First and Second Order Optimality Conditions for Nonsmooth Multiobjective Problems with Equilibrium Constraints

In this paper, we first extend the constant positive linear dependence (CPLD) condition in terms of convexificators given by Rimpi and Lalitha [Constraint qualifications in terms of convexificators for nonsmooth programming problems with mixed constraints. Optimization. 2023;72(8):2019-2038] for non...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 208; číslo 1; s. 15
Hlavní autoři: Sachan, Prachi, Laha, Vivek, Anshika
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer Nature B.V 01.01.2026
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we first extend the constant positive linear dependence (CPLD) condition in terms of convexificators given by Rimpi and Lalitha [Constraint qualifications in terms of convexificators for nonsmooth programming problems with mixed constraints. Optimization. 2023;72(8):2019-2038] for nonsmooth scalar optimization problems to nonsmooth multiobjective optimization problems with mixed constraints (MOP) which we denote by MOP-CPLD. It also extends the CPLD condition given by Andreani et al. [On the relation between constant positive linear dependence condition and quasinormality constraint qualification. J Optim Theory Appl. 2005;125(2):473-483] involving continuously differentiable functions. We establish a strong Karush-Kuhn-Tucker (KKT) optimality condition to identify local Pareto efficient solutions under the MOP-CPLD framework. We also introduce a suitable CPLD condition for a nonsmooth multiobjective optimization problem with equilibrium constraints in terms of convexificators which is denoted by MOPEC-CPLD. We introduce several nonsmooth strong Pareto stationary points for the MOPEC which extend the notions of strong Pareto stationary points given by Zhang et al. [Constraint qualifications and proper Pareto optimality conditions for multiobjective problems with equilibrium constraints. J Optim Theory Appl. 2018;176:763-782] for continuously differentiable functions. We provide necessary and sufficient optimality conditions to identify a stationary point as a Pareto efficient solution of the MOPEC under the MOPEC-CPLD condition. Further, we introduce Abadie constraint qualifications for MOPEC which is denoted by MOPEC-SOACQ in terms of Clarke generalized derivative and second-order upper directional derivative given by Páles and Zeidan. This notion utilizes second-order ACQ given by Anchal and Lalita [Second-order optimality conditions for locally Lipschitz vector optimization problems. Optimization. 2023;1-20] for multiobjective optimization problems. We derive second-order necessary optimality conditions in both the primal and the dual forms to identify weak Pareto efficient solutions and strict Pareto efficient solutions of order two for MOPEC by utilizing MOPEC-SOACQ. We give some applications of the results in interval-valued multiobjective optimization problems with equilibrium constraints and in portfolio optimization.
AbstractList In this paper, we first extend the constant positive linear dependence (CPLD) condition in terms of convexificators given by Rimpi and Lalitha [Constraint qualifications in terms of convexificators for nonsmooth programming problems with mixed constraints. Optimization. 2023;72(8):2019-2038] for nonsmooth scalar optimization problems to nonsmooth multiobjective optimization problems with mixed constraints (MOP) which we denote by MOP-CPLD. It also extends the CPLD condition given by Andreani et al. [On the relation between constant positive linear dependence condition and quasinormality constraint qualification. J Optim Theory Appl. 2005;125(2):473-483] involving continuously differentiable functions. We establish a strong Karush-Kuhn-Tucker (KKT) optimality condition to identify local Pareto efficient solutions under the MOP-CPLD framework. We also introduce a suitable CPLD condition for a nonsmooth multiobjective optimization problem with equilibrium constraints in terms of convexificators which is denoted by MOPEC-CPLD. We introduce several nonsmooth strong Pareto stationary points for the MOPEC which extend the notions of strong Pareto stationary points given by Zhang et al. [Constraint qualifications and proper Pareto optimality conditions for multiobjective problems with equilibrium constraints. J Optim Theory Appl. 2018;176:763-782] for continuously differentiable functions. We provide necessary and sufficient optimality conditions to identify a stationary point as a Pareto efficient solution of the MOPEC under the MOPEC-CPLD condition. Further, we introduce Abadie constraint qualifications for MOPEC which is denoted by MOPEC-SOACQ in terms of Clarke generalized derivative and second-order upper directional derivative given by Páles and Zeidan. This notion utilizes second-order ACQ given by Anchal and Lalita [Second-order optimality conditions for locally Lipschitz vector optimization problems. Optimization. 2023;1-20] for multiobjective optimization problems. We derive second-order necessary optimality conditions in both the primal and the dual forms to identify weak Pareto efficient solutions and strict Pareto efficient solutions of order two for MOPEC by utilizing MOPEC-SOACQ. We give some applications of the results in interval-valued multiobjective optimization problems with equilibrium constraints and in portfolio optimization.
ArticleNumber 15
Author Laha, Vivek
Anshika
Sachan, Prachi
Author_xml – sequence: 1
  givenname: Prachi
  surname: Sachan
  fullname: Sachan, Prachi
– sequence: 2
  givenname: Vivek
  orcidid: 0000-0002-0584-9500
  surname: Laha
  fullname: Laha, Vivek
– sequence: 3
  surname: Anshika
  fullname: Anshika
BookMark eNotkE9LAzEQxYNUsFa_gKeA52j-bJrkKKVVoVpBPYdsNospu5s2ySr99qbWw_CGN48Z5ncJJkMYHAA3BN8RjMV9IlhxgTDlpSRnSJ6BKeGCISqFnIApxpQiRpm6AJcpbTHGSopqCsLKx5ShGRr47mwosomNi3Czy743nc8HuCiuzz4MCbYhwtfS9CHkL_gydsWut85m_-3gWwx15_oEf3wZLvej73wd_dgfN6QcjR9yugLnremSu_7XGfhcLT8WT2i9eXxePKyRpVRmpAy10vC6rWpDmGSWNVJYIRzHihJaGYzdXJE5a4ipGCYVsVbNOTWKtaKhLZuB29PeXQz70aWst2GMQzmpGeVcEcWEKCl6StkYUoqu1btY3o4HTbA-gtUnsLqA1X9gtWS_ipxuuQ
Cites_doi 10.1016/j.cam.2024.116483
10.1080/02331934.2014.987776
10.1007/s10287-023-00461-3
10.1007/s10957-004-1176-x
10.1007/s10589-025-00663-2
10.1017/CBO9780511983658
10.1016/j.orl.2015.12.007
10.1016/j.jmaa.2005.02.011
10.1023/A:1014853129484
10.1016/j.jmaa.2004.10.032
10.1007/978-3-030-52119-6_12
10.1007/BF03322575
10.1007/s12190-019-01274-x
10.1186/s13660-022-02866-1
10.1007/s10479-025-06627-3
10.1051/ro/2018084
10.1007/978-981-10-4774-9
10.1016/j.fss.2025.109416
10.1080/0233193031000120020
10.3390/math10193516
10.1007/978-981-99-0597-3_20
10.1007/s10957-007-9209-x
10.1007/s41478-023-00621-3
10.1007/s10107-007-0172-y
10.1007/s10957-004-1861-9
10.1016/j.ejor.2012.11.005
10.1287/moor.25.1.1.15213
10.1080/02331934.2023.2169046
10.1080/02331934.2019.1591406
10.1080/02331934.2018.1545122
10.1007/s10957-020-01688-9
10.1007/s10898-017-0556-3
10.1137/S0363012996311095
10.1007/s10957-016-0885-2
10.1007/s10957-006-9155-z
10.1007/s10107-010-0342-1
10.1080/02331930410001661505
10.1080/02331934.2021.2016752
10.1080/0233193031000149894
10.1007/s10957-012-0084-8
10.57262/die/1371043981
10.1137/S0363012992229653
10.1080/02331934.2022.2045987
10.1137/0805033
10.1007/s40314-025-03244-5
10.1051/ro/2023044
10.1007/s10957-018-1235-3
10.1080/02331930500342591
10.1023/A:1021790120780
10.18576/amisl/070103
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10957-025-02853-8
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2878
ExternalDocumentID 10_1007_s10957_025_02853_8
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDPE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADXHL
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
YLTOR
YQT
Z45
ZCG
ZMTXR
ZWQNP
ZY4
~EX
7SC
7TB
8FD
AESKC
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c228t-9a2c8a5bf4ba1383c3d87c77e5092124a00e69163d1a430141cc9652a93f7d2f3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001582367700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3239
IngestDate Wed Nov 05 08:24:22 EST 2025
Sat Nov 29 07:24:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c228t-9a2c8a5bf4ba1383c3d87c77e5092124a00e69163d1a430141cc9652a93f7d2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0584-9500
PQID 3255919377
PQPubID 48247
ParticipantIDs proquest_journals_3255919377
crossref_primary_10_1007_s10957_025_02853_8
PublicationCentury 2000
PublicationDate 2026-01-01
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of optimization theory and applications
PublicationYear 2026
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References S Treanţă (2853_CR53) 2022; 10
2853_CR1
2853_CR49
2853_CR47
X Zhao (2853_CR59) 2025; 91
H Rehman (2853_CR54) 2025; 44
2853_CR5
G Giorgi (2853_CR23) 2010; 52
P Michel (2853_CR38) 1992; 5
2853_CR41
BS Mordukhovich (2853_CR39) 2009; 117
2853_CR40
2853_CR7
L Guo (2853_CR22) 2013; 156
V Jeyakumar (2853_CR24) 1999; 101
Y Pandey (2853_CR42) 2016; 171
TQ Bao (2853_CR6) 2007; 135
JP Penot (2853_CR44) 1998; 37
R Andreani (2853_CR2) 2005; 125
DV Luu (2853_CR37) 2018; 70
JS Trieman (2853_CR51) 1995; 5
J Dutta (2853_CR13) 2004; 53
2853_CR36
V Chankong (2853_CR9) 1983
M Feng (2853_CR20) 2018; 67
ML Flegel (2853_CR19) 2005; 310
A Ansari Ardali (2853_CR3) 2006; 65
S Dempe (2853_CR15) 2012; 131
P Zhang (2853_CR57) 2018; 176
Y Pandey (2853_CR43) 2016; 44
ML Flegel (2853_CR17) 2005; 124
Z Páles (2853_CR45) 1994; 32
XF Li (2853_CR33) 2006; 131
A Ansari Ardali (2853_CR4) 2022; 13
YC Duan (2853_CR16) 2007; 8
2853_CR21
2853_CR26
JJ Ye (2853_CR55) 2005; 307
S Dempe (2853_CR11) 2003; 52
ML Flegel (2853_CR18) 2005; 54
B Kohli (2853_CR27) 2019; 53
KK Lai (2853_CR29) 2022; 2022
S Dempe (2853_CR14) 2023; 57
ZY Peng (2853_CR46) 2025; 515
P Zhang (2853_CR58) 2019; 68
ZQ Luo (2853_CR32) 1996
2853_CR28
KV Singh (2853_CR48) 2019; 7
V Laha (2853_CR35) 2023; 20
LT Tung (2853_CR52) 2020; 62
H Scheel (2853_CR50) 2000; 25
FH Clarke (2853_CR8) 1983
J Dutta (2853_CR12) 2002; 113
L Lafhim (2853_CR30) 2023; 72
V Jeyakumar (2853_CR25) 2008
V Laha (2853_CR34) 2024; 32
GH Lin (2853_CR31) 2013; 226
X Zhang (2853_CR56) 2025; 462
E Constantin (2853_CR10) 2020; 186
References_xml – volume-title: Optimization and nonsmooth analysis
  year: 1983
  ident: 2853_CR8
– volume: 462
  year: 2025
  ident: 2853_CR56
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2024.116483
– volume: 65
  start-page: 67
  issue: 1
  year: 2006
  ident: 2853_CR3
  publication-title: Optimization
  doi: 10.1080/02331934.2014.987776
– volume-title: Nonsmooth vector functions and continuous optimization
  year: 2008
  ident: 2853_CR25
– volume: 20
  start-page: 30
  issue: 1
  year: 2023
  ident: 2853_CR35
  publication-title: Comput. Manag. Sci.
  doi: 10.1007/s10287-023-00461-3
– volume: 124
  start-page: 595
  year: 2005
  ident: 2853_CR17
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-004-1176-x
– volume: 91
  start-page: 27
  issue: 1
  year: 2025
  ident: 2853_CR59
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-025-00663-2
– volume: 13
  start-page: 2185
  issue: 2
  year: 2022
  ident: 2853_CR4
  publication-title: Int J Nonlinear Anal Appl.
– volume-title: Mathematical Programs with Equilibrium Constraints
  year: 1996
  ident: 2853_CR32
  doi: 10.1017/CBO9780511983658
– volume: 44
  start-page: 148
  issue: 1
  year: 2016
  ident: 2853_CR43
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2015.12.007
– volume: 310
  start-page: 286
  issue: 1
  year: 2005
  ident: 2853_CR19
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.02.011
– volume: 113
  start-page: 41
  issue: 1
  year: 2002
  ident: 2853_CR12
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1014853129484
– volume: 307
  start-page: 350
  issue: 1
  year: 2005
  ident: 2853_CR55
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2004.10.032
– ident: 2853_CR26
  doi: 10.1007/978-3-030-52119-6_12
– volume: 52
  start-page: 73
  year: 2010
  ident: 2853_CR23
  publication-title: SeMA Journal.
  doi: 10.1007/BF03322575
– volume: 62
  start-page: 67
  year: 2020
  ident: 2853_CR52
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-019-01274-x
– volume: 2022
  start-page: 128
  issue: 1
  year: 2022
  ident: 2853_CR29
  publication-title: J Inequalities Appl.
  doi: 10.1186/s13660-022-02866-1
– ident: 2853_CR28
  doi: 10.1007/s10479-025-06627-3
– volume: 53
  start-page: 1617
  issue: 5
  year: 2019
  ident: 2853_CR27
  publication-title: RAIRO Oper Res.
  doi: 10.1051/ro/2018084
– ident: 2853_CR41
– ident: 2853_CR5
  doi: 10.1007/978-981-10-4774-9
– ident: 2853_CR49
– ident: 2853_CR7
– volume: 515
  year: 2025
  ident: 2853_CR46
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2025.109416
– volume-title: Multiobjective Decision Making: Theory and Methodology
  year: 1983
  ident: 2853_CR9
– ident: 2853_CR21
  doi: 10.1080/0233193031000120020
– volume: 10
  start-page: 3516
  issue: 19
  year: 2022
  ident: 2853_CR53
  publication-title: Mathematics.
  doi: 10.3390/math10193516
– ident: 2853_CR36
  doi: 10.1007/978-981-99-0597-3_20
– volume: 135
  start-page: 179
  issue: 2
  year: 2007
  ident: 2853_CR6
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-007-9209-x
– volume: 32
  start-page: 219
  year: 2024
  ident: 2853_CR34
  publication-title: J Anal.
  doi: 10.1007/s41478-023-00621-3
– volume: 117
  start-page: 331
  issue: 1
  year: 2009
  ident: 2853_CR39
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0172-y
– volume: 125
  start-page: 473
  issue: 2
  year: 2005
  ident: 2853_CR2
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-004-1861-9
– volume: 226
  start-page: 461
  issue: 3
  year: 2013
  ident: 2853_CR31
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2012.11.005
– volume: 25
  start-page: 1
  year: 2000
  ident: 2853_CR50
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.25.1.1.15213
– ident: 2853_CR40
– ident: 2853_CR1
  doi: 10.1080/02331934.2023.2169046
– volume: 68
  start-page: 1245
  issue: 6
  year: 2019
  ident: 2853_CR58
  publication-title: Optimization
  doi: 10.1080/02331934.2019.1591406
– volume: 67
  start-page: 2117
  issue: 12
  year: 2018
  ident: 2853_CR20
  publication-title: Optimization
  doi: 10.1080/02331934.2018.1545122
– volume: 186
  start-page: 50
  issue: 1
  year: 2020
  ident: 2853_CR10
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-020-01688-9
– volume: 70
  start-page: 437
  year: 2018
  ident: 2853_CR37
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-017-0556-3
– volume: 8
  start-page: 12
  issue: 1
  year: 2007
  ident: 2853_CR16
  publication-title: Rose-Hulman Undergraduate Mathematics Journal.
– volume: 37
  start-page: 303
  issue: 1
  year: 1998
  ident: 2853_CR44
  publication-title: SIAM J. Control. Optim.
  doi: 10.1137/S0363012996311095
– volume: 171
  start-page: 694
  year: 2016
  ident: 2853_CR42
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-016-0885-2
– volume: 131
  start-page: 429
  issue: 3
  year: 2006
  ident: 2853_CR33
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-006-9155-z
– volume: 131
  start-page: 37
  year: 2012
  ident: 2853_CR15
  publication-title: Math. Program.
  doi: 10.1007/s10107-010-0342-1
– volume: 53
  start-page: 77
  issue: 1
  year: 2004
  ident: 2853_CR13
  publication-title: Optimization
  doi: 10.1080/02331930410001661505
– volume: 72
  start-page: 1363
  issue: 5
  year: 2023
  ident: 2853_CR30
  publication-title: Optimization
  doi: 10.1080/02331934.2021.2016752
– volume: 52
  start-page: 333
  issue: 3
  year: 2003
  ident: 2853_CR11
  publication-title: Optimization
  doi: 10.1080/0233193031000149894
– volume: 156
  start-page: 600
  year: 2013
  ident: 2853_CR22
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-012-0084-8
– volume: 5
  start-page: 433
  issue: 2
  year: 1992
  ident: 2853_CR38
  publication-title: Differential Integral Equations
  doi: 10.57262/die/1371043981
– volume: 32
  start-page: 1476
  issue: 5
  year: 1994
  ident: 2853_CR45
  publication-title: SIAM J. Control. Optim.
  doi: 10.1137/S0363012992229653
– ident: 2853_CR47
  doi: 10.1080/02331934.2022.2045987
– volume: 5
  start-page: 670
  issue: 3
  year: 1995
  ident: 2853_CR51
  publication-title: SIAM J. Optim.
  doi: 10.1137/0805033
– volume: 44
  start-page: 274
  issue: 6
  year: 2025
  ident: 2853_CR54
  publication-title: Comput Appl Math.
  doi: 10.1007/s40314-025-03244-5
– volume: 57
  start-page: 1009
  issue: 3
  year: 2023
  ident: 2853_CR14
  publication-title: RAIRO Oper Res.
  doi: 10.1051/ro/2023044
– volume: 176
  start-page: 763
  year: 2018
  ident: 2853_CR57
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-018-1235-3
– volume: 54
  start-page: 517
  issue: 6
  year: 2005
  ident: 2853_CR18
  publication-title: Optimization
  doi: 10.1080/02331930500342591
– volume: 101
  start-page: 599
  issue: 3
  year: 1999
  ident: 2853_CR24
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1021790120780
– volume: 7
  start-page: 17
  year: 2019
  ident: 2853_CR48
  publication-title: Appl. Math. Inf. Sci. Lett.
  doi: 10.18576/amisl/070103
SSID ssj0009874
Score 2.439773
Snippet In this paper, we first extend the constant positive linear dependence (CPLD) condition in terms of convexificators given by Rimpi and Lalitha [Constraint...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 15
SubjectTerms Constraints
Equilibrium
Hierarchies
Multiple objective analysis
Optimization
Pareto optimization
Pareto optimum
Qualifications
Title First and Second Order Optimality Conditions for Nonsmooth Multiobjective Problems with Equilibrium Constraints
URI https://www.proquest.com/docview/3255919377
Volume 208
WOSCitedRecordID wos001582367700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWqigEGvhGFgjywgaXETmJ7RBUVC21FAXWLbMeRitQGmpTfz9lJKZVg6JYsp-jucvfO1r2H0E1iE8iUICaSa06iiGqiwtwSo6SRVrht0cCLTfDBQEwmctRCd__e4LslNxlz4mRXoRfGjLjN3jChTq7gefy2ZtgVK8plShhlstmQ-dvEZhfaLMK-s_QPtvumQ7TfIEh8X4f8CLXs_Bjt_eIVhLenHzLW8gQV_SlAPKzmGR678TfDQ8e3iYdQLWYehuNe4W6uXQZiALF4AA-zAmKI_X5uod_rsohHtfxMid3xLX74XE79ysBy5iyUXm6iKk_Ra__hpfdIGp0FYigVFZGKGqFinUdahTCxGpYJbji3ACYgVpEKApsAjGRZqCI3goXGyCSmSrKcZzRnZ6g9L-b2HGGhpdZ5nLHYKa4D-NGBCRQLbZwFwirbQbcrv6cfNZ1GuiZOdk5Nwampd2oqOqi7Ck3a_FplytwQBLCT84utjF2iXQoDZ3180kXtarG0V2jHfFXTcnHtc-kbpSLBRw
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First+and+Second+Order+Optimality+Conditions+for+Nonsmooth+Multiobjective+Problems+with+Equilibrium+Constraints&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Sachan%2C+Prachi&rft.au=Laha%2C+Vivek&rft.au=Anshika&rft.date=2026-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=208&rft.issue=1&rft.spage=15&rft_id=info:doi/10.1007%2Fs10957-025-02853-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon