Generalized Polyhedral DC Optimization Problems

The problem of minimizing the difference of two lower semicontinuous, proper, convex functions (a DC function) on a nonempty closed convex set in a locally convex Hausdorff topological vector space is studied in this paper. The focus is made on the situations where either the second component of the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 207; číslo 1; s. 11
Hlavní autoři: Huong, Vu Thi, Kim Huyen, Duong Thi, Yen, Nguyen Dong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer Nature B.V 01.10.2025
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The problem of minimizing the difference of two lower semicontinuous, proper, convex functions (a DC function) on a nonempty closed convex set in a locally convex Hausdorff topological vector space is studied in this paper. The focus is made on the situations where either the second component of the objective function is a generalized polyhedral convex function or the first component of the objective function is a generalized polyhedral convex function and the constraint set is generalized polyhedral convex. Various results on optimality conditions, the local solution set, the global solution set, and solution algorithms via duality are obtained. Useful illustrative examples are considered.
AbstractList The problem of minimizing the difference of two lower semicontinuous, proper, convex functions (a DC function) on a nonempty closed convex set in a locally convex Hausdorff topological vector space is studied in this paper. The focus is made on the situations where either the second component of the objective function is a generalized polyhedral convex function or the first component of the objective function is a generalized polyhedral convex function and the constraint set is generalized polyhedral convex. Various results on optimality conditions, the local solution set, the global solution set, and solution algorithms via duality are obtained. Useful illustrative examples are considered.
ArticleNumber 11
Author Huong, Vu Thi
Kim Huyen, Duong Thi
Yen, Nguyen Dong
Author_xml – sequence: 1
  givenname: Vu Thi
  surname: Huong
  fullname: Huong, Vu Thi
– sequence: 2
  givenname: Duong Thi
  surname: Kim Huyen
  fullname: Kim Huyen, Duong Thi
– sequence: 3
  givenname: Nguyen Dong
  surname: Yen
  fullname: Yen, Nguyen Dong
BookMark eNotkEFLwzAcxYNMsJt-AU8Fz3FJ_m2THKXqFAbbQc8hTVLsaJuadIft09utHh6PB4_34LdEi973DqFHSp4pIXwdKZE5x4Tlk3ghMdyghOYcMBNcLFBCCGMYGMg7tIzxQAiRgmcJWm9c74Jum7Oz6d63px9np5i-luluGJuuOeux8X26D75qXRfv0W2t2-ge_n2Fvt_fvsoPvN1tPsuXLTaMiRFr6jgDRnUNoij0xWhteAWZA13XVZUbyWVmrXUZ18QYI4XWhbUchDHUwgo9zbtD8L9HF0d18MfQT5cKpgeZZ4wWU4vNLRN8jMHVaghNp8NJUaIuYNQMRk1g1BWMAvgDnn5YFQ
Cites_doi 10.1007/s11228-009-0120-5
10.1007/s10107-018-1235-y
10.1007/0-387-28395-1
10.1007/s10898-023-01331-7
10.1007/s10898-010-9589-6
10.1080/02331934.2019.1614179
10.1515/9781400873173
10.1017/S0004972700010844
10.1007/978-1-4612-1394-9
10.1007/BF01463995
10.1007/s10898-019-00763-4
10.1007/s11425-008-0021-3
10.1007/s10898-023-01272-1
10.1007/s10957-015-0769-x
10.1007/978-3-030-94785-9_1
10.1137/S1052623494274313
10.1137/0802004
10.1080/01630563.2017.1387863
10.1007/s10957-023-02318-w
10.1007/s10957-010-9710-5
10.1007/s10898-020-00913-z
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10957-025-02769-3
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2878
ExternalDocumentID 10_1007_s10957_025_02769_3
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDPE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADXHL
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
YLTOR
YQT
Z45
ZCG
ZMTXR
ZWQNP
ZY4
~EX
7SC
7TB
8FD
AESKC
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c228t-a1e72321af3866aaf381fc7b34e3affbb5c9794ddde47a0ccc98aa6dd738cc1d3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001526709100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3239
IngestDate Wed Nov 05 08:47:51 EST 2025
Sat Nov 29 07:32:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c228t-a1e72321af3866aaf381fc7b34e3affbb5c9794ddde47a0ccc98aa6dd738cc1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3228954216
PQPubID 48247
ParticipantIDs proquest_journals_3228954216
crossref_primary_10_1007_s10957_025_02769_3
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of optimization theory and applications
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References XQ Yang (2769_CR23) 2010; 147
2769_CR14
2769_CR16
NN Luan (2769_CR10) 2018; 39
ZQ Luo (2769_CR13) 1992; 2
2769_CR15
2769_CR4
HA Le Thi (2769_CR7) 2024; 88
XY Zheng (2769_CR25) 2008; 51
NN Luan (2769_CR12) 2024; 203
JF Toland (2769_CR21) 1978; 66
N Hang (2769_CR3) 2016; 171
HA Le Thi (2769_CR6) 2018; 169
RT Rockafellar (2769_CR18) 1970
2769_CR8
I Singer (2769_CR19) 1979; 20
JF Bonnans (2769_CR1) 2000
LN Polyakova (2769_CR17) 2011; 50
XY Zheng (2769_CR24) 2009; 17
2769_CR22
NN Luan (2769_CR11) 2020; 69
L Contesse (2769_CR2) 1980; 34
I Singer (2769_CR20) 2006
AD Ioffe (2769_CR5) 1979
NN Luan (2769_CR9) 2019; 75
References_xml – volume: 17
  start-page: 389
  year: 2009
  ident: 2769_CR24
  publication-title: Set-Valued Anal.
  doi: 10.1007/s11228-009-0120-5
– volume: 169
  start-page: 5
  year: 2018
  ident: 2769_CR6
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1235-y
– volume-title: Duality for Nonconvex Approximation and Optimization
  year: 2006
  ident: 2769_CR20
  doi: 10.1007/0-387-28395-1
– ident: 2769_CR8
  doi: 10.1007/s10898-023-01331-7
– volume: 50
  start-page: 179
  year: 2011
  ident: 2769_CR17
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-010-9589-6
– volume: 69
  start-page: 471
  year: 2020
  ident: 2769_CR11
  publication-title: Optimization
  doi: 10.1080/02331934.2019.1614179
– volume-title: Convex Analysis
  year: 1970
  ident: 2769_CR18
  doi: 10.1515/9781400873173
– volume: 20
  start-page: 193
  year: 1979
  ident: 2769_CR19
  publication-title: Bull. Austral. Math. Soc.
  doi: 10.1017/S0004972700010844
– volume: 66
  start-page: 399
  year: 1978
  ident: 2769_CR21
  publication-title: J. Optim. Theory Appl.
– ident: 2769_CR4
– volume-title: Perturbation Analysis of Optimization Problems
  year: 2000
  ident: 2769_CR1
  doi: 10.1007/978-1-4612-1394-9
– volume: 34
  start-page: 15
  year: 1980
  ident: 2769_CR2
  publication-title: Numer. Math.
  doi: 10.1007/BF01463995
– volume: 75
  start-page: 789
  year: 2019
  ident: 2769_CR9
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-019-00763-4
– ident: 2769_CR15
– volume: 51
  start-page: 1243
  issue: 7
  year: 2008
  ident: 2769_CR25
  publication-title: Sci. China Ser. A
  doi: 10.1007/s11425-008-0021-3
– volume: 88
  start-page: 533
  year: 2024
  ident: 2769_CR7
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-023-01272-1
– volume: 171
  start-page: 617
  year: 2016
  ident: 2769_CR3
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-015-0769-x
– ident: 2769_CR14
  doi: 10.1007/978-3-030-94785-9_1
– ident: 2769_CR16
  doi: 10.1137/S1052623494274313
– volume: 2
  start-page: 43
  year: 1992
  ident: 2769_CR13
  publication-title: SIAM J. Optim.
  doi: 10.1137/0802004
– volume: 39
  start-page: 537
  year: 2018
  ident: 2769_CR10
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2017.1387863
– volume: 203
  start-page: 1083
  year: 2024
  ident: 2769_CR12
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-023-02318-w
– volume-title: Theory of Extremal Problems
  year: 1979
  ident: 2769_CR5
– volume: 147
  start-page: 113
  year: 2010
  ident: 2769_CR23
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-010-9710-5
– ident: 2769_CR22
  doi: 10.1007/s10898-020-00913-z
SSID ssj0009874
Score 2.4319422
Snippet The problem of minimizing the difference of two lower semicontinuous, proper, convex functions (a DC function) on a nonempty closed convex set in a locally...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 11
SubjectTerms Algorithms
Convex analysis
Convexity
Linear programming
Optimization
Theorems
Vector space
Vector spaces
Title Generalized Polyhedral DC Optimization Problems
URI https://www.proquest.com/docview/3228954216
Volume 207
WOSCitedRecordID wos001526709100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1K8aAHv8VqlT140-Bmk26So1SLF2vBD3oL2XxgQdvSrYL-eme3W2tBDz0tuTzC282bGbLzBuAsYNabhpYgPARDuOWog1iHkODiFKMRpvjUlMMmRLcr-33Vq8HFvzf4RZObQqxi7CqWUKkihbUnRaCiNH94XjjsyrnlckJYwlTVIfM3xHIUWhbhMrJ0tlbb0zZsVhlkdDV75TtQ88Nd2PjlK4irux8z1nwPLitr6cGXd1Fv9Pr54h0uo-t2dI-C8VZ1Yka92WyZfB-eOjeP7VtSzUkgNknklBjqBdJKTWAyTU3xoMGKjHHPTAhZ1rIKj51DJePCxNZaJY1JnRNMWksdO4D6cDT0hxBhNDdBKMuEMzxmymCKEGLmaEJTmcWqAedz3vR4ZoehF8bHBSkaSdElKZo1oDmnVldHI9eoIFK1OAIerQR2DOtJQXj5I10T6tPJuz-BNfsxHeST0_Jb-AZQm6mx
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Polyhedral+DC+Optimization+Problems&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Huong%2C+Vu+Thi&rft.au=Kim+Huyen%2C+Duong+Thi&rft.au=Yen%2C+Nguyen+Dong&rft.date=2025-10-01&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=207&rft.issue=1&rft_id=info:doi/10.1007%2Fs10957-025-02769-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10957_025_02769_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon