Inductive inference of Lindenmayer systems: algorithms and computational complexity

Lindenmayer systems (L-systems) are string rewriting systems that can model and be used to create simulations of processes with inherent parallelism and self-similarity. Inference of L-systems involves the automated learning of these models/grammars from data; and inductive inference involves learni...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Natural computing Ročník 24; číslo 3; s. 591 - 601
Hlavní autoři: Duffy, Christopher, Hillis, Sam, Khan, Umer, McQuillan, Ian, Shan, Sonja Linghui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Nature B.V 01.09.2025
Témata:
ISSN:1567-7818, 1572-9796
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Lindenmayer systems (L-systems) are string rewriting systems that can model and be used to create simulations of processes with inherent parallelism and self-similarity. Inference of L-systems involves the automated learning of these models/grammars from data; and inductive inference involves learning an L-system from a sequence of strings initially generated by an unknown L-system. This paper studies the computational complexity of inductive inference of a variety of different types of context-free L-systems (deterministic or nondeterministic, tabled or not, and allowing erasing or not). Because this inference is sometimes trivial for nondeterministic L-systems, it is more useful to find the smallest L-system that can generate the sequence of strings, in terms of either the number of rewriting rules, or (when there are tables), the number of tables. For all of the types of L-systems studied, finding an L-system with the smallest number of rewriting rules is NP-complete. However, in all cases, if the number of rewriting rules is fixed, then finding an L-system of any type studied, or finding the smallest L-systems in terms of the number of rewriting rules, or the smallest in terms of the number of tables, can always be done in polynomial time.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1567-7818
1572-9796
DOI:10.1007/s11047-025-10024-x