Unit Commitment and Economic Dispatch via Graph Attention Neural Network–Based Parallel Distributed Coordination Algorithm

The joint optimisation of unit commitment and economic dispatch (ED) is one of the key issues in smart grid scheduling and control. Integrating the discrete on/off statuses of units in the unit commitment problem with the continuous active power outputs in ED significantly increases the overall comp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET control theory & applications Ročník 19; číslo 1
Hlavní autoři: Zhou, Siyi, Shi, Liang, Xia, Min, Geng, Jian, Liu, Jun, Yu, Fang
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.01.2025
ISSN:1751-8644, 1751-8652
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The joint optimisation of unit commitment and economic dispatch (ED) is one of the key issues in smart grid scheduling and control. Integrating the discrete on/off statuses of units in the unit commitment problem with the continuous active power outputs in ED significantly increases the overall complexity of the combined optimisation problem. We propose an innovative distributed algorithm based on a graph attention network to address this challenge. The graph neural network is used to extract the inter‐unit relational features and predict the future power dispatch schedule of each unit, while the parallel distributed coordination algorithm (PDCA), acting as the power dispatch algorithm, schedules and controls the output power of the units, including their start‐up and shut‐down states. Experimental results show that our algorithm performs well on both the IEEE 30‐bus and IEEE 118‐bus test systems, achieving a 1559 times speed boost compared to advanced solvers, and reaching economic optimality while satisfying all critical constraints to obtain an industrial acceptable solution.
AbstractList The joint optimisation of unit commitment and economic dispatch (ED) is one of the key issues in smart grid scheduling and control. Integrating the discrete on/off statuses of units in the unit commitment problem with the continuous active power outputs in ED significantly increases the overall complexity of the combined optimisation problem. We propose an innovative distributed algorithm based on a graph attention network to address this challenge. The graph neural network is used to extract the inter‐unit relational features and predict the future power dispatch schedule of each unit, while the parallel distributed coordination algorithm (PDCA), acting as the power dispatch algorithm, schedules and controls the output power of the units, including their start‐up and shut‐down states. Experimental results show that our algorithm performs well on both the IEEE 30‐bus and IEEE 118‐bus test systems, achieving a 1559 times speed boost compared to advanced solvers, and reaching economic optimality while satisfying all critical constraints to obtain an industrial acceptable solution.
Author Shi, Liang
Xia, Min
Geng, Jian
Liu, Jun
Zhou, Siyi
Yu, Fang
Author_xml – sequence: 1
  givenname: Siyi
  orcidid: 0009-0003-2059-2226
  surname: Zhou
  fullname: Zhou, Siyi
  organization: Nanjing University of Information Science and Technology Nanjing China
– sequence: 2
  givenname: Liang
  orcidid: 0000-0002-6587-0635
  surname: Shi
  fullname: Shi, Liang
  organization: Nanjing University of Information Science and Technology Nanjing China
– sequence: 3
  givenname: Min
  surname: Xia
  fullname: Xia, Min
  organization: Nanjing University of Information Science and Technology Nanjing China
– sequence: 4
  givenname: Jian
  surname: Geng
  fullname: Geng, Jian
  organization: China Electric Power Research Institute Nanjing Jiangsu China
– sequence: 5
  givenname: Jun
  surname: Liu
  fullname: Liu, Jun
  organization: China Electric Power Research Institute Nanjing Jiangsu China
– sequence: 6
  givenname: Fang
  surname: Yu
  fullname: Yu, Fang
  organization: China Electric Power Research Institute Nanjing Jiangsu China
BookMark eNo9kLFOwzAURS1UJNrCwhd4RkqxYzuOxxLaglQBA50j23GIIbErxwUhMfAP_CFfQloQ0306uvcNZwJGzjsDwDlGM4youNSxSWccIY6OwBhzhpM8Y-no_6b0BEz6_hkhxjLKxuBj42yEhe86GzvjIpSuggvtne-shte238qoG_hqJVwFuW3gPMahZr2Dd2YXZDtEfPPh5fvz60r2poIPcqCtaffjGKzaxQEW3ofKOnkYztsnH2xsulNwXMu2N2d_OQWb5eKxuEnW96vbYr5OdJrmMTGU5qrOCeKUMYYqQciAVGZUzjhGWhMlFBc6R6qSAmVYGJwykZlMGKJrTqbg4vevDr7vg6nLbbCdDO8lRuXeW7n3Vh68kR8C4GVa
Cites_doi 10.1109/59.867164
10.1109/TPWRS.2005.857391
10.1016/j.epsr.2006.08.005
10.1109/TPWRS.1987.4335130
10.1016/j.asoc.2024.111845
10.1016/j.jfranklin.2023.12.033
10.1049/cth2.12526
10.1016/j.apenergy.2024.124963
10.3390/en12112143
10.1016/j.energy.2022.124511
10.1109/59.99376
10.3390/en12122335
10.1049/iet-cta.2016.1389
10.3390/pr7100733
10.1109/TII.2025.3558319
10.1016/0142-0615(95)00013-5
10.1109/TPWRS.2003.820707
10.3390/en13081952
10.1109/59.14582
10.1109/59.260859
10.1109/TPWRS.2020.2986710
10.1109/59.744488
10.1016/j.jfranklin.2025.107672
10.1049/cth2.12029
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1049/cth2.70070
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8652
ExternalDocumentID 10_1049_cth2_70070
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
4IJ
5GY
6IK
8FE
8FG
8VB
96U
AAHJG
AAJGR
AAMMB
AAYXX
ABJCF
ABQXS
ABUWG
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADEYR
AEFGJ
AEGXH
AENEX
AFAZI
AFFHD
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
CS3
DU5
DWQXO
EBS
EJD
F8P
GNUQQ
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IDLOA
IGS
IPLJI
ITC
K1G
K6V
K7-
L6V
LAI
M43
M7S
MCNEO
MS~
O9-
OK1
P62
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
QWB
RNS
ROL
RUI
U5U
UNMZH
WIN
ZL0
~ZZ
ID FETCH-LOGICAL-c228t-e448bf830745550d933e44b6eb85710cc3b9b79c80bda90619e12596e69e3cf73
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001568589500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8644
IngestDate Wed Oct 29 21:13:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c228t-e448bf830745550d933e44b6eb85710cc3b9b79c80bda90619e12596e69e3cf73
ORCID 0009-0003-2059-2226
0000-0002-6587-0635
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cth2.70070
ParticipantIDs crossref_primary_10_1049_cth2_70070
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IET control theory & applications
PublicationYear 2025
References e_1_2_9_30_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
Nemati M. (e_1_2_9_11_1) 2018; 210
Tosserams S. (e_1_2_9_23_1) 2006; 31
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
Tang X. (e_1_2_9_24_1) 2023; 9
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
Saravanan B. (e_1_2_9_4_1) 2013; 7
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – ident: e_1_2_9_13_1
  doi: 10.1109/59.867164
– ident: e_1_2_9_7_1
  doi: 10.1109/TPWRS.2005.857391
– ident: e_1_2_9_22_1
  doi: 10.1016/j.epsr.2006.08.005
– ident: e_1_2_9_9_1
  doi: 10.1109/TPWRS.1987.4335130
– ident: e_1_2_9_20_1
  doi: 10.1016/j.asoc.2024.111845
– volume: 9
  start-page: 3552
  issue: 3544
  year: 2023
  ident: e_1_2_9_24_1
  article-title: Graph Convolutional Network‐Based Security‐Constrained Unit Commitment Leveraging Power Grid Topology in Learning
  publication-title: Energy Reports
– ident: e_1_2_9_25_1
  doi: 10.1016/j.jfranklin.2023.12.033
– ident: e_1_2_9_29_1
  doi: 10.1049/cth2.12526
– ident: e_1_2_9_19_1
  doi: 10.1016/j.apenergy.2024.124963
– volume: 31
  start-page: 189
  issue: 176
  year: 2006
  ident: e_1_2_9_23_1
  article-title: An Augmented Lagrangian Relaxation for Analytical Target Cascading Using the Alternating Direction Method of Multipliers
  publication-title: Structural and Multidisciplinary Optimization
– ident: e_1_2_9_17_1
  doi: 10.3390/en12112143
– ident: e_1_2_9_18_1
  doi: 10.1016/j.energy.2022.124511
– ident: e_1_2_9_5_1
  doi: 10.1109/59.99376
– ident: e_1_2_9_14_1
  doi: 10.3390/en12122335
– ident: e_1_2_9_28_1
  doi: 10.1049/iet-cta.2016.1389
– ident: e_1_2_9_15_1
  doi: 10.3390/pr7100733
– ident: e_1_2_9_21_1
  doi: 10.1109/TII.2025.3558319
– ident: e_1_2_9_12_1
  doi: 10.1016/0142-0615(95)00013-5
– ident: e_1_2_9_10_1
  doi: 10.1109/TPWRS.2003.820707
– ident: e_1_2_9_3_1
  doi: 10.3390/en13081952
– volume: 7
  start-page: 236
  issue: 223
  year: 2013
  ident: e_1_2_9_4_1
  article-title: A Solution to the Unit Commitment Problem—A Review
  publication-title: Frontiers in Energy
– ident: e_1_2_9_6_1
  doi: 10.1109/59.14582
– ident: e_1_2_9_30_1
– ident: e_1_2_9_2_1
  doi: 10.1109/59.260859
– ident: e_1_2_9_16_1
  doi: 10.1109/TPWRS.2020.2986710
– ident: e_1_2_9_8_1
  doi: 10.1109/59.744488
– volume: 210
  start-page: 963
  issue: 944
  year: 2018
  ident: e_1_2_9_11_1
  article-title: Optimization of Unit Commitment and Economic Dispatch in Microgrids Based on Genetic algorithm and Mixed Integer Linear Programming
  publication-title: Applied Energy
– ident: e_1_2_9_26_1
  doi: 10.1016/j.jfranklin.2025.107672
– ident: e_1_2_9_27_1
  doi: 10.1049/cth2.12029
SSID ssj0055645
Score 2.4238896
Snippet The joint optimisation of unit commitment and economic dispatch (ED) is one of the key issues in smart grid scheduling and control. Integrating the discrete...
SourceID crossref
SourceType Index Database
Title Unit Commitment and Economic Dispatch via Graph Attention Neural Network–Based Parallel Distributed Coordination Algorithm
Volume 19
WOSCitedRecordID wos001568589500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1751-8652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055645
  issn: 1751-8644
  databaseCode: P5Z
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1751-8652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055645
  issn: 1751-8644
  databaseCode: K7-
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1751-8652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055645
  issn: 1751-8644
  databaseCode: M7S
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1751-8652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055645
  issn: 1751-8644
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-8652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055645
  issn: 1751-8644
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055645
  issn: 1751-8644
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELXKcoADYhW7LMGtCktSx_axILYDFRJF6q2qXZdGgrQqoQKJA__Aid_jSxjbcWLgAgcuUTVq2qjzOvNmPAtCuwxIaE9QERxSxQKg1L1ACCoDiCQkkyrWM-rMsgnaaLBWi19VKu-uF2Z8R9OUPT3x4b-qGmSgbN06-wd1Fx8KAngNSocrqB2uv1K8ZpH6b36flAXkrv1YD9scgvHtV8dJp3qmh1VX61mWlzzqQR2gsYatDHdlENEROLouUM2RXruijeSD3ZKlc8MDiF0Tm1Cs1u9uB6Mk69_7hPfipFmUw5umSVuh45-bl7nrwaNJxibPSZH46dvubQDxrZO1bH3vZVLg-kzldcUO63kaIyReGsNaXkoOAxbbYZB7ypeRr-aaf4flDy8AUQ9oSWb9cI_qeUalr3Pn-99cYFGYaI7ka7yt722beyfQVEgJZ6Yq9No5eaKH8Jhe2_yp3eTbGt8vv9fjOh5pac6juTzawHWLkgVUUekimvVmUC6hF40XXOIFA16wwwt2eMGAF2zwggu8YIsXnOPl4_XNIAU7pGAPKdhHCi6QsoxuTk-ax-dBvpIjkGHIskBBNC96DBxDjUBs2-VRBCIRK8EIcFUpI8EF5ZIdiG6HA1fkChg0j1XMVSR7NFpBk-kgVasISxYJAgaBSgiKO0CRwlDTY6L3B4CNIGtox_147aGdvNL-qZ71X71rA82UmNtEk9noUW2haTnOkofRttHsJ3Qbeyo
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unit+Commitment+and+Economic+Dispatch+via+Graph+Attention+Neural+Network%E2%80%93Based+Parallel+Distributed+Coordination+Algorithm&rft.jtitle=IET+control+theory+%26+applications&rft.au=Zhou%2C+Siyi&rft.au=Shi%2C+Liang&rft.au=Xia%2C+Min&rft.au=Geng%2C+Jian&rft.date=2025-01-01&rft.issn=1751-8644&rft.eissn=1751-8652&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1049%2Fcth2.70070&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_cth2_70070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8644&client=summon