Analysis for the nonlinear primary resonance behavior and bifurcation characteristics of the hydrostatic spindle
In order to effectively reduce or avoid the abnormal vibration of the hydrostatic spindle caused by the nonlinear oil film force, it is particularly important to grasp the vibration behavior mechanism. Therefore, the analytical mechanics combined with the elastic mechanics method-assumed modal metho...
Saved in:
| Published in: | Nonlinear dynamics Vol. 113; no. 15; pp. 19451 - 19474 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Nature B.V
01.08.2025
|
| Subjects: | |
| ISSN: | 0924-090X, 1573-269X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In order to effectively reduce or avoid the abnormal vibration of the hydrostatic spindle caused by the nonlinear oil film force, it is particularly important to grasp the vibration behavior mechanism. Therefore, the analytical mechanics combined with the elastic mechanics method-assumed modal method is applied to establish the nonlinear dynamics model and the average method is introduced to solve the amplitude-frequency response equation of the primary resonance. Based on amplitude-frequency response equations and singularity theory, a transfer-set root-finding algorithm is proposed to solve the primary resonance bifurcation boundary solution problem of the amplitude-frequency and parameter coupling system. The correctness of the dynamics model and the average solution results are verified by experiments. The effects of spindle stiffness, excitation force and oil film gap on the nonlinear primary resonance behavior of hydrostatic spindle and the bifurcation characteristics of the two-parameter variables are investigated. The results show that: due to the nonlinearity of the supporting oil film force, the nonlinear primary resonance behaviors of oil film oscillation phenomenon, jump phenomenon, multi-solution phenomenon, unstable solution and whirl will appear in the range of dimensionless frequency ratios w = [0.6, 0.8]. The spindle stiffness suppresses the nonlinear phenomena, the excitation force and oil film gap promote the nonlinear phenomena. When the structural parameter combination points fall within the range of the root-finding algorithm of the transfer set, there will be different degrees of bifurcated nonlinear dynamic behavior, and when the structural parameter combination points fall outside, there is basically no nonlinear dynamic behavior. |
|---|---|
| AbstractList | In order to effectively reduce or avoid the abnormal vibration of the hydrostatic spindle caused by the nonlinear oil film force, it is particularly important to grasp the vibration behavior mechanism. Therefore, the analytical mechanics combined with the elastic mechanics method-assumed modal method is applied to establish the nonlinear dynamics model and the average method is introduced to solve the amplitude-frequency response equation of the primary resonance. Based on amplitude-frequency response equations and singularity theory, a transfer-set root-finding algorithm is proposed to solve the primary resonance bifurcation boundary solution problem of the amplitude-frequency and parameter coupling system. The correctness of the dynamics model and the average solution results are verified by experiments. The effects of spindle stiffness, excitation force and oil film gap on the nonlinear primary resonance behavior of hydrostatic spindle and the bifurcation characteristics of the two-parameter variables are investigated. The results show that: due to the nonlinearity of the supporting oil film force, the nonlinear primary resonance behaviors of oil film oscillation phenomenon, jump phenomenon, multi-solution phenomenon, unstable solution and whirl will appear in the range of dimensionless frequency ratios w = [0.6, 0.8]. The spindle stiffness suppresses the nonlinear phenomena, the excitation force and oil film gap promote the nonlinear phenomena. When the structural parameter combination points fall within the range of the root-finding algorithm of the transfer set, there will be different degrees of bifurcated nonlinear dynamic behavior, and when the structural parameter combination points fall outside, there is basically no nonlinear dynamic behavior. |
| Author | Rong, You Min Zhang, Han Wen Cui, Hai Long Huang, Yu Hu, Hai Dong |
| Author_xml | – sequence: 1 givenname: Han Wen surname: Zhang fullname: Zhang, Han Wen – sequence: 2 givenname: You Min surname: Rong fullname: Rong, You Min – sequence: 3 givenname: Hai Long surname: Cui fullname: Cui, Hai Long – sequence: 4 givenname: Hai Dong surname: Hu fullname: Hu, Hai Dong – sequence: 5 givenname: Yu surname: Huang fullname: Huang, Yu |
| BookMark | eNotkM1KAzEYRYNUsK2-gKuA6-j3JfO7LMU_KLhR6C4kmYRJGZOaTIW-vWPb1d0cLveeBZmFGCwh9wiPCFA_ZUSokQEvGSI2FYMrMseyFoxX7XZG5tDygkEL2xuyyHkHAIJDMyf7VVDDMftMXUx07C2dmgcfrEp0n_y3SkeabI5BBWOptr369ROoQke1d4dk1OhjoKZXSZnRJp9HbzKN7tTVH7sU8zgxhua9D91gb8m1U0O2d5dckq-X58_1G9t8vL6vVxtmOG9G1mrTYOemkZrrTom6q6xzaLhFgbZBzVtXto7bSkPdFaB0WQirisoJI0CjWJKHc-8-xZ-DzaPcxUOazmYpOK9rjrwpJ4qfKTPtzMk6eTktEeS_WXk2Kyez8mRWgvgDR4Vwtg |
| Cites_doi | 10.1115/1.2125927 10.1177/13506501211023618 10.1016/j.apm.2020.12.041 10.1115/1.2197842 10.1016/j.precisioneng.2020.02.003 10.1007/s11071-015-2009-1 10.1115/1.4056850 10.1016/j.apm.2018.11.014 10.1016/j.apm.2021.10.049 10.1007/s42417-020-00245-y 10.1016/j.triboint.2008.01.002 10.1177/0954406214538618 10.1007/s10409-010-0334-7 10.3901/JME.2022.09.107 10.1016/j.mechmachtheory.2014.07.002 10.1016/j.jmapro.2023.10.035 10.1002/mma.7043 10.1177/0954406211418302 10.3969/j.issn.1001-5884.2011.01.007 10.3901/JME.2021.13.070 10.1007/s11465-017-0455-9 10.1016/j.jmsy.2010.11.006 10.1177/10775463231225787 10.1016/j.precisioneng.2011.02.005 10.1007/s11071-023-08986-7 10.1007/s11071-016-3204-4 10.1016/j.jsv.2016.12.044 10.1007/s11071-020-05753-w 10.1137/090764608 10.1007/s40430-021-02845-5 10.1007/s00419-017-1254-9 10.3390/mi14112109 10.1007/s10483-017-2234-8 10.1007/s11012-021-01410-7 10.1063/5.0134907 10.1115/1.4038991 10.1016/j.jmapro.2015.09.002 10.13433/j.cnki.1003-8728.2015.0507 10.1115/1.2162920 10.1016/j.ijnonlinmec.2016.11.013 10.1007/s00419-019-01551-y 10.1016/j.ijmachtools.2019.04.009 10.1007/s10483-010-0202-z 10.21595/jve.2016.17441 10.1007/s00419-020-01818-9 10.1063/5.0091935 10.1533/9780857094537.9.647 10.1177/1077546314558133 10.1142/S0218127412500381 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s11071-025-11186-0 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1573-269X |
| EndPage | 19474 |
| ExternalDocumentID | 10_1007_s11071_025_11186_0 |
| GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFHD AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PHGZM PHGZT PQGLB PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z8Z ZMTXR ~A9 ~EX AESKC |
| ID | FETCH-LOGICAL-c228t-9bc81df320b2bda37d6eff1c2e131e81b29f59f2e6b07d40ab543ea46f3c30b13 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001489897700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-090X |
| IngestDate | Wed Nov 05 08:38:15 EST 2025 Sat Nov 29 07:47:43 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c228t-9bc81df320b2bda37d6eff1c2e131e81b29f59f2e6b07d40ab543ea46f3c30b13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3227721285 |
| PQPubID | 2043746 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_3227721285 crossref_primary_10_1007_s11071_025_11186_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-00 20250801 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | Nonlinear dynamics |
| PublicationYear | 2025 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | SJ Zhang (11186_CR2) 2019; 142 L Zhang (11186_CR35) 2023; 14 YJ Shang (11186_CR43) 2015; 34 R Sghir (11186_CR45) 2015; 229 NA Saeed (11186_CR28) 2021; 91 P Gao (11186_CR17) 2019; 68 H Chen (11186_CR22) 2017; 87 DJ Chen (11186_CR6) 2015; 20 P Gao (11186_CR16) 2021; 9 K Lu (11186_CR39) 2017; 38 P Gao (11186_CR19) 2021; 56 H Cheng (11186_CR12) 2021; 93 ZH Qin (11186_CR33) 2010; 31 C Fang (11186_CR10) 2022; 236 WL Xiong (11186_CR4) 2022; 58 Y Xu (11186_CR25) 2023; 33 B Peng (11186_CR26) 2022; 12 M Wu (11186_CR24) 2016; 18 H Dong (11186_CR32) 2018; 13 JL Yuan (11186_CR1) 2017; 12 YL Wang (11186_CR37) 2012; 226 V Meruane (11186_CR36) 2008; 41 L Hou (11186_CR42) 2015; 81 GI Cirillo (11186_CR30) 2017; 392 WZ Zhang (11186_CR38) 2011 J Zhang (11186_CR23) 2023; 111 Z Qin (11186_CR40) 2010; 26 11186_CR46 NA Saeed (11186_CR27) 2019; 89 P Gao (11186_CR18) 2020; 101 X Zeng (11186_CR5) 2024; 109 K Lu (11186_CR34) 2017; 89 H Chen (11186_CR20) 2017; 87 WL Xiong (11186_CR3) 2021; 57 R Sghir (11186_CR44) 2016; 22 FL Liao (11186_CR29) 2023; 18 DJ Chen (11186_CR7) 2011; 35 M Hojjati (11186_CR15) 2021; 43 W Sun (11186_CR11) 2024 D Fedorynenko (11186_CR9) 2020; 63 X Xie (11186_CR13) 2022; 103 DJ Chen (11186_CR8) 2014 JK Wang (11186_CR48) 2006; 128 JK Wang (11186_CR47) 2005; 128 TY Zhao (11186_CR14) 2021; 44 MR Jeffrey (11186_CR31) 2011; 53 JK Wang (11186_CR49) 2006; 128 H Chen (11186_CR21) 2014; 81 Z Qin (11186_CR41) 2012; 22 |
| References_xml | – volume: 128 start-page: 188 issue: 1 year: 2006 ident: 11186_CR49 publication-title: J. Tribol. doi: 10.1115/1.2125927 – volume: 236 start-page: 732 issue: 4 year: 2022 ident: 11186_CR10 publication-title: Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. doi: 10.1177/13506501211023618 – volume: 93 start-page: 708 year: 2021 ident: 11186_CR12 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2020.12.041 – volume: 128 start-page: 594 issue: 3 year: 2006 ident: 11186_CR48 publication-title: J. Tribol. doi: 10.1115/1.2197842 – volume: 63 start-page: 187 year: 2020 ident: 11186_CR9 publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2020.02.003 – volume: 81 start-page: 531 year: 2015 ident: 11186_CR42 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-015-2009-1 – volume: 18 start-page: 041003 issue: 4 year: 2023 ident: 11186_CR29 publication-title: J. Comput. Nonlinear Dyn. doi: 10.1115/1.4056850 – volume: 68 start-page: 29 year: 2019 ident: 11186_CR17 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2018.11.014 – volume: 103 start-page: 344 year: 2022 ident: 11186_CR13 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2021.10.049 – volume: 9 start-page: 529 year: 2021 ident: 11186_CR16 publication-title: J. Vibr. Eng. Technol. doi: 10.1007/s42417-020-00245-y – volume: 41 start-page: 743 issue: 8 year: 2008 ident: 11186_CR36 publication-title: Tribol. Int. doi: 10.1016/j.triboint.2008.01.002 – volume: 229 start-page: 651 issue: 4 year: 2015 ident: 11186_CR45 publication-title: Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. doi: 10.1177/0954406214538618 – volume: 26 start-page: 501 issue: 3 year: 2010 ident: 11186_CR40 publication-title: Acta. Mech. Sin. doi: 10.1007/s10409-010-0334-7 – volume: 58 start-page: 107 issue: 9 year: 2022 ident: 11186_CR4 publication-title: J. Mech. Eng. doi: 10.3901/JME.2022.09.107 – volume: 81 start-page: 129 year: 2014 ident: 11186_CR21 publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2014.07.002 – volume: 109 start-page: 25 year: 2024 ident: 11186_CR5 publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2023.10.035 – volume: 44 start-page: 12283 issue: 16 year: 2021 ident: 11186_CR14 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.7043 – volume: 226 start-page: 1345 issue: 5 year: 2012 ident: 11186_CR37 publication-title: Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. doi: 10.1177/0954406211418302 – year: 2011 ident: 11186_CR38 publication-title: Turbine Technol. doi: 10.3969/j.issn.1001-5884.2011.01.007 – volume: 57 start-page: 70 issue: 13 year: 2021 ident: 11186_CR3 publication-title: J. Mech. Eng. doi: 10.3901/JME.2021.13.070 – volume: 12 start-page: 158 year: 2017 ident: 11186_CR1 publication-title: Front. Mech. Eng. doi: 10.1007/s11465-017-0455-9 – year: 2014 ident: 11186_CR8 publication-title: Appl. Mech. Mater. doi: 10.1016/j.jmsy.2010.11.006 – year: 2024 ident: 11186_CR11 publication-title: J. Vibr. Control. doi: 10.1177/10775463231225787 – volume: 35 start-page: 512 issue: 3 year: 2011 ident: 11186_CR7 publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2011.02.005 – volume: 111 start-page: 20735 issue: 22 year: 2023 ident: 11186_CR23 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-023-08986-7 – volume: 87 start-page: 2463 year: 2017 ident: 11186_CR22 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-3204-4 – volume: 392 start-page: 295 year: 2017 ident: 11186_CR30 publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.12.044 – volume: 101 start-page: 191 year: 2020 ident: 11186_CR18 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-05753-w – volume: 53 start-page: 505 issue: 3 year: 2011 ident: 11186_CR31 publication-title: SIAM Rev. doi: 10.1137/090764608 – volume: 43 start-page: 1 year: 2021 ident: 11186_CR15 publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-021-02845-5 – volume: 87 start-page: 1347 year: 2017 ident: 11186_CR20 publication-title: Arch. Appl. Mech. doi: 10.1007/s00419-017-1254-9 – volume: 14 start-page: 2109 issue: 11 year: 2023 ident: 11186_CR35 publication-title: Micromachines. doi: 10.3390/mi14112109 – volume: 38 start-page: 1233 year: 2017 ident: 11186_CR39 publication-title: Appl. Math. Mech.-Engl. Ed. doi: 10.1007/s10483-017-2234-8 – volume: 56 start-page: 2691 year: 2021 ident: 11186_CR19 publication-title: Meccanica doi: 10.1007/s11012-021-01410-7 – volume: 33 start-page: 033113 issue: 3 year: 2023 ident: 11186_CR25 publication-title: J. Nonlinear Sci. doi: 10.1063/5.0134907 – volume: 13 start-page: 041001 issue: 4 year: 2018 ident: 11186_CR32 publication-title: J. Comput. Nonlinear Dyn. doi: 10.1115/1.4038991 – volume: 20 start-page: 128 year: 2015 ident: 11186_CR6 publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2015.09.002 – volume: 34 start-page: 688 issue: 5 year: 2015 ident: 11186_CR43 publication-title: Mecha. Sci. Technol. Aerospace Eng. doi: 10.13433/j.cnki.1003-8728.2015.0507 – volume: 128 start-page: 319 issue: 2 year: 2005 ident: 11186_CR47 publication-title: J. Tribol. doi: 10.1115/1.2162920 – volume: 89 start-page: 83 year: 2017 ident: 11186_CR34 publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2016.11.013 – volume: 89 start-page: 1899 issue: 9 year: 2019 ident: 11186_CR27 publication-title: Arch. Appl. Mech. doi: 10.1007/s00419-019-01551-y – volume: 142 start-page: 16 year: 2019 ident: 11186_CR2 publication-title: Int. J. Mach. Tools Manuf doi: 10.1016/j.ijmachtools.2019.04.009 – volume: 31 start-page: 143 issue: 2 year: 2010 ident: 11186_CR33 publication-title: Appl. Math. Mech. doi: 10.1007/s10483-010-0202-z – volume: 18 start-page: 4980 issue: 8 year: 2016 ident: 11186_CR24 publication-title: J. Vibroeng. doi: 10.21595/jve.2016.17441 – volume: 91 start-page: 1193 year: 2021 ident: 11186_CR28 publication-title: Arch. Appl. Mech. doi: 10.1007/s00419-020-01818-9 – volume: 12 start-page: 055018 issue: 5 year: 2022 ident: 11186_CR26 publication-title: AIP Adv. doi: 10.1063/5.0091935 – ident: 11186_CR46 doi: 10.1533/9780857094537.9.647 – volume: 22 start-page: 3079 issue: 13 year: 2016 ident: 11186_CR44 publication-title: J. Vib. Control doi: 10.1177/1077546314558133 – volume: 22 start-page: 1250038 issue: 02 year: 2012 ident: 11186_CR41 publication-title: Int. J. Bifurcation Chaos. doi: 10.1142/S0218127412500381 |
| SSID | ssj0003208 |
| Score | 2.4354227 |
| Snippet | In order to effectively reduce or avoid the abnormal vibration of the hydrostatic spindle caused by the nonlinear oil film force, it is particularly important... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 19451 |
| SubjectTerms | Accuracy Algorithms Amplitudes Bifurcations Dynamical systems Excitation Frequency response Journal bearings Mathematical models Mechanics (physics) Nonlinear dynamics Nonlinear phenomena Nonlinearity Parameters Resonance Stiffness Thrust bearings Vibration |
| Title | Analysis for the nonlinear primary resonance behavior and bifurcation characteristics of the hydrostatic spindle |
| URI | https://www.proquest.com/docview/3227721285 |
| Volume | 113 |
| WOSCitedRecordID | wos001489897700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-269X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1VFQc4UCggCgX5wA0sEtvZjghRcaoQm3qLvIpe2ippK_H3jLMAleDQH3DsmczMe07mDcCVQNAqY5vQ0EUZFdwkVLLAUBvKODVCuiSoh00k43E6mWRPHbj59wv-bekZClJeFlGMyxT5LybcMGZ-XMHzy_t32uWsGj8XIKHwlw-TpkPm7yU2q9BmEq4qy6i33Z4OYL9BkOSudvkhdOysD70GTZImVss-7P2SGjyCRas-QhClEkR9ZFaLZMiCLGrFCYLMe-71Nyxpm_eJnBmipm5V1Dd7RG_qO5O5q9b6-DS-e8Srv5JyMfXCDcfwNnp4vX-kzbQFqhlLlzRTGrGrQzMqpozkiYmtc6FmNuShRXTLMnSnYzZWQWJEIFUkuJUidlzzQIX8BLq4c3sKxHHDlRVcJ5wLqazSNmMWPZNJJfA5A7hurZ83R8x_5JO9aXM0bV6ZNg8GMGwdlDcBVuaYh5AXYHGNzrZa7Bx2mXdb9QvfELrLYmUvYEevl9OyuKzeqC-kMsVC |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+for+the+nonlinear+primary+resonance+behavior+and+bifurcation+characteristics+of+the+hydrostatic+spindle&rft.jtitle=Nonlinear+dynamics&rft.au=Zhang%2C+Han+Wen&rft.au=Rong%2C+You+Min&rft.au=Cui%2C+Hai+Long&rft.au=Hu%2C+Hai+Dong&rft.date=2025-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=113&rft.issue=15&rft.spage=19451&rft.epage=19474&rft_id=info:doi/10.1007%2Fs11071-025-11186-0&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |