Feedback-based optimization of feed-forward neural network for the modeling of complex nonlinear dynamical systems using novel APSOBP algorithm

This work proposes a novel hybrid Adaptive Particle Swarm Optimization-Back-propagation algorithm for training feed-forward neural networks to identify nonlinear dynamical systems. The approach begins by using Particle Swarm Optimization to optimize the network weights, followed by back propagation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ISA transactions Ročník 167; číslo Pt B; s. 1637
Hlavní autoři: R., Shobana, Kumar, Rajesh, Jaint, Bhavnesh
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.12.2025
Témata:
ISSN:0019-0578, 1879-2022, 1879-2022
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This work proposes a novel hybrid Adaptive Particle Swarm Optimization-Back-propagation algorithm for training feed-forward neural networks to identify nonlinear dynamical systems. The approach begins by using Particle Swarm Optimization to optimize the network weights, followed by back propagation to fine-tune the optimized weights, thereby improving the overall solution quality. To prevent early convergence, Particle Swarm Optimization parameters such as inertia weight and other hyperparameters are dynamically adjusted based on a performance index, which is calculated as the difference between the fitness value of the global best solution across consecutive iterations. Convergence analysis using Lyapunov stability theory is also conducted to ensure the proposed algorithm converges to a stable solution. The proposed hybrid approach is evaluated on three benchmark nonlinear problems to validate its effectiveness. Experimental results demonstrate that the hybrid algorithm outperforms traditional Particle Swarm Optimization and back-propagation algorithms in terms of convergence, accuracy, and robustness. •A novel hybrid adaptive particle swarm optimization-back propagation algorithm (APSOBP) for training feed-forward neural networks to identify nonlinear dynamical systems is proposed.•Hybrid adaptive particle swarm optimization and back-propagation algorithm are applied to optimize the weights of the feed-forward neural network.•To avoid premature convergence and improve performance, the inertia weight and cognitive and social components of PSO are dynamically adjusted based on a performance index criterion.•The experimental results of training feed-forward neural network using the APSOBP algorithm are compared to traditional feed-forward neural network training using PSO (FFNN-PSO) and BP (FFNN-BP) algorithms.•The effect of disturbance tolerance on feed-forward neural networks using the APSOBP algorithm is also discussed in the study.
AbstractList This work proposes a novel hybrid Adaptive Particle Swarm Optimization-Back-propagation algorithm for training feed-forward neural networks to identify nonlinear dynamical systems. The approach begins by using Particle Swarm Optimization to optimize the network weights, followed by back propagation to fine-tune the optimized weights, thereby improving the overall solution quality. To prevent early convergence, Particle Swarm Optimization parameters such as inertia weight and other hyperparameters are dynamically adjusted based on a performance index, which is calculated as the difference between the fitness value of the global best solution across consecutive iterations. Convergence analysis using Lyapunov stability theory is also conducted to ensure the proposed algorithm converges to a stable solution. The proposed hybrid approach is evaluated on three benchmark nonlinear problems to validate its effectiveness. Experimental results demonstrate that the hybrid algorithm outperforms traditional Particle Swarm Optimization and back-propagation algorithms in terms of convergence, accuracy, and robustness.This work proposes a novel hybrid Adaptive Particle Swarm Optimization-Back-propagation algorithm for training feed-forward neural networks to identify nonlinear dynamical systems. The approach begins by using Particle Swarm Optimization to optimize the network weights, followed by back propagation to fine-tune the optimized weights, thereby improving the overall solution quality. To prevent early convergence, Particle Swarm Optimization parameters such as inertia weight and other hyperparameters are dynamically adjusted based on a performance index, which is calculated as the difference between the fitness value of the global best solution across consecutive iterations. Convergence analysis using Lyapunov stability theory is also conducted to ensure the proposed algorithm converges to a stable solution. The proposed hybrid approach is evaluated on three benchmark nonlinear problems to validate its effectiveness. Experimental results demonstrate that the hybrid algorithm outperforms traditional Particle Swarm Optimization and back-propagation algorithms in terms of convergence, accuracy, and robustness.
