A Data‐Driven Model to Predict Mutual Inductance Between Planar Coils With Arbitrary Specifications and Positions

The accurate prediction of mutual inductance in inductive planar coils is a critical challenge in advancing wireless power transfer (WPT) systems, particularly as traditional analytical methods struggle to balance precision and computational speed in complex, real‐world scenarios. This study address...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET electric power applications Jg. 19; H. 1
Hauptverfasser: Asadi, Mahdi, Abazari, Amir Musa
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.01.2025
ISSN:1751-8660, 1751-8679
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The accurate prediction of mutual inductance in inductive planar coils is a critical challenge in advancing wireless power transfer (WPT) systems, particularly as traditional analytical methods struggle to balance precision and computational speed in complex, real‐world scenarios. This study addresses these limitations by exploring data‐driven algorithms for predicting mutual inductance. Additionally, the study offers a robust solution to handle the nonlinearities and dynamic requirements of three‐dimensional coil configurations. Seven regression algorithms—linear, polynomial, kernel ridge, decision tree, random forest, support vector and neural network—are evaluated to identify the most effective approach. Key results reveal the superior performance of kernel ridge, support vector and neural network regression models, achieving R 2 scores of 0.995, 0.987 and 0.992, respectively. Kernel ridge regression demonstrated the lowest error metrics, with an MAE of 49.624 nH and an RMSE of 86.174 nH, whereas support vector and neural network regression followed closely with slightly higher errors. Conversely, traditional models such as linear regression and decision tree showed significantly higher MAEs and RMSEs, highlighting their inadequacy for handling the complexities of WPT datasets. This research establishes a scalable and accurate framework for mutual inductance prediction, paving the way for improved efficiency in WPT systems.
AbstractList The accurate prediction of mutual inductance in inductive planar coils is a critical challenge in advancing wireless power transfer (WPT) systems, particularly as traditional analytical methods struggle to balance precision and computational speed in complex, real‐world scenarios. This study addresses these limitations by exploring data‐driven algorithms for predicting mutual inductance. Additionally, the study offers a robust solution to handle the nonlinearities and dynamic requirements of three‐dimensional coil configurations. Seven regression algorithms—linear, polynomial, kernel ridge, decision tree, random forest, support vector and neural network—are evaluated to identify the most effective approach. Key results reveal the superior performance of kernel ridge, support vector and neural network regression models, achieving R 2 scores of 0.995, 0.987 and 0.992, respectively. Kernel ridge regression demonstrated the lowest error metrics, with an MAE of 49.624 nH and an RMSE of 86.174 nH, whereas support vector and neural network regression followed closely with slightly higher errors. Conversely, traditional models such as linear regression and decision tree showed significantly higher MAEs and RMSEs, highlighting their inadequacy for handling the complexities of WPT datasets. This research establishes a scalable and accurate framework for mutual inductance prediction, paving the way for improved efficiency in WPT systems.
Author Asadi, Mahdi
Abazari, Amir Musa
Author_xml – sequence: 1
  givenname: Mahdi
  surname: Asadi
  fullname: Asadi, Mahdi
  organization: Department of Energy Systems Engineering School of Advanced Technology Iran University of Science and Technology Tehran Iran
– sequence: 2
  givenname: Amir Musa
  orcidid: 0000-0003-4987-203X
  surname: Abazari
  fullname: Abazari, Amir Musa
  organization: Department of Mechanical Engineering Faculty of Engineering Urmia University Urmia Iran
BookMark eNo9kM1KAzEcxINUsK1efIKcha3JbjbZHGvrR6FiQcXjkk3-wcialCRVvPkIPqNPYlvF08zAMAy_ERr44AGhU0omlDB5Dv26nAhCaH2AhlTUtGi4kIN_z8kRGqX0Qkhdc8aHKE3xXGX1_fk1j-4NPL4NBnqcA15FME5nfLvJG9XjhTcbnZXXgC8gv8O2uuqVVxHPgusTfnL5GU9j53JU8QPfr0E767TKLviElTd4FZLbp2N0aFWf4ORPx-jx6vJhdlMs764Xs-my0GXZ5ALqDkQnuqqiHLhkkgDrLBVSAZOlZIwZWgpqG0pIaVVVEW0MZ0Y3VhDNdTVGZ7-7OoaUIth2Hd3r9l1LSbvD1e5wtXtc1Q-TXmFw
Cites_doi 10.1016/j.scitotenv.2023.166108
10.1049/elp2.12396
10.3390/electronics10233043
10.1016/j.isatra.2013.11.004
10.1016/j.compchemeng.2023.108513
10.1049/iet‐epa.2018.5871
10.1016/j.engappai.2023.106554
10.1109/ECCE.2018.8558464
10.1049/iet‐epa.2018.5509
10.1016/j.engappai.2020.103761
10.1109/lmwc.2020.3006211
10.1016/j.isatra.2021.10.010
10.1016/j.measen.2023.100911
10.3390/s22041537
10.1016/j.engappai.2023.106781
10.1140/epjp/s13360‐023‐04493‐1
10.1049/iet‐epa.2017.0581
10.1016/j.engappai.2005.08.004
10.1109/tpel.2021.3061667
10.3390/en14164907
10.1016/j.engappai.2021.104232
10.1016/j.carbpol.2024.122117
10.1016/j.sna.2016.04.065
10.1109/tte.2021.3054762
10.1016/j.mejo.2019.01.012
10.1016/j.isatra.2022.12.010
10.1016/j.ocecoaman.2023.106946
10.1016/j.engappai.2022.105675
10.1016/j.seta.2023.103571
10.3390/en12102017
10.1016/j.engappai.2023.107683
10.1016/j.engappai.2022.105522
10.1109/tasc.2019.2891682
10.1016/j.isatra.2024.06.030
10.1016/j.jwpe.2023.103728
10.1109/tie.2020.3013536
10.1049/iet‐epa.2019.0206
10.1049/iet‐epa.2019.0163
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1049/elp2.70015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8679
ExternalDocumentID 10_1049_elp2_70015
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
2QL
4.4
4IJ
5GY
6IK
6OB
8FE
8FG
8VB
96U
AAHJG
AAJGR
AAMMB
AAYXX
ABJCF
ABQXS
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
AEFGJ
AEGXH
AENEX
AFAZI
AFFHD
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
EBS
EJD
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IDLOA
IGS
IPLJI
ITC
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
O9-
OK1
P62
PHGZM
PHGZT
PQGLB
PTHSS
QWB
RNS
RUI
S0W
U5U
UNMZH
WIN
ZL0
~ZZ
ID FETCH-LOGICAL-c228t-e5be7b7b3316e69490e4bf179ae4929444d1271f81002fa330cdd64dc8f70c6c3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001456405400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8660
IngestDate Wed Oct 29 21:07:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c228t-e5be7b7b3316e69490e4bf179ae4929444d1271f81002fa330cdd64dc8f70c6c3
ORCID 0000-0003-4987-203X
OpenAccessLink https://doi.org/10.1049/elp2.70015
ParticipantIDs crossref_primary_10_1049_elp2_70015
PublicationCentury 2000
PublicationDate 2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-00
PublicationDecade 2020
PublicationTitle IET electric power applications
PublicationYear 2025
References e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_23_1
e_1_2_9_8_1
Tan P. (e_1_2_9_24_1) 2018
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_9_1
Marjani M. E. (e_1_2_9_2_1) 2024
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
Durmus F. (e_1_2_9_21_1) 2018
e_1_2_9_29_1
References_xml – ident: e_1_2_9_3_1
  doi: 10.1016/j.scitotenv.2023.166108
– ident: e_1_2_9_27_1
  doi: 10.1049/elp2.12396
– ident: e_1_2_9_18_1
  doi: 10.3390/electronics10233043
– ident: e_1_2_9_32_1
  doi: 10.1016/j.isatra.2013.11.004
– ident: e_1_2_9_29_1
  doi: 10.1016/j.compchemeng.2023.108513
– ident: e_1_2_9_8_1
  doi: 10.1049/iet‐epa.2018.5871
– ident: e_1_2_9_34_1
  doi: 10.1016/j.engappai.2023.106554
– start-page: 1981
  volume-title: 2018 IEEE Energy Conversion Congress and Exposition, ECCE 2018
  year: 2018
  ident: e_1_2_9_24_1
  doi: 10.1109/ECCE.2018.8558464
– ident: e_1_2_9_11_1
  doi: 10.1049/iet‐epa.2018.5509
– ident: e_1_2_9_38_1
  doi: 10.1016/j.engappai.2020.103761
– ident: e_1_2_9_19_1
  doi: 10.1109/lmwc.2020.3006211
– ident: e_1_2_9_35_1
  doi: 10.1016/j.isatra.2021.10.010
– start-page: 1
  volume-title: ISMSIT 2018 ‐ 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies, Proceedings
  year: 2018
  ident: e_1_2_9_21_1
– ident: e_1_2_9_28_1
  doi: 10.1016/j.measen.2023.100911
– ident: e_1_2_9_14_1
  doi: 10.3390/s22041537
– ident: e_1_2_9_30_1
  doi: 10.1016/j.engappai.2023.106781
– ident: e_1_2_9_13_1
  doi: 10.1140/epjp/s13360‐023‐04493‐1
– ident: e_1_2_9_7_1
  doi: 10.1049/iet‐epa.2017.0581
– ident: e_1_2_9_36_1
  doi: 10.1016/j.engappai.2005.08.004
– ident: e_1_2_9_16_1
  doi: 10.1109/tpel.2021.3061667
– volume-title: Reference Module in Materials Science and Materials Engineering
  year: 2024
  ident: e_1_2_9_2_1
– ident: e_1_2_9_17_1
  doi: 10.3390/en14164907
– ident: e_1_2_9_41_1
  doi: 10.1016/j.engappai.2021.104232
– ident: e_1_2_9_6_1
  doi: 10.1016/j.carbpol.2024.122117
– ident: e_1_2_9_25_1
  doi: 10.1016/j.sna.2016.04.065
– ident: e_1_2_9_26_1
  doi: 10.1109/tte.2021.3054762
– ident: e_1_2_9_15_1
  doi: 10.1016/j.mejo.2019.01.012
– ident: e_1_2_9_12_1
  doi: 10.1016/j.isatra.2022.12.010
– ident: e_1_2_9_31_1
  doi: 10.1016/j.ocecoaman.2023.106946
– ident: e_1_2_9_33_1
  doi: 10.1016/j.engappai.2022.105675
– ident: e_1_2_9_5_1
  doi: 10.1016/j.seta.2023.103571
– ident: e_1_2_9_20_1
  doi: 10.3390/en12102017
– ident: e_1_2_9_37_1
  doi: 10.1016/j.engappai.2023.107683
– ident: e_1_2_9_39_1
  doi: 10.1016/j.engappai.2022.105522
– ident: e_1_2_9_22_1
  doi: 10.1109/tasc.2019.2891682
– ident: e_1_2_9_40_1
  doi: 10.1016/j.isatra.2024.06.030
– ident: e_1_2_9_4_1
  doi: 10.1016/j.jwpe.2023.103728
– ident: e_1_2_9_10_1
  doi: 10.1109/tie.2020.3013536
– ident: e_1_2_9_23_1
  doi: 10.1049/iet‐epa.2019.0206
– ident: e_1_2_9_9_1
  doi: 10.1049/iet‐epa.2019.0163
SSID ssj0055646
Score 2.4188733
Snippet The accurate prediction of mutual inductance in inductive planar coils is a critical challenge in advancing wireless power transfer (WPT) systems, particularly...
SourceID crossref
SourceType Index Database
Title A Data‐Driven Model to Predict Mutual Inductance Between Planar Coils With Arbitrary Specifications and Positions
Volume 19
WOSCitedRecordID wos001456405400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-8679
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055646
  issn: 1751-8660
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8679
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055646
  issn: 1751-8660
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTtwwFLUGyoIuqpaH-pYl2I0CmcSJ4-XQUhWpjFhMW3Yjx3bUSNMQZQJCrPiEfmO_hHvtvAobumATjaxkJso5c32de48PIfsMgmLCtPH80MQeM0HiJTGXHhPaQILPUmG7CX9847NZcn4uzkajstXCXC15USTX16J8UqhhDMBG6ex_wN19KQzAZwAdjgA7HB8F_BSQhJSwbWL4XGE8s55nS0w0zyoszdTj00urHEHrDlVb3cBR07KFPkaygkiRL7E7Fss6VZpbeb6zq8-6FnQrNWjbvoZ57snxfOwcdnI1LtGJbTwslXc0W0mdO8nQL533pSh5I50Cfvo7r-BWV3L4diKIBm8nXEDl0QTQd54BB2Y45kxkuigs7rPtQXCHxQwiuiyDA6yWR_0U1pbt781sXb-hrbQzscBrF_baNfIsgKUSxsGfJ7N27o6i2OnR2rtuN7Rl4rD_3UEKM8hF5i_Ji2YRQacO_FdkZIot8nywteQ2WU0p0uDv7R9HAGoJQOsL2hCAOgLQngC0IQB1BKCWABQJQDsC0H8JQIEAtCPADvn-5Xj-6avXGGx4KgiS2jNRanjK0zCcxCYWTPiGpRmEaGkYpM2MMT0J-CRLcJ_eTIahr7SOmVZJxn0Vq3CXrBcXhXlNKEtxIe3zAM5gMspSFcbwT9faV5kfSv6G7LXPbFG6fVQWD1F5-6iz3pHNnmrvyXpdXZoPZENd1fmq-mgBvQMeX2pW
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Data%E2%80%90Driven+Model+to+Predict+Mutual+Inductance+Between+Planar+Coils+With+Arbitrary+Specifications+and+Positions&rft.jtitle=IET+electric+power+applications&rft.au=Asadi%2C+Mahdi&rft.au=Abazari%2C+Amir+Musa&rft.date=2025-01-01&rft.issn=1751-8660&rft.eissn=1751-8679&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1049%2Felp2.70015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_elp2_70015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8660&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8660&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8660&client=summon