue: 1
  year: 2015
  end-page: 13
  ident: CR7
  article-title: Three-dimensional crane modelling and control using Euler-Lagrange state-space approach and anti-swing fuzzy logic
  publication-title: Sci J Riga Tech Univ Electr Control Commun Eng
  doi: 10.1515/ecce-2015-0006
– volume: 102
  start-page: 47
  year: 2017
  end-page: 56
  ident: CR32
  article-title: Integrated stress measurement system in tower crane mast
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.01.041
– ident: CR20
– volume: 493
  start-page: 474
  year: 2022
  ident: CR25
  article-title: Adaptive fuzzy command filtering control for nonlinear MIMO systems with full state constraints and unknown control direction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.12.091
– volume: 43
  start-page: 299
  issue: 2
  year: 2020
  end-page: 309
  ident: CR33
  article-title: Neural-network-based optimal attitude control using four impulsive thrusters
  publication-title: J Guid Control Dyn
  doi: 10.2514/1.G004226
– ident: 10213_CR47
– volume: 14
  start-page: 61
  issue: 1
  year: 2012
  ident: 10213_CR24
  publication-title: J Vibroeng
– volume: 569
  start-page: 669
  year: 2021
  ident: 10213_CR3
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.05.018
– volume: 95
  start-page: 1
  year: 2017
  ident: 10213_CR4
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.03.015
– volume: 69
  start-page: 2912
  year: 2022
  ident: 10213_CR26
  publication-title: IEEE Trans Circuits Syst II Express Briefs
– volume: 28
  start-page: 746
  issue: 4
  year: 2019
  ident: 10213_CR28
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2019.2915192
– volume: 2
  start-page: 253
  year: 2019
  ident: 10213_CR35
  publication-title: Ann Rev Control Robot Auton Syst
  doi: 10.1146/annurev-control-053018-023825
– volume: 52
  start-page: 1221
  year: 2020
  ident: 10213_CR13
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2020.2998505
– ident: 10213_CR31
  doi: 10.1109/AIM43001.2020.9158838
– volume: 29
  start-page: 1273
  issue: 5
  year: 2020
  ident: 10213_CR29
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2020.2973950
– volume: 21
  start-page: 6247
  issue: 18
  year: 2021
  ident: 10213_CR11
  publication-title: Sensors
  doi: 10.3390/s21186247
– volume: 23
  start-page: 1487
  issue: 11
  year: 2021
  ident: 10213_CR19
  publication-title: Entropy
  doi: 10.3390/e23111487
– volume: 6
  start-page: 1812
  issue: 12
  year: 2012
  ident: 10213_CR40
  publication-title: IET Control Theory Appl
  doi: 10.1049/iet-cta.2011.0348
– volume-title: Reinforcement learning: an introduction
  year: 2018
  ident: 10213_CR46
– volume: 493
  start-page: 474
  year: 2022
  ident: 10213_CR25
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.12.091
– volume: 2
  start-page: 1
  issue: 3
  year: 2013
  ident: 10213_CR45
  publication-title: AIRCC Int J Chaos Control Model Simul (IJCCMS)
  doi: 10.5121/ijccms.2013.2301
– volume: 29
  start-page: 375
  issue: 2
  year: 2019
  ident: 10213_CR1
  publication-title: Int J Robust Nonlinear Control
  doi: 10.1002/rnc.4396
– ident: 10213_CR20
  doi: 10.1109/ICSTCC.2019.8886157
– ident: 10213_CR14
  doi: 10.1007/978-81-322-2217-0_41
– volume: 43
  start-page: 1714
  issue: 5
  year: 2005
  ident: 10213_CR39
  publication-title: SIAM J Control Optim
  doi: 10.1137/S0363012902400713
– volume: 14
  start-page: 2084
  issue: 15
  year: 2020
  ident: 10213_CR12
  publication-title: IET Control Theory Appl
  doi: 10.1049/iet-cta.2020.0073
– volume: 16
  start-page: 475
  issue: 3
  year: 2008
  ident: 10213_CR8
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2007.903392
– volume: 9
  start-page: 5
  issue: 1
  year: 2015
  ident: 10213_CR7
  publication-title: Sci J Riga Tech Univ Electr Control Commun Eng
  doi: 10.1515/ecce-2015-0006
– volume: 30
  start-page: 3633
  year: 2021
  ident: 10213_CR27
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2021.3119750
– volume: 27
  start-page: 1917
  issue: 14
  year: 2016
  ident: 10213_CR9
  publication-title: J Intell Mater Syst Struct
  doi: 10.1177/1045389X15610907
– volume: 23
  start-page: 389
  issue: 3
  year: 2017
  ident: 10213_CR17
  publication-title: Intell Autom Soft Comput
  doi: 10.1080/10798587.2017.1329245
– ident: 10213_CR43
  doi: 10.1609/aaai.v33i01.33013870
– volume: 164
  start-page: 95
  year: 2010
  ident: 10213_CR6
  publication-title: Solid State Phenom
  doi: 10.4028/www.scientific.net/SSP.164.95
– volume: 29
  start-page: 1854
  issue: 6
  year: 2019
  ident: 10213_CR21
  publication-title: Int J Robust Nonlinear Control
  doi: 10.1002/rnc.4469
– volume: 43
  start-page: 299
  issue: 2
  year: 2020
  ident: 10213_CR33
  publication-title: J Guid Control Dyn
  doi: 10.2514/1.G004226
– volume: 9
  start-page: 89249
  year: 2021
  ident: 10213_CR37
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3090907
– volume: 23
  start-page: 2339
  issue: 6
  year: 2014
  ident: 10213_CR15
  publication-title: Pol J Environ Stud
– ident: 10213_CR36
  doi: 10.1109/EPEC52095.2021.9621395
– volume: 348
  start-page: 1886
  issue: 8
  year: 2011
  ident: 10213_CR5
  publication-title: J Frankl Inst
  doi: 10.1016/j.jfranklin.2011.05.009
– start-page: 11
  volume-title: Artificial intelligence and technologies
  year: 2022
  ident: 10213_CR23
  doi: 10.1007/978-981-16-6448-9_2
– volume: 28
  start-page: 5981
  issue: 18
  year: 2018
  ident: 10213_CR30
  publication-title: Int J Robust Nonlinear Control
  doi: 10.1002/rnc.4352
– volume: 8
  start-page: 131047
  year: 2020
  ident: 10213_CR38
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3009357
– volume: 102
  start-page: 47
  year: 2017
  ident: 10213_CR32
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.01.041
– ident: 10213_CR34
– volume: 28
  start-page: 1808
  issue: 5
  year: 2018
  ident: 10213_CR22
  publication-title: Int J Robust Nonlinear Control
  doi: 10.1002/rnc.3987
– volume: 51
  start-page: 512
  issue: 18
  year: 2018
  ident: 10213_CR18
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.09.373
– volume: 11
  start-page: 2307
  issue: 14
  year: 2017
  ident: 10213_CR2
  publication-title: IET Control Theory Appl
  doi: 10.1049/iet-cta.2017.0154
– ident: 10213_CR42
– volume: 2
  start-page: 594
  issue: 6
  year: 2021
  ident: 10213_CR16
  publication-title: J Robot Control (JRC)
– volume: 240
  start-page: 10
  year: 2016
  ident: 10213_CR10
  publication-title: Sens Actuators A
  doi: 10.1016/j.sna.2016.01.047
– ident: 10213_CR44
  doi: 10.1109/ICRA40945.2020.9196673
– volume: 47
  start-page: 2209
  issue: 8
  year: 2017
  ident: 10213_CR41
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2016.2640950
SSID ssj0004685
Score 2.3829336
Snippet Optimal control of multivariable systems is a complex dynamic process that minimizes the cost function to obtain the optimal control strategy. Unfortunately,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 15907
SubjectTerms Algorithms
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Control systems
Controllers
Cost analysis
Cost function
