Analysis for the nonlinear primary resonance behavior and bifurcation characteristics of the hydrostatic spindle

In order to effectively reduce or avoid the abnormal vibration of the hydrostatic spindle caused by the nonlinear oil film force, it is particularly important to grasp the vibration behavior mechanism. Therefore, the analytical mechanics combined with the elastic mechanics method-assumed modal metho...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics Vol. 113; no. 15; pp. 19451 - 19474
Main Authors: Zhang, Han Wen, Rong, You Min, Cui, Hai Long, Hu, Hai Dong, Huang, Yu
Format: Journal Article
Language:English
Published: Dordrecht Springer Nature B.V 01.08.2025
Subjects:
ISSN:0924-090X, 1573-269X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In order to effectively reduce or avoid the abnormal vibration of the hydrostatic spindle caused by the nonlinear oil film force, it is particularly important to grasp the vibration behavior mechanism. Therefore, the analytical mechanics combined with the elastic mechanics method-assumed modal method is applied to establish the nonlinear dynamics model and the average method is introduced to solve the amplitude-frequency response equation of the primary resonance. Based on amplitude-frequency response equations and singularity theory, a transfer-set root-finding algorithm is proposed to solve the primary resonance bifurcation boundary solution problem of the amplitude-frequency and parameter coupling system. The correctness of the dynamics model and the average solution results are verified by experiments. The effects of spindle stiffness, excitation force and oil film gap on the nonlinear primary resonance behavior of hydrostatic spindle and the bifurcation characteristics of the two-parameter variables are investigated. The results show that: due to the nonlinearity of the supporting oil film force, the nonlinear primary resonance behaviors of oil film oscillation phenomenon, jump phenomenon, multi-solution phenomenon, unstable solution and whirl will appear in the range of dimensionless frequency ratios w = [0.6, 0.8]. The spindle stiffness suppresses the nonlinear phenomena, the excitation force and oil film gap promote the nonlinear phenomena. When the structural parameter combination points fall within the range of the root-finding algorithm of the transfer set, there will be different degrees of bifurcated nonlinear dynamic behavior, and when the structural parameter combination points fall outside, there is basically no nonlinear dynamic behavior.
AbstractList In order to effectively reduce or avoid the abnormal vibration of the hydrostatic spindle caused by the nonlinear oil film force, it is particularly important to grasp the vibration behavior mechanism. Therefore, the analytical mechanics combined with the elastic mechanics method-assumed modal method is applied to establish the nonlinear dynamics model and the average method is introduced to solve the amplitude-frequency response equation of the primary resonance. Based on amplitude-frequency response equations and singularity theory, a transfer-set root-finding algorithm is proposed to solve the primary resonance bifurcation boundary solution problem of the amplitude-frequency and parameter coupling system. The correctness of the dynamics model and the average solution results are verified by experiments. The effects of spindle stiffness, excitation force and oil film gap on the nonlinear primary resonance behavior of hydrostatic spindle and the bifurcation characteristics of the two-parameter variables are investigated. The results show that: due to the nonlinearity of the supporting oil film force, the nonlinear primary resonance behaviors of oil film oscillation phenomenon, jump phenomenon, multi-solution phenomenon, unstable solution and whirl will appear in the range of dimensionless frequency ratios w = [0.6, 0.8]. The spindle stiffness suppresses the nonlinear phenomena, the excitation force and oil film gap promote the nonlinear phenomena. When the structural parameter combination points fall within the range of the root-finding algorithm of the transfer set, there will be different degrees of bifurcated nonlinear dynamic behavior, and when the structural parameter combination points fall outside, there is basically no nonlinear dynamic behavior.
Author Rong, You Min
Zhang, Han Wen
Cui, Hai Long
Huang, Yu
Hu, Hai Dong
Author_xml – sequence: 1
  givenname: Han Wen
  surname: Zhang
  fullname: Zhang, Han Wen
– sequence: 2
  givenname: You Min
  surname: Rong
  fullname: Rong, You Min
– sequence: 3
  givenname: Hai Long
  surname: Cui
  fullname: Cui, Hai Long
– sequence: 4
  givenname: Hai Dong
  surname: Hu
  fullname: Hu, Hai Dong
– sequence: 5
  givenname: Yu
  surname: Huang
  fullname: Huang, Yu
BookMark eNotkM1KAzEYRYNUsK2-gKuA6-j3JfO7LMU_KLhR6C4kmYRJGZOaTIW-vWPb1d0cLveeBZmFGCwh9wiPCFA_ZUSokQEvGSI2FYMrMseyFoxX7XZG5tDygkEL2xuyyHkHAIJDMyf7VVDDMftMXUx07C2dmgcfrEp0n_y3SkeabI5BBWOptr369ROoQke1d4dk1OhjoKZXSZnRJp9HbzKN7tTVH7sU8zgxhua9D91gb8m1U0O2d5dckq-X58_1G9t8vL6vVxtmOG9G1mrTYOemkZrrTom6q6xzaLhFgbZBzVtXto7bSkPdFaB0WQirisoJI0CjWJKHc-8-xZ-DzaPcxUOazmYpOK9rjrwpJ4qfKTPtzMk6eTktEeS_WXk2Kyez8mRWgvgDR4Vwtg
Cites_doi 10.1115/1.2125927
10.1177/13506501211023618
10.1016/j.apm.2020.12.041
10.1115/1.2197842
10.1016/j.precisioneng.2020.02.003
10.1007/s11071-015-2009-1
10.1115/1.4056850
10.1016/j.apm.2018.11.014
10.1016/j.apm.2021.10.049
10.1007/s42417-020-00245-y
10.1016/j.triboint.2008.01.002
10.1177/0954406214538618
10.1007/s10409-010-0334-7
10.3901/JME.2022.09.107
10.1016/j.mechmachtheory.2014.07.002
10.1016/j.jmapro.2023.10.035
10.1002/mma.7043
10.1177/0954406211418302
10.3969/j.issn.1001-5884.2011.01.007
10.3901/JME.2021.13.070
10.1007/s11465-017-0455-9
10.1016/j.jmsy.2010.11.006
10.1177/10775463231225787
10.1016/j.precisioneng.2011.02.005
10.1007/s11071-023-08986-7
10.1007/s11071-016-3204-4
10.1016/j.jsv.2016.12.044
10.1007/s11071-020-05753-w
10.1137/090764608
10.1007/s40430-021-02845-5
10.1007/s00419-017-1254-9
10.3390/mi14112109
10.1007/s10483-017-2234-8
10.1007/s11012-021-01410-7
10.1063/5.0134907
10.1115/1.4038991
10.1016/j.jmapro.2015.09.002
10.13433/j.cnki.1003-8728.2015.0507
10.1115/1.2162920
10.1016/j.ijnonlinmec.2016.11.013
10.1007/s00419-019-01551-y
10.1016/j.ijmachtools.2019.04.009
10.1007/s10483-010-0202-z
10.21595/jve.2016.17441
10.1007/s00419-020-01818-9
10.1063/5.0091935
10.1533/9780857094537.9.647
10.1177/1077546314558133
10.1142/S0218127412500381
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025.
DBID AAYXX
CITATION
DOI 10.1007/s11071-025-11186-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 19474
ExternalDocumentID 10_1007_s11071_025_11186_0
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z8Z
ZMTXR
~A9
~EX
AESKC
ID FETCH-LOGICAL-c228t-9bc81df320b2bda37d6eff1c2e131e81b29f59f2e6b07d40ab543ea46f3c30b13
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001489897700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-090X
IngestDate Wed Nov 05 08:38:15 EST 2025
Sat Nov 29 07:47:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c228t-9bc81df320b2bda37d6eff1c2e131e81b29f59f2e6b07d40ab543ea46f3c30b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3227721285
PQPubID 2043746
PageCount 24
ParticipantIDs proquest_journals_3227721285
crossref_primary_10_1007_s11071_025_11186_0
PublicationCentury 2000
PublicationDate 2025-08-00
20250801
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-00
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Nonlinear dynamics
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References SJ Zhang (11186_CR2) 2019; 142
L Zhang (11186_CR35) 2023; 14
YJ Shang (11186_CR43) 2015; 34
R Sghir (11186_CR45) 2015; 229
NA Saeed (11186_CR28) 2021; 91
P Gao (11186_CR17) 2019; 68
H Chen (11186_CR22) 2017; 87
DJ Chen (11186_CR6) 2015; 20
P Gao (11186_CR16) 2021; 9
K Lu (11186_CR39) 2017; 38
P Gao (11186_CR19) 2021; 56
H Cheng (11186_CR12) 2021; 93
ZH Qin (11186_CR33) 2010; 31
C Fang (11186_CR10) 2022; 236
WL Xiong (11186_CR4) 2022; 58
Y Xu (11186_CR25) 2023; 33
B Peng (11186_CR26) 2022; 12
M Wu (11186_CR24) 2016; 18
H Dong (11186_CR32) 2018; 13
JL Yuan (11186_CR1) 2017; 12
YL Wang (11186_CR37) 2012; 226
V Meruane (11186_CR36) 2008; 41
L Hou (11186_CR42) 2015; 81
GI Cirillo (11186_CR30) 2017; 392
WZ Zhang (11186_CR38) 2011
J Zhang (11186_CR23) 2023; 111
Z Qin (11186_CR40) 2010; 26
11186_CR46
NA Saeed (11186_CR27) 2019; 89
P Gao (11186_CR18) 2020; 101
X Zeng (11186_CR5) 2024; 109
K Lu (11186_CR34) 2017; 89
H Chen (11186_CR20) 2017; 87
WL Xiong (11186_CR3) 2021; 57
R Sghir (11186_CR44) 2016; 22
FL Liao (11186_CR29) 2023; 18
DJ Chen (11186_CR7) 2011; 35
M Hojjati (11186_CR15) 2021; 43
W Sun (11186_CR11) 2024
D Fedorynenko (11186_CR9) 2020; 63
X Xie (11186_CR13) 2022; 103
DJ Chen (11186_CR8) 2014
JK Wang (11186_CR48) 2006; 128
JK Wang (11186_CR47) 2005; 128
TY Zhao (11186_CR14) 2021; 44
MR Jeffrey (11186_CR31) 2011; 53
JK Wang (11186_CR49) 2006; 128
H Chen (11186_CR21) 2014; 81
Z Qin (11186_CR41) 2012; 22
References_xml – volume: 128
  start-page: 188
  issue: 1
  year: 2006
  ident: 11186_CR49
  publication-title: J. Tribol.
  doi: 10.1115/1.2125927
– volume: 236
  start-page: 732
  issue: 4
  year: 2022
  ident: 11186_CR10
  publication-title: Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
  doi: 10.1177/13506501211023618
– volume: 93
  start-page: 708
  year: 2021
  ident: 11186_CR12
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2020.12.041
– volume: 128
  start-page: 594
  issue: 3
  year: 2006
  ident: 11186_CR48
  publication-title: J. Tribol.
  doi: 10.1115/1.2197842
– volume: 63
  start-page: 187
  year: 2020
  ident: 11186_CR9
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2020.02.003
– volume: 81
  start-page: 531
  year: 2015
  ident: 11186_CR42
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-015-2009-1
– volume: 18
  start-page: 041003
  issue: 4
  year: 2023
  ident: 11186_CR29
  publication-title: J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.4056850
– volume: 68
  start-page: 29
  year: 2019
  ident: 11186_CR17
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.11.014
– volume: 103
  start-page: 344
  year: 2022
  ident: 11186_CR13
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2021.10.049
– volume: 9
  start-page: 529
  year: 2021
  ident: 11186_CR16
  publication-title: J. Vibr. Eng. Technol.
  doi: 10.1007/s42417-020-00245-y
– volume: 41
  start-page: 743
  issue: 8
  year: 2008
  ident: 11186_CR36
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2008.01.002
– volume: 229
  start-page: 651
  issue: 4
  year: 2015
  ident: 11186_CR45
  publication-title: Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
  doi: 10.1177/0954406214538618
– volume: 26
  start-page: 501
  issue: 3
  year: 2010
  ident: 11186_CR40
  publication-title: Acta. Mech. Sin.
  doi: 10.1007/s10409-010-0334-7
– volume: 58
  start-page: 107
  issue: 9
  year: 2022
  ident: 11186_CR4
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2022.09.107
– volume: 81
  start-page: 129
  year: 2014
  ident: 11186_CR21
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2014.07.002
– volume: 109
  start-page: 25
  year: 2024
  ident: 11186_CR5
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2023.10.035
– volume: 44
  start-page: 12283
  issue: 16
  year: 2021
  ident: 11186_CR14
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.7043
– volume: 226
  start-page: 1345
  issue: 5
  year: 2012
  ident: 11186_CR37
  publication-title: Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
  doi: 10.1177/0954406211418302
– year: 2011
  ident: 11186_CR38
  publication-title: Turbine Technol.
  doi: 10.3969/j.issn.1001-5884.2011.01.007
– volume: 57
  start-page: 70
  issue: 13
  year: 2021
  ident: 11186_CR3
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2021.13.070
– volume: 12
  start-page: 158
  year: 2017
  ident: 11186_CR1
  publication-title: Front. Mech. Eng.
  doi: 10.1007/s11465-017-0455-9
– year: 2014
  ident: 11186_CR8
  publication-title: Appl. Mech. Mater.
  doi: 10.1016/j.jmsy.2010.11.006
– year: 2024
  ident: 11186_CR11
  publication-title: J. Vibr. Control.
  doi: 10.1177/10775463231225787
– volume: 35
  start-page: 512
  issue: 3
  year: 2011
  ident: 11186_CR7
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2011.02.005
– volume: 111
  start-page: 20735
  issue: 22
  year: 2023
  ident: 11186_CR23
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08986-7
– volume: 87
  start-page: 2463
  year: 2017
  ident: 11186_CR22
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-3204-4
– volume: 392
  start-page: 295
  year: 2017
  ident: 11186_CR30
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.12.044
– volume: 101
  start-page: 191
  year: 2020
  ident: 11186_CR18
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05753-w
– volume: 53
  start-page: 505
  issue: 3
  year: 2011
  ident: 11186_CR31
  publication-title: SIAM Rev.
  doi: 10.1137/090764608
– volume: 43
  start-page: 1
  year: 2021
  ident: 11186_CR15
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-021-02845-5
– volume: 87
  start-page: 1347
  year: 2017
  ident: 11186_CR20
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-017-1254-9
– volume: 14
  start-page: 2109
  issue: 11
  year: 2023
  ident: 11186_CR35
  publication-title: Micromachines.
  doi: 10.3390/mi14112109
– volume: 38
  start-page: 1233
  year: 2017
  ident: 11186_CR39
  publication-title: Appl. Math. Mech.-Engl. Ed.
  doi: 10.1007/s10483-017-2234-8
– volume: 56
  start-page: 2691
  year: 2021
  ident: 11186_CR19
  publication-title: Meccanica
  doi: 10.1007/s11012-021-01410-7
– volume: 33
  start-page: 033113
  issue: 3
  year: 2023
  ident: 11186_CR25
  publication-title: J. Nonlinear Sci.
  doi: 10.1063/5.0134907
– volume: 13
  start-page: 041001
  issue: 4
  year: 2018
  ident: 11186_CR32
  publication-title: J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.4038991
– volume: 20
  start-page: 128
  year: 2015
  ident: 11186_CR6
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2015.09.002
– volume: 34
  start-page: 688
  issue: 5
  year: 2015
  ident: 11186_CR43
  publication-title: Mecha. Sci. Technol. Aerospace Eng.
  doi: 10.13433/j.cnki.1003-8728.2015.0507
– volume: 128
  start-page: 319
  issue: 2
  year: 2005
  ident: 11186_CR47
  publication-title: J. Tribol.
  doi: 10.1115/1.2162920
– volume: 89
  start-page: 83
  year: 2017
  ident: 11186_CR34
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2016.11.013
– volume: 89
  start-page: 1899
  issue: 9
  year: 2019
  ident: 11186_CR27
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-019-01551-y
– volume: 142
  start-page: 16
  year: 2019
  ident: 11186_CR2
  publication-title: Int. J. Mach. Tools Manuf
  doi: 10.1016/j.ijmachtools.2019.04.009
– volume: 31
  start-page: 143
  issue: 2
  year: 2010
  ident: 11186_CR33
  publication-title: Appl. Math. Mech.
  doi: 10.1007/s10483-010-0202-z
– volume: 18
  start-page: 4980
  issue: 8
  year: 2016
  ident: 11186_CR24
  publication-title: J. Vibroeng.
  doi: 10.21595/jve.2016.17441
– volume: 91
  start-page: 1193
  year: 2021
  ident: 11186_CR28
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-020-01818-9
– volume: 12
  start-page: 055018
  issue: 5
  year: 2022
  ident: 11186_CR26
  publication-title: AIP Adv.
  doi: 10.1063/5.0091935
– ident: 11186_CR46
  doi: 10.1533/9780857094537.9.647
– volume: 22
  start-page: 3079
  issue: 13
  year: 2016
  ident: 11186_CR44
  publication-title: J. Vib. Control
  doi: 10.1177/1077546314558133
– volume: 22
  start-page: 1250038
  issue: 02
  year: 2012
  ident: 11186_CR41
  publication-title: Int. J. Bifurcation Chaos.
  doi: 10.1142/S0218127412500381
SSID ssj0003208
Score 2.4354227
Snippet In order to effectively reduce or avoid the abnormal vibration of the hydrostatic spindle caused by the nonlinear oil film force, it is particularly important...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 19451
SubjectTerms Accuracy
Algorithms
Amplitudes
Bifurcations
Dynamical systems
Excitation
Frequency response
Journal bearings
Mathematical models
Mechanics (physics)
Nonlinear dynamics
Nonlinear phenomena
Nonlinearity
Parameters
Resonance
Stiffness
Thrust bearings
Vibration
Title Analysis for the nonlinear primary resonance behavior and bifurcation characteristics of the hydrostatic spindle
URI https://www.proquest.com/docview/3227721285
Volume 113
WOSCitedRecordID wos001489897700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1VFQc4UCggCgX5wA0sEtvZjghRcaoQm3qLvIpe2ippK_H3jLMAleDQH3DsmczMe07mDcCVQNAqY5vQ0EUZFdwkVLLAUBvKODVCuiSoh00k43E6mWRPHbj59wv-bekZClJeFlGMyxT5LybcMGZ-XMHzy_t32uWsGj8XIKHwlw-TpkPm7yU2q9BmEq4qy6i33Z4OYL9BkOSudvkhdOysD70GTZImVss-7P2SGjyCRas-QhClEkR9ZFaLZMiCLGrFCYLMe-71Nyxpm_eJnBmipm5V1Dd7RG_qO5O5q9b6-DS-e8Srv5JyMfXCDcfwNnp4vX-kzbQFqhlLlzRTGrGrQzMqpozkiYmtc6FmNuShRXTLMnSnYzZWQWJEIFUkuJUidlzzQIX8BLq4c3sKxHHDlRVcJ5wLqazSNmMWPZNJJfA5A7hurZ83R8x_5JO9aXM0bV6ZNg8GMGwdlDcBVuaYh5AXYHGNzrZa7Bx2mXdb9QvfELrLYmUvYEevl9OyuKzeqC-kMsVC
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+for+the+nonlinear+primary+resonance+behavior+and+bifurcation+characteristics+of+the+hydrostatic+spindle&rft.jtitle=Nonlinear+dynamics&rft.au=Zhang%2C+Han+Wen&rft.au=Rong%2C+You+Min&rft.au=Cui%2C+Hai+Long&rft.au=Hu%2C+Hai+Dong&rft.date=2025-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=113&rft.issue=15&rft.spage=19451&rft.epage=19474&rft_id=info:doi/10.1007%2Fs11071-025-11186-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon