A Data‐Driven Model to Predict Mutual Inductance Between Planar Coils With Arbitrary Specifications and Positions
The accurate prediction of mutual inductance in inductive planar coils is a critical challenge in advancing wireless power transfer (WPT) systems, particularly as traditional analytical methods struggle to balance precision and computational speed in complex, real‐world scenarios. This study address...
Gespeichert in:
| Veröffentlicht in: | IET electric power applications Jg. 19; H. 1 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
01.01.2025
|
| ISSN: | 1751-8660, 1751-8679 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The accurate prediction of mutual inductance in inductive planar coils is a critical challenge in advancing wireless power transfer (WPT) systems, particularly as traditional analytical methods struggle to balance precision and computational speed in complex, real‐world scenarios. This study addresses these limitations by exploring data‐driven algorithms for predicting mutual inductance. Additionally, the study offers a robust solution to handle the nonlinearities and dynamic requirements of three‐dimensional coil configurations. Seven regression algorithms—linear, polynomial, kernel ridge, decision tree, random forest, support vector and neural network—are evaluated to identify the most effective approach. Key results reveal the superior performance of kernel ridge, support vector and neural network regression models, achieving R 2 scores of 0.995, 0.987 and 0.992, respectively. Kernel ridge regression demonstrated the lowest error metrics, with an MAE of 49.624 nH and an RMSE of 86.174 nH, whereas support vector and neural network regression followed closely with slightly higher errors. Conversely, traditional models such as linear regression and decision tree showed significantly higher MAEs and RMSEs, highlighting their inadequacy for handling the complexities of WPT datasets. This research establishes a scalable and accurate framework for mutual inductance prediction, paving the way for improved efficiency in WPT systems. |
|---|---|
| AbstractList | The accurate prediction of mutual inductance in inductive planar coils is a critical challenge in advancing wireless power transfer (WPT) systems, particularly as traditional analytical methods struggle to balance precision and computational speed in complex, real‐world scenarios. This study addresses these limitations by exploring data‐driven algorithms for predicting mutual inductance. Additionally, the study offers a robust solution to handle the nonlinearities and dynamic requirements of three‐dimensional coil configurations. Seven regression algorithms—linear, polynomial, kernel ridge, decision tree, random forest, support vector and neural network—are evaluated to identify the most effective approach. Key results reveal the superior performance of kernel ridge, support vector and neural network regression models, achieving R 2 scores of 0.995, 0.987 and 0.992, respectively. Kernel ridge regression demonstrated the lowest error metrics, with an MAE of 49.624 nH and an RMSE of 86.174 nH, whereas support vector and neural network regression followed closely with slightly higher errors. Conversely, traditional models such as linear regression and decision tree showed significantly higher MAEs and RMSEs, highlighting their inadequacy for handling the complexities of WPT datasets. This research establishes a scalable and accurate framework for mutual inductance prediction, paving the way for improved efficiency in WPT systems. |
| Author | Asadi, Mahdi Abazari, Amir Musa |
| Author_xml | – sequence: 1 givenname: Mahdi surname: Asadi fullname: Asadi, Mahdi organization: Department of Energy Systems Engineering School of Advanced Technology Iran University of Science and Technology Tehran Iran – sequence: 2 givenname: Amir Musa orcidid: 0000-0003-4987-203X surname: Abazari fullname: Abazari, Amir Musa organization: Department of Mechanical Engineering Faculty of Engineering Urmia University Urmia Iran |
| BookMark | eNo9kM1KAzEcxINUsK1efIKcha3JbjbZHGvrR6FiQcXjkk3-wcialCRVvPkIPqNPYlvF08zAMAy_ERr44AGhU0omlDB5Dv26nAhCaH2AhlTUtGi4kIN_z8kRGqX0Qkhdc8aHKE3xXGX1_fk1j-4NPL4NBnqcA15FME5nfLvJG9XjhTcbnZXXgC8gv8O2uuqVVxHPgusTfnL5GU9j53JU8QPfr0E767TKLviElTd4FZLbp2N0aFWf4ORPx-jx6vJhdlMs764Xs-my0GXZ5ALqDkQnuqqiHLhkkgDrLBVSAZOlZIwZWgpqG0pIaVVVEW0MZ0Y3VhDNdTVGZ7-7OoaUIth2Hd3r9l1LSbvD1e5wtXtc1Q-TXmFw |
| Cites_doi | 10.1016/j.scitotenv.2023.166108 10.1049/elp2.12396 10.3390/electronics10233043 10.1016/j.isatra.2013.11.004 10.1016/j.compchemeng.2023.108513 10.1049/iet‐epa.2018.5871 10.1016/j.engappai.2023.106554 10.1109/ECCE.2018.8558464 10.1049/iet‐epa.2018.5509 10.1016/j.engappai.2020.103761 10.1109/lmwc.2020.3006211 10.1016/j.isatra.2021.10.010 10.1016/j.measen.2023.100911 10.3390/s22041537 10.1016/j.engappai.2023.106781 10.1140/epjp/s13360‐023‐04493‐1 10.1049/iet‐epa.2017.0581 10.1016/j.engappai.2005.08.004 10.1109/tpel.2021.3061667 10.3390/en14164907 10.1016/j.engappai.2021.104232 10.1016/j.carbpol.2024.122117 10.1016/j.sna.2016.04.065 10.1109/tte.2021.3054762 10.1016/j.mejo.2019.01.012 10.1016/j.isatra.2022.12.010 10.1016/j.ocecoaman.2023.106946 10.1016/j.engappai.2022.105675 10.1016/j.seta.2023.103571 10.3390/en12102017 10.1016/j.engappai.2023.107683 10.1016/j.engappai.2022.105522 10.1109/tasc.2019.2891682 10.1016/j.isatra.2024.06.030 10.1016/j.jwpe.2023.103728 10.1109/tie.2020.3013536 10.1049/iet‐epa.2019.0206 10.1049/iet‐epa.2019.0163 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1049/elp2.70015 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-8679 |
| ExternalDocumentID | 10_1049_elp2_70015 |
| GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 2QL 4.4 4IJ 5GY 6IK 6OB 8FE 8FG 8VB 96U AAHJG AAJGR AAMMB AAYXX ABJCF ABQXS ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADEYR AEFGJ AEGXH AENEX AFAZI AFFHD AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CITATION CS3 DU5 EBS EJD F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IDLOA IGS IPLJI ITC K1G L6V LAI M43 M7S MCNEO MS~ O9- OK1 P62 PHGZM PHGZT PQGLB PTHSS QWB RNS RUI S0W U5U UNMZH WIN ZL0 ~ZZ |
| ID | FETCH-LOGICAL-c228t-e5be7b7b3316e69490e4bf179ae4929444d1271f81002fa330cdd64dc8f70c6c3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001456405400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-8660 |
| IngestDate | Wed Oct 29 21:07:01 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c228t-e5be7b7b3316e69490e4bf179ae4929444d1271f81002fa330cdd64dc8f70c6c3 |
| ORCID | 0000-0003-4987-203X |
| OpenAccessLink | https://doi.org/10.1049/elp2.70015 |
| ParticipantIDs | crossref_primary_10_1049_elp2_70015 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IET electric power applications |
| PublicationYear | 2025 |
| References | e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_23_1 e_1_2_9_8_1 Tan P. (e_1_2_9_24_1) 2018 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_9_1 Marjani M. E. (e_1_2_9_2_1) 2024 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 Durmus F. (e_1_2_9_21_1) 2018 e_1_2_9_29_1 |
| References_xml | – ident: e_1_2_9_3_1 doi: 10.1016/j.scitotenv.2023.166108 – ident: e_1_2_9_27_1 doi: 10.1049/elp2.12396 – ident: e_1_2_9_18_1 doi: 10.3390/electronics10233043 – ident: e_1_2_9_32_1 doi: 10.1016/j.isatra.2013.11.004 – ident: e_1_2_9_29_1 doi: 10.1016/j.compchemeng.2023.108513 – ident: e_1_2_9_8_1 doi: 10.1049/iet‐epa.2018.5871 – ident: e_1_2_9_34_1 doi: 10.1016/j.engappai.2023.106554 – start-page: 1981 volume-title: 2018 IEEE Energy Conversion Congress and Exposition, ECCE 2018 year: 2018 ident: e_1_2_9_24_1 doi: 10.1109/ECCE.2018.8558464 – ident: e_1_2_9_11_1 doi: 10.1049/iet‐epa.2018.5509 – ident: e_1_2_9_38_1 doi: 10.1016/j.engappai.2020.103761 – ident: e_1_2_9_19_1 doi: 10.1109/lmwc.2020.3006211 – ident: e_1_2_9_35_1 doi: 10.1016/j.isatra.2021.10.010 – start-page: 1 volume-title: ISMSIT 2018 ‐ 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies, Proceedings year: 2018 ident: e_1_2_9_21_1 – ident: e_1_2_9_28_1 doi: 10.1016/j.measen.2023.100911 – ident: e_1_2_9_14_1 doi: 10.3390/s22041537 – ident: e_1_2_9_30_1 doi: 10.1016/j.engappai.2023.106781 – ident: e_1_2_9_13_1 doi: 10.1140/epjp/s13360‐023‐04493‐1 – ident: e_1_2_9_7_1 doi: 10.1049/iet‐epa.2017.0581 – ident: e_1_2_9_36_1 doi: 10.1016/j.engappai.2005.08.004 – ident: e_1_2_9_16_1 doi: 10.1109/tpel.2021.3061667 – volume-title: Reference Module in Materials Science and Materials Engineering year: 2024 ident: e_1_2_9_2_1 – ident: e_1_2_9_17_1 doi: 10.3390/en14164907 – ident: e_1_2_9_41_1 doi: 10.1016/j.engappai.2021.104232 – ident: e_1_2_9_6_1 doi: 10.1016/j.carbpol.2024.122117 – ident: e_1_2_9_25_1 doi: 10.1016/j.sna.2016.04.065 – ident: e_1_2_9_26_1 doi: 10.1109/tte.2021.3054762 – ident: e_1_2_9_15_1 doi: 10.1016/j.mejo.2019.01.012 – ident: e_1_2_9_12_1 doi: 10.1016/j.isatra.2022.12.010 – ident: e_1_2_9_31_1 doi: 10.1016/j.ocecoaman.2023.106946 – ident: e_1_2_9_33_1 doi: 10.1016/j.engappai.2022.105675 – ident: e_1_2_9_5_1 doi: 10.1016/j.seta.2023.103571 – ident: e_1_2_9_20_1 doi: 10.3390/en12102017 – ident: e_1_2_9_37_1 doi: 10.1016/j.engappai.2023.107683 – ident: e_1_2_9_39_1 doi: 10.1016/j.engappai.2022.105522 – ident: e_1_2_9_22_1 doi: 10.1109/tasc.2019.2891682 – ident: e_1_2_9_40_1 doi: 10.1016/j.isatra.2024.06.030 – ident: e_1_2_9_4_1 doi: 10.1016/j.jwpe.2023.103728 – ident: e_1_2_9_10_1 doi: 10.1109/tie.2020.3013536 – ident: e_1_2_9_23_1 doi: 10.1049/iet‐epa.2019.0206 – ident: e_1_2_9_9_1 doi: 10.1049/iet‐epa.2019.0163 |
| SSID | ssj0055646 |
| Score | 2.4188733 |
| Snippet | The accurate prediction of mutual inductance in inductive planar coils is a critical challenge in advancing wireless power transfer (WPT) systems, particularly... |
| SourceID | crossref |
| SourceType | Index Database |
| Title | A Data‐Driven Model to Predict Mutual Inductance Between Planar Coils With Arbitrary Specifications and Positions |
| Volume | 19 |
| WOSCitedRecordID | wos001456405400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-8679 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055646 issn: 1751-8660 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-8679 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055646 issn: 1751-8660 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTtwwFLUGyoIuqpaH-pYl2I0CmcSJ4-XQUhWpjFhMW3Yjx3bUSNMQZQJCrPiEfmO_hHvtvAobumATjaxkJso5c32de48PIfsMgmLCtPH80MQeM0HiJTGXHhPaQILPUmG7CX9847NZcn4uzkajstXCXC15USTX16J8UqhhDMBG6ex_wN19KQzAZwAdjgA7HB8F_BSQhJSwbWL4XGE8s55nS0w0zyoszdTj00urHEHrDlVb3cBR07KFPkaygkiRL7E7Fss6VZpbeb6zq8-6FnQrNWjbvoZ57snxfOwcdnI1LtGJbTwslXc0W0mdO8nQL533pSh5I50Cfvo7r-BWV3L4diKIBm8nXEDl0QTQd54BB2Y45kxkuigs7rPtQXCHxQwiuiyDA6yWR_0U1pbt781sXb-hrbQzscBrF_baNfIsgKUSxsGfJ7N27o6i2OnR2rtuN7Rl4rD_3UEKM8hF5i_Ji2YRQacO_FdkZIot8nywteQ2WU0p0uDv7R9HAGoJQOsL2hCAOgLQngC0IQB1BKCWABQJQDsC0H8JQIEAtCPADvn-5Xj-6avXGGx4KgiS2jNRanjK0zCcxCYWTPiGpRmEaGkYpM2MMT0J-CRLcJ_eTIahr7SOmVZJxn0Vq3CXrBcXhXlNKEtxIe3zAM5gMspSFcbwT9faV5kfSv6G7LXPbFG6fVQWD1F5-6iz3pHNnmrvyXpdXZoPZENd1fmq-mgBvQMeX2pW |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Data%E2%80%90Driven+Model+to+Predict+Mutual+Inductance+Between+Planar+Coils+With+Arbitrary+Specifications+and+Positions&rft.jtitle=IET+electric+power+applications&rft.au=Asadi%2C+Mahdi&rft.au=Abazari%2C+Amir+Musa&rft.date=2025-01-01&rft.issn=1751-8660&rft.eissn=1751-8679&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1049%2Felp2.70015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_elp2_70015 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8660&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8660&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8660&client=summon |