Cranes
Data Mining and Knowledge Discovery
Image Processing and Computer Vision
Linear quadratic regulator
Multivariable control
Nonlinear control
Nonlinear systems
Nonlinearity
Optimal control
Original Article
Parameters
Probability and Statistics in Computer Science
System dynamics
System effectiveness
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA5aPXixrlitkoM3DaZJZjuJiMWDlCIKxcuQVQXbqW3195uXZqwKevE2JOEx5GV5ecv3IXTMKZX-msxIJp0kgCFFlDMJMbnMlVFKGxsKhW-yXi8fDIp-dLhNY1plfSaGg9pUGnzkZ5xCQClLaXE-fiXAGgXR1UihsYxWACUBqBv6ycOXushAyelfMJDdI3gsmgmlc-AP9a1MECC35oR9v5gW1uaPAGm4d7rN__7xBlqPFie-mC-RTbRkR1uoWbM54Li5t9Et4HT4gfLl0UuZPQ2xt2dx5Y-UYazVxJXDIQHRACXAHM4DVwo8OTimvL94iYAmPoQsm-kOuu9e3V1ek8i4QDRjBSNG0cLmVJuOsE4XJkkyp_xXVkgtc98gXeKfXJKmMlU8gR7akQKsEMZd4vguaoyqkd1D2ErBrbQqE4kRKRVSc5NC1S5Nc6WMbaGTerrL8RxYo_yEUA7KKb1yyqCckrVQu57jMm6yabmY4BY6rbW06P5d2v7f0g7QGoOFETLJ2qgxm7zZQ7Sq32fP08lRWGIfcpvaGA
  priority: 102
  providerName: ProQuest
Title Neural algorithm for optimization of multidimensional object controller parameters
URI https://link.springer.com/article/10.1007/s00521-024-10213-2
https://www.proquest.com/docview/3095797609
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwMhEJ5o68GL9RmrteHgTUnoAvs4qmnjwTRNfaTxsoEF1KTtmm719wt0t1WjB71tgJDNAPOA-b4BOKWECGsmIxwJI7DjkMLSKI5VLGKppMyU9kDhm6jfj0ejZFCCwooq2716kvSaegl2czeYNvQNGHblqCm2irduzV3sCjYMbx8-oSF9IU4bt7icHkZLqMzPc3w1Rysf89uzqLc2vcb__nMbtkrvEl0stsMOrOnpLjSqyg2oPMh7MHScHHagGD_ls5f58wRZ3xXlVn1MSlwmyg3yyYbK0f8vqDtQLt2tDSrT28d2RsccPnEZNcU-3Pe6d1fXuKyugLMgSAKsJEl0TDLVYdpkieI8MtJ-RYnIRGwbhOE2vBIkFKGk3PWQjmDO4wio4YYeQG2aT_UhIC0Y1ULLiHHFQsJERlXoELokjKVUuglnlZDT1wWJRrqkS_biSq24Ui-uNGhCq1qHtDxQRUqJe0-MQpI04byS-6r799mO_jb8GDYDt3Q-i6wFtfnsTZ_ARvY-fylmbahfdvuDYRvWB_yx7bfdB52w0jM
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB5BikQvUF4ilIcPcAILx_a-DhVCFAQiRAgFKeKy2Gtvi5Rk0yRt1T_V31iPs0sKEtw4cFvZq9Gu5_OMH_PNAOwKxpRzkxGNVK4o5pCiOjcBNbGKtdE6M9YThZtRqxV3Osn1DPytuDAYVlnZRG-oTZHhGfmhYHihFIUsORr8oFg1Cm9XqxIaE1hc2j-_3ZZt9OXiq9PvHudnp-2Tc1pWFaAZ5wmnRrPExiwzDWnzLDFBEOXaPUWJylTsGlQeuG2FYqEKtQiwhzWURE_LRR7kwsmdhQ9Scoaz6Dq4-4-H6UuAuh0TRhNJUZJ0PFUPz19dK5cUi2kLyp86wunq9tmFrPdzZ4vvbYQ-wUK5oibHkymwBDO2vwyLVbUKUhqvFbjBPCTuRdX95r56_L1H3HqdFM5k9kouKily4gMsDZY8mKQrIYXGkypShvR3nUTMlt7DKKLRKty-yZ-tQa1f9O06EKuksMrqSAZGhkyqTJgQWcksjLU2tg77lXrTwSRxSPqYItqDIXVgSD0YUl6HzUqnaWlERulUoXU4qFAx7X5Z2sbr0nZg_rx91UybF63Lz_CRIyh91Nwm1MbDn3YL5rJf44fRcNvDm8D9W6PlH8XUOWQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SRbxYn1itmoM3DU032ddR1KJYSvFFb0uySbTQdku7-vvNpLttFT2ItyUJYZm8ZpLv-wahM0apsMdkSEJhBAENKSKN8omKRCSVlKnSjijcDjudqNeLu0ssfod2L58kZ5wGUGka5Y2xMo058Q1uM20Y7HECqakZsZvwKgcgPcTrjy9LzEiXlNPGMIDv4aygzfzcx9ejaeFvfnsidSdPq_r_f95Cm4XXiS9n02QbrejRDqqWGR1wscB30QNoddiGYvCaTfr52xBbnxZndlsZFnxNnBnsQIgK0gLMJD1wJuE2Bxew94HtERTFh4C0me6h59bN09UtKbIukNTzYo8oSWMd0VQ1uTZprHw_NNJ-hbFIRWQLhPFt2CVoIALJfKihTcHBE_GY8Q3bR5VRNtIHCGvBmRZahtxXPKBcpEwFwNylQSSl0jV0Xho8Gc_ENZK5jLIzV2LNlThzJV4N1csxSYqFNk0YhXfGMKBxDV2UY7Co_r23w781P0Xr3etW0r7r3B-hDQ9G0QHN6qiST971MVpLP_L-dHLi5t8nsrTbYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+algorithm+for+optimization+of+multidimensional+object+controller+parameters&rft.jtitle=Neural+computing+%26+applications&rft.au=Ba%C5%82azy%2C+Patryk&rft.au=Lalik%2C+Krzysztof&rft.au=Knap%2C+Pawe%C5%82&rft.date=2024-09-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=36&rft.issue=25&rft.spage=15907&rft.epage=15924&rft_id=info:doi/10.1007%2Fs00521-024-10213-2&rft.externalDocID=10_1007_s00521_024_10213_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon