A Relaxed Alternating Direction Method Of Multipliers For Separable Nonconvex Minimization Problems
The alternating direction method of multipliers (ADMM) is popular and powerful in computing the solutions of various composite minimization problems with constraints. In this paper, we propose a relaxed ADMM with a general dual step-size, which includes the classic ADMM in the algorithm framework, f...
Uloženo v:
| Vydáno v: | Journal of optimization theory and applications Ročník 207; číslo 1; s. 17 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer Nature B.V
01.10.2025
|
| Témata: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The alternating direction method of multipliers (ADMM) is popular and powerful in computing the solutions of various composite minimization problems with constraints. In this paper, we propose a relaxed ADMM with a general dual step-size, which includes the classic ADMM in the algorithm framework, for minimizing separable nonconvex functions with linear constraints. Under some assumptions on the penalty parameter and the objective function, the convergence of the proposed algorithm is obtained based on the Kurdyka–Łojasiewicz property. Moreover, we report some preliminary numerical results on involving matrix decomposition problem to demonstrate the feasibility and effectiveness of the proposed method. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-025-02778-2 |