Study of the nuclear mass model by sequential least squares programming

Nuclear mass is an important property in both nuclear and astrophysics. In this study, we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms. The sequential least squares programming (SLSQP) algorithm augments the precision of this multinomial ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear science and techniques Jg. 36; H. 7; S. 129
Hauptverfasser: Yang, Hang, Chen, Cun-Yu, Xu, Xiao-Yu, Wang, Han-Kui, Wang, You-Bao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Shanghai Springer Nature B.V 01.07.2025
Schlagworte:
ISSN:1001-8042, 2210-3147
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nuclear mass is an important property in both nuclear and astrophysics. In this study, we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms. The sequential least squares programming (SLSQP) algorithm augments the precision of this multinomial mass model by reducing the error from 1.863 MeV to 1.631 MeV. These algorithms were further examined using 200 sample mass formulae derived from the δE term of the Eisospin mass model. The SLSQP method exhibited superior performance compared to the other algorithms in terms of errors and convergence speed. This algorithm is advantageous for handling large-scale multiparameter optimization tasks in nuclear physics.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1001-8042
2210-3147
DOI:10.1007/s41365-025-01726-z