This work proposes a novel hybrid Adaptive Particle Swarm Optimization-Back-propagation algorithm for training feed-forward neural networks to identify nonlinear dynamical systems. The approach begins by using Particle Swarm Optimization to optimize the network weights, followed by back propagation to fine-tune the optimized weights, thereby improving the overall solution quality. To prevent early convergence, Particle Swarm Optimization parameters such as inertia weight and other hyperparameters are dynamically adjusted based on a performance index, which is calculated as the difference between the fitness value of the global best solution across consecutive iterations. Convergence analysis using Lyapunov stability theory is also conducted to ensure the proposed algorithm converges to a stable solution. The proposed hybrid approach is evaluated on three benchmark nonlinear problems to validate its effectiveness. Experimental results demonstrate that the hybrid algorithm outperforms traditional Particle Swarm Optimization and back-propagation algorithms in terms of convergence, accuracy, and robustness.
This work proposes a novel hybrid Adaptive Particle Swarm Optimization-Back-propagation algorithm for training feed-forward neural networks to identify nonlinear dynamical systems. The approach begins by using Particle Swarm Optimization to optimize the network weights, followed by back propagation to fine-tune the optimized weights, thereby improving the overall solution quality. To prevent early convergence, Particle Swarm Optimization parameters such as inertia weight and other hyperparameters are dynamically adjusted based on a performance index, which is calculated as the difference between the fitness value of the global best solution across consecutive iterations. Convergence analysis using Lyapunov stability theory is also conducted to ensure the proposed algorithm converges to a stable solution. The proposed hybrid approach is evaluated on three benchmark nonlinear problems to validate its effectiveness. Experimental results demonstrate that the hybrid algorithm outperforms traditional Particle Swarm Optimization and back-propagation algorithms in terms of convergence, accuracy, and robustness. •A novel hybrid adaptive particle swarm optimization-back propagation algorithm (APSOBP) for training feed-forward neural networks to identify nonlinear dynamical systems is proposed.•Hybrid adaptive particle swarm optimization and back-propagation algorithm are applied to optimize the weights of the feed-forward neural network.•To avoid premature convergence and improve performance, the inertia weight and cognitive and social components of PSO are dynamically adjusted based on a performance index criterion.•The experimental results of training feed-forward neural network using the APSOBP algorithm are compared to traditional feed-forward neural network training using PSO (FFNN-PSO) and BP (FFNN-BP) algorithms.•The effect of disturbance tolerance on feed-forward neural networks using the APSOBP algorithm is also discussed in the study.
Author Kumar, Rajesh
Jaint, Bhavnesh
R., Shobana
Author_xml – sequence: 1
  givenname: Shobana
  surname: R.
  fullname: R., Shobana
  email: r.shobana@galgotiacollege.edu
  organization: Department of Electrical Engineering, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
– sequence: 2
  givenname: Rajesh
  orcidid: 0000-0001-7172-1081
  surname: Kumar
  fullname: Kumar, Rajesh
  email: rajeshmahindru23@nitkkr.ac.in
  organization: Department of Electrical Engineering, National Institute of Technology, Kurukshetra 136119, India
– sequence: 3
  givenname: Bhavnesh
  surname: Jaint
  fullname: Jaint, Bhavnesh
  email: bhavneshjaint@dtu.ac.in
  organization: Department of Electrical Engineering, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41058408$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFO3DAQhq2Kqiy0b1BVPvaSYMdO4lwqUVRaJCSQCmdrYk_ASxJvbQe6fYm-cr1a4NjTSP98_2hm_iNyMPsZCfnIWckZb07WpYuQApQVq-qSdSXj4g1ZcdV2RZaqA7JijHcFq1t1SI5iXDOWyU69I4eSs1pJplbk7zmi7cE8FD1EtNRvkpvcH0jOz9QPdMjtYvDhCYKlMy4BxlzSkw8PNMs03SOdvMXRzXc73vhpM-JvmpfNEkKgdjvD5Ez2xW1MOEW6xB08-0cc6en1z6uv1xTGOx9cup_ek7cDjBE_PNdjcnv-7ebsR3F59f3i7PSyMFWlUoHN0KDsQXFTqYEPrAeoGQojB9UY2VhRy1ZxBrUFiVxxaBUq1kjJ214IFMfk837uJvhfC8akJxcNjiPM6JeoRVWrummFUBn99Iwu_YRWb4KbIGz1yxMzIPeACT7GgMMrwpneZaXXep-V3mWlWadzVtn2ZW_DfOejw6CjcTgbtC6gSdp69_8B_wAtv6Dl
Cites_doi 10.1007/s00500-024-09814-9
10.1016/j.jer.2023.09.016
10.1109/41.538609
10.3390/w16081184
10.1016/j.cmpb.2025.108776
10.3390/math10091611
10.1016/j.neucom.2003.12.006
10.3390/electronics12030491
10.1016/j.isatra.2019.01.012
10.1007/s00521-011-0524-7
10.1016/j.mejo.2023.105834
10.1016/j.apm.2010.08.008
10.1080/002071797224838
10.1109/72.80202
10.1007/s00500-023-09187-5
10.1109/TNNLS.2016.2616413
10.1038/323533a0
10.1155/2021/6648432
10.1016/j.asoc.2022.109756
10.1109/ACCESS.2023.3272223
10.1016/j.measurement.2024.114451
10.1007/s12205-021-2223-y
ContentType Journal Article
Copyright 2025 International Society of Automation
Copyright © 2025 International Society of Automation. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 International Society of Automation
– notice: Copyright © 2025 International Society of Automation. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.isatra.2025.09.013
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1879-2022
ExternalDocumentID 41058408
10_1016_j_isatra_2025_09_013
S001905782500518X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6P2
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFO
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
T9H
TAE
TN5
UHS
UNMZH
WUQ
XPP
ZMT
ZY4
~G-
~HD
9DU
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c228t-e6f6e4ba81c28f1f0baa50e3c4f86c46d3547810a5da4e181a78e8064417b33e3
ISSN 0019-0578
1879-2022
IngestDate Thu Oct 09 00:13:04 EDT 2025
Wed Dec 10 15:00:47 EST 2025
Sat Nov 29 07:21:26 EST 2025
Sat Nov 01 16:48:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue Pt B
Keywords Feed forward neural network
Adaptive particle swarm optimization-back-propagation algorithm
Back-propagation algorithm
Particle swarm optimization algorithm
Language English
License Copyright © 2025 International Society of Automation. Published by Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c228t-e6f6e4ba81c28f1f0baa50e3c4f86c46d3547810a5da4e181a78e8064417b33e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7172-1081
PMID 41058408
PQID 3258567338
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3258567338
pubmed_primary_41058408
crossref_primary_10_1016_j_isatra_2025_09_013
elsevier_sciencedirect_doi_10_1016_j_isatra_2025_09_013
PublicationCentury 2000
PublicationDate 2025-Dec
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-Dec
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ISA transactions
PublicationTitleAlternate ISA Trans
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhao, Zhao, Zhao (bib0085) 2023
Shi, Eberhart (bib0055) 1998
Xiao, Guo, Wang, Xian, Zhang (bib0035) 2024; 16
Al-Andoli, Tan, Sim, Lim, Goh (bib0095) 2022; 131
Kumpati, Kannan (bib0135) 1990; 1
Wu, Bai, Yang, Li (bib0065) 2024; 229
Marquez Vazquez, Ortega Ramirez, Gonzalez-Abril, Velasco Morente (bib0130) 2011; 20
Bousnina, Hamza, Yahia (bib0045) 2025; 13
Samanataray, Sahoo (bib0060) 2021; 25
Alfi, Modares (bib0110) 2011; 35
Kennedy, Eberhart (bib0030) 1995
Cai, Zhou, Dong, Hu, Liu, Ni (bib0010) 2021; 2021
Wang, Tang, Tamura, Ishii (bib0020) 2004; 57
Shobana, Jaint, Kumar (bib0145) 2024; 28
Wang, Tian, Gou, Shi (bib0080) 2024; 28
Huang, Zhao, Zhang, Yang (bib0125) 2023; 11
Ahmed, Anjum (bib0140) 1997; 66
Levin, Narendra (bib0015) 1997
Song, Liu, Chen, Deng (bib0075) 2023; 12
Cai, Zhang, Liu, Yang, Wang, Liu (bib0070) 2023; 137
Rumelhart, Hinton, Williams (bib0100) 1986; 323
Zhang, Zhang, Lok, Lyu (bib0105) 2007; 185
Cheng, Wang, Zhang, Huang (bib0120) 2019; 90
Zhu, Li, Zheng, Hao, Zhang, Wang (bib0040) 2025; 22
Man, Tang, Kwong (bib0025) 1996; 43
(bib0005) 1997
Hui, Pan (bib0090) 2025; 267
Kaya (bib0050) 2022; 10
Han, Lu, Hou, Qiao (bib0115) 2016; 29
Wang (10.1016/j.isatra.2025.09.013_bib0080) 2024; 28
Hui (10.1016/j.isatra.2025.09.013_bib0090) 2025; 267
Cheng (10.1016/j.isatra.2025.09.013_bib0120) 2019; 90
Ahmed (10.1016/j.isatra.2025.09.013_bib0140) 1997; 66
Cai (10.1016/j.isatra.2025.09.013_bib0070) 2023; 137
Xiao (10.1016/j.isatra.2025.09.013_bib0035) 2024; 16
Samanataray (10.1016/j.isatra.2025.09.013_bib0060) 2021; 25
Levin (10.1016/j.isatra.2025.09.013_bib0015) 1997
Al-Andoli (10.1016/j.isatra.2025.09.013_bib0095) 2022; 131
(10.1016/j.isatra.2025.09.013_bib0005) 1997
Kennedy (10.1016/j.isatra.2025.09.013_bib0030) 1995
Shobana (10.1016/j.isatra.2025.09.013_bib0145) 2024; 28
Zhang (10.1016/j.isatra.2025.09.013_bib0105) 2007; 185
Huang (10.1016/j.isatra.2025.09.013_bib0125) 2023; 11
Wu (10.1016/j.isatra.2025.09.013_bib0065) 2024; 229
Zhu (10.1016/j.isatra.2025.09.013_bib0040) 2025; 22
Song (10.1016/j.isatra.2025.09.013_bib0075) 2023; 12
Alfi (10.1016/j.isatra.2025.09.013_bib0110) 2011; 35
Marquez Vazquez (10.1016/j.isatra.2025.09.013_bib0130) 2011; 20
Rumelhart (10.1016/j.isatra.2025.09.013_bib0100) 1986; 323
Cai (10.1016/j.isatra.2025.09.013_bib0010) 2021; 2021
Zhao (10.1016/j.isatra.2025.09.013_bib0085) 2023
Han (10.1016/j.isatra.2025.09.013_bib0115) 2016; 29
Man (10.1016/j.isatra.2025.09.013_bib0025) 1996; 43
Shi (10.1016/j.isatra.2025.09.013_bib0055) 1998
Wang (10.1016/j.isatra.2025.09.013_bib0020) 2004; 57
Bousnina (10.1016/j.isatra.2025.09.013_bib0045) 2025; 13
Kumpati (10.1016/j.isatra.2025.09.013_bib0135) 1990; 1
Kaya (10.1016/j.isatra.2025.09.013_bib0050) 2022; 10
References_xml – volume: 229
  year: 2024
  ident: bib0065
  article-title: Extracting random forest features with improved adaptive particle swarm optimization for industrial robot fault diagnosis
  publication-title: Measurement
– volume: 43
  start-page: 519
  year: 1996
  end-page: 534
  ident: bib0025
  article-title: Genetic algorithms: concepts and applications [in engineering design]
  publication-title: IEEE Trans Ind Electron
– volume: 28
  start-page: 2737
  year: 2024
  end-page: 2751
  ident: bib0145
  article-title: Design of a novel robust recurrent neural network for the identification of complex nonlinear dynamical systems
  publication-title: Soft Comput
– volume: 28
  start-page: 9759
  year: 2024
  end-page: 9784
  ident: bib0080
  article-title: Hybrid particle swarm optimization with adaptive learning strategy
  publication-title: Soft Comput
– volume: 137
  year: 2023
  ident: bib0070
  article-title: Adaptive particle swarm optimization based hybrid small-signal modeling of gan hemt
  publication-title: Microelectron J
– volume: 2021
  year: 2021
  ident: bib0010
  article-title: Real-time arrhythmia classification algorithm using time-domain ecg feature based on ffnn and cnn
  publication-title: Math Probl Eng
– volume: 185
  start-page: 1026
  year: 2007
  end-page: 1037
  ident: bib0105
  article-title: A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training
  publication-title: Appl Math Comput
– year: 1997
  ident: bib0005
  publication-title: Neural systems for control
– volume: 16
  start-page: 1184
  year: 2024
  ident: bib0035
  article-title: Research on the prediction of infiltration depth of xiashu loess slopes based on particle swarm optimized back propagation (pso-bp) neural network
  publication-title: Water
– volume: 12
  start-page: 491
  year: 2023
  ident: bib0075
  article-title: A multi-strategy adaptive particle swarm optimization algorithm for solving optimization problem
  publication-title: Electronics
– volume: 22
  year: 2025
  ident: bib0040
  article-title: Prediction of compressive strength and characteristics analysis of semi-flexible pavement desert sand grouting material based upon hybrid-bp neural network
  publication-title: Case Stud Constr Mater
– volume: 29
  start-page: 104
  year: 2016
  end-page: 117
  ident: bib0115
  article-title: An adaptive-pso-based self-organizing rbf neural network
  publication-title: IEEE Trans Neural Netw Learn Syst
– start-page: 69
  year: 1998
  end-page: 73
  ident: bib0055
  article-title: A modified particle swarm optimizer
  publication-title: Proceedings of the 1998 IEEE International Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence
– year: 2023
  ident: bib0085
  article-title: Particle swarm optimization algorithm with adaptive two-population strategy
  publication-title: IEEE Access
– volume: 57
  start-page: 477
  year: 2004
  end-page: 484
  ident: bib0020
  article-title: A modified error function for the backpropagation algorithm
  publication-title: Neurocomputing
– volume: 35
  start-page: 1210
  year: 2011
  end-page: 1221
  ident: bib0110
  article-title: System identification and control using adaptive particle swarm optimization
  publication-title: Appl Math Model
– volume: 1
  start-page: 4
  year: 1990
  end-page: 27
  ident: bib0135
  article-title: Identification and control of dynamical systems using neural networks
  publication-title: IEEE Trans Neural Netw
– volume: 25
  start-page: 4032
  year: 2021
  end-page: 4043
  ident: bib0060
  article-title: A comparative study on prediction of monthly streamflow using hybrid anfis-pso approaches
  publication-title: KSCE J Civ Eng
– volume: 267
  year: 2025
  ident: bib0090
  article-title: Hybrid neural network and machine learning models with improved optimization method for gut microbiome effects on the sleep quality in patients with endometriosis
  publication-title: Comput Methods Programs Biomed
– volume: 11
  start-page: 43238
  year: 2023
  end-page: 43256
  ident: bib0125
  article-title: Apso: an a*-pso hybrid algorithm for mobile robot path planning
  publication-title: IEEE Access
– volume: 13
  start-page: 156
  year: 2025
  end-page: 168
  ident: bib0045
  article-title: An integration of pso-ann and anfis hybrid models to predict surface quality, cost, and energy (qce) during milling of alloy 2017a
  publication-title: J Eng Res
– volume: 90
  start-page: 244
  year: 2019
  end-page: 267
  ident: bib0120
  article-title: Particle swarm optimization algorithm to solve the deconvolution problem for rolling element bearing fault diagnosis
  publication-title: ISA Transactions
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0030
  article-title: Particle swarm optimization
  publication-title: Proceedings of ICNN’95 - International Conference on Neural Networks
– volume: 20
  start-page: 623
  year: 2011
  end-page: 639
  ident: bib0130
  article-title: Designing adaptive learning itineraries using features modelling and swarm intelligence
  publication-title: Neural Comput Appl
– volume: 131
  year: 2022
  ident: bib0095
  article-title: Parallel deep learning with a hybrid bp-pso framework for feature extraction and malware classification
  publication-title: Appl Soft Comput
– start-page: 129
  year: 1997
  end-page: 160
  ident: bib0015
  article-title: Chapter 6 - identification of nonlinear dynamical systems using neural networks
  publication-title: Neural systems for control
– volume: 66
  start-page: 85
  year: 1997
  end-page: 104
  ident: bib0140
  article-title: Neural-net-based direct self-tuning control of nonlinear plants
  publication-title: Int J Control
– volume: 10
  start-page: 1611
  year: 2022
  ident: bib0050
  article-title: A comprehensive comparison of the performance of metaheuristic algorithms in neural network training for nonlinear system identification
  publication-title: Mathematics
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: bib0100
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 28
  start-page: 9759
  issue: 17
  year: 2024
  ident: 10.1016/j.isatra.2025.09.013_bib0080
  article-title: Hybrid particle swarm optimization with adaptive learning strategy
  publication-title: Soft Comput
  doi: 10.1007/s00500-024-09814-9
– volume: 13
  start-page: 156
  year: 2025
  ident: 10.1016/j.isatra.2025.09.013_bib0045
  article-title: An integration of pso-ann and anfis hybrid models to predict surface quality, cost, and energy (qce) during milling of alloy 2017a
  publication-title: J Eng Res
  doi: 10.1016/j.jer.2023.09.016
– volume: 43
  start-page: 519
  year: 1996
  ident: 10.1016/j.isatra.2025.09.013_bib0025
  article-title: Genetic algorithms: concepts and applications [in engineering design]
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/41.538609
– volume: 16
  start-page: 1184
  year: 2024
  ident: 10.1016/j.isatra.2025.09.013_bib0035
  article-title: Research on the prediction of infiltration depth of xiashu loess slopes based on particle swarm optimized back propagation (pso-bp) neural network
  publication-title: Water
  doi: 10.3390/w16081184
– volume: 267
  year: 2025
  ident: 10.1016/j.isatra.2025.09.013_bib0090
  article-title: Hybrid neural network and machine learning models with improved optimization method for gut microbiome effects on the sleep quality in patients with endometriosis
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2025.108776
– volume: 10
  start-page: 1611
  year: 2022
  ident: 10.1016/j.isatra.2025.09.013_bib0050
  article-title: A comprehensive comparison of the performance of metaheuristic algorithms in neural network training for nonlinear system identification
  publication-title: Mathematics
  doi: 10.3390/math10091611
– volume: 57
  start-page: 477
  year: 2004
  ident: 10.1016/j.isatra.2025.09.013_bib0020
  article-title: A modified error function for the backpropagation algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2003.12.006
– volume: 12
  start-page: 491
  issue: 3
  year: 2023
  ident: 10.1016/j.isatra.2025.09.013_bib0075
  article-title: A multi-strategy adaptive particle swarm optimization algorithm for solving optimization problem
  publication-title: Electronics
  doi: 10.3390/electronics12030491
– volume: 90
  start-page: 244
  year: 2019
  ident: 10.1016/j.isatra.2025.09.013_bib0120
  article-title: Particle swarm optimization algorithm to solve the deconvolution problem for rolling element bearing fault diagnosis
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2019.01.012
– volume: 20
  start-page: 623
  issue: 5
  year: 2011
  ident: 10.1016/j.isatra.2025.09.013_bib0130
  article-title: Designing adaptive learning itineraries using features modelling and swarm intelligence
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-011-0524-7
– volume: 137
  year: 2023
  ident: 10.1016/j.isatra.2025.09.013_bib0070
  article-title: Adaptive particle swarm optimization based hybrid small-signal modeling of gan hemt
  publication-title: Microelectron J
  doi: 10.1016/j.mejo.2023.105834
– volume: 35
  start-page: 1210
  year: 2011
  ident: 10.1016/j.isatra.2025.09.013_bib0110
  article-title: System identification and control using adaptive particle swarm optimization
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2010.08.008
– start-page: 1942
  year: 1995
  ident: 10.1016/j.isatra.2025.09.013_bib0030
  article-title: Particle swarm optimization
– volume: 66
  start-page: 85
  year: 1997
  ident: 10.1016/j.isatra.2025.09.013_bib0140
  article-title: Neural-net-based direct self-tuning control of nonlinear plants
  publication-title: Int J Control
  doi: 10.1080/002071797224838
– start-page: 129
  year: 1997
  ident: 10.1016/j.isatra.2025.09.013_bib0015
  article-title: Chapter 6 - identification of nonlinear dynamical systems using neural networks
– volume: 1
  start-page: 4
  year: 1990
  ident: 10.1016/j.isatra.2025.09.013_bib0135
  article-title: Identification and control of dynamical systems using neural networks
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.80202
– volume: 22
  year: 2025
  ident: 10.1016/j.isatra.2025.09.013_bib0040
  article-title: Prediction of compressive strength and characteristics analysis of semi-flexible pavement desert sand grouting material based upon hybrid-bp neural network
  publication-title: Case Stud Constr Mater
– volume: 28
  start-page: 2737
  year: 2024
  ident: 10.1016/j.isatra.2025.09.013_bib0145
  article-title: Design of a novel robust recurrent neural network for the identification of complex nonlinear dynamical systems
  publication-title: Soft Comput
  doi: 10.1007/s00500-023-09187-5
– year: 2023
  ident: 10.1016/j.isatra.2025.09.013_bib0085
  article-title: Particle swarm optimization algorithm with adaptive two-population strategy
  publication-title: IEEE Access
– volume: 29
  start-page: 104
  year: 2016
  ident: 10.1016/j.isatra.2025.09.013_bib0115
  article-title: An adaptive-pso-based self-organizing rbf neural network
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2616413
– volume: 323
  start-page: 533
  year: 1986
  ident: 10.1016/j.isatra.2025.09.013_bib0100
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 2021
  year: 2021
  ident: 10.1016/j.isatra.2025.09.013_bib0010
  article-title: Real-time arrhythmia classification algorithm using time-domain ecg feature based on ffnn and cnn
  publication-title: Math Probl Eng
  doi: 10.1155/2021/6648432
– volume: 131
  year: 2022
  ident: 10.1016/j.isatra.2025.09.013_bib0095
  article-title: Parallel deep learning with a hybrid bp-pso framework for feature extraction and malware classification
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.109756
– volume: 11
  start-page: 43238
  year: 2023
  ident: 10.1016/j.isatra.2025.09.013_bib0125
  article-title: Apso: an a*-pso hybrid algorithm for mobile robot path planning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3272223
– year: 1997
  ident: 10.1016/j.isatra.2025.09.013_bib0005
– volume: 229
  year: 2024
  ident: 10.1016/j.isatra.2025.09.013_bib0065
  article-title: Extracting random forest features with improved adaptive particle swarm optimization for industrial robot fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.114451
– volume: 25
  start-page: 4032
  year: 2021
  ident: 10.1016/j.isatra.2025.09.013_bib0060
  article-title: A comparative study on prediction of monthly streamflow using hybrid anfis-pso approaches
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-021-2223-y
– volume: 185
  start-page: 1026
  year: 2007
  ident: 10.1016/j.isatra.2025.09.013_bib0105
  article-title: A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training
  publication-title: Appl Math Comput
– start-page: 69
  year: 1998
  ident: 10.1016/j.isatra.2025.09.013_bib0055
  article-title: A modified particle swarm optimizer
SSID ssj0002598
Score 2.4093792
Snippet This work proposes a novel hybrid Adaptive Particle Swarm Optimization-Back-propagation algorithm for training feed-forward neural networks to identify...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1637
SubjectTerms Adaptive particle swarm optimization-back-propagation algorithm
Back-propagation algorithm
Feed forward neural network
Particle swarm optimization algorithm
Title Feedback-based optimization of feed-forward neural network for the modeling of complex nonlinear dynamical systems using novel APSOBP algorithm
URI https://dx.doi.org/10.1016/j.isatra.2025.09.013
https://www.ncbi.nlm.nih.gov/pubmed/41058408
https://www.proquest.com/docview/3258567338
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF4ap4f2UJr05T7CFnpoEQJZr10dnZLQ5JAanIJuy0rare02UpBs43_Rv9zZh9ZuQugDehFmJWsF36eZ2dU3Mwi9G1GelkTA-y1k6sckKfws4NyX4E15lomgklQ3myAXFzTPs4n90N7pdgKkrulmk13_V6hhDMBWqbN_Abe7KQzAbwAdjgA7HP8I-FPwRwUvv_nKQVVeAzbhyiZbqshQwmkfIlWllvVUNUvAqDZacCc51O1xrBxaa87FxqtNTQ3eepVpYq8STUy5c2-lNxzqZi0A78n08_HE49-_Nu18ObvajX7PpmPVk6JvUL6V2WsTNZ2Bbamdm9iKv_lCdG7X-pzPTamE4xlf1_0Ju28RJjc0IC6hZqte0gZa5VQlpqvPLetuNhoWWujUqqJRYaKL1Jps1ht1s6fqXupWEOSB5aH5HtoPSZLRAdofn53k585hwwrQOmwzd59hqWWAt-e6K4K5a4WiI5XLx-iRXWLgsaHGAbon6kP0cKfw5CE6sCa9w-9t3fEPT9CPX5mDd5mDG4l3mYMNc7BlDoZhDMzBPXPU9ZY52DEHO-ZgyxysmYM1c7BhDnbMeYq-nJ5cfvzk234dfhmGdOmLVKYiLjgdlSGVIxkUnCeBiMpY0rSM0ypSxeNGAU8qHgsILTmhggYqIidFFInoGRrAI4kXCPOiylRhokJSEadSbSqQqoLLiziSWUGGyO8xYNemLAvr9YoLZjBjCjMWZAwwGyLSA8VsaGlCRgbc-s0_3_a4MrC86nMar0Wz6lgUwlI7JVFEh-i5Adw9ixJP0zigL_953lfowfateY0Gy3Yl3qD75Xo579ojtEdyemSJ_BN9Ebtn
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feedback-based+optimization+of+feed-forward+neural+network+for+the+modeling+of+complex+nonlinear+dynamical+systems+using+novel+APSOBP+algorithm&rft.jtitle=ISA+transactions&rft.au=R.%2C+Shobana&rft.au=Kumar%2C+Rajesh&rft.au=Jaint%2C+Bhavnesh&rft.date=2025-12-01&rft.pub=Elsevier+Ltd&rft.issn=0019-0578&rft_id=info:doi/10.1016%2Fj.isatra.2025.09.013&rft.externalDocID=S001905782500518X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon