Study of the nuclear mass model by sequential least squares programming

Nuclear mass is an important property in both nuclear and astrophysics. In this study, we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms. The sequential least squares programming (SLSQP) algorithm augments the precision of this multinomial ma...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nuclear science and techniques Ročník 36; číslo 7; s. 129
Hlavní autoři: Yang, Hang, Chen, Cun-Yu, Xu, Xiao-Yu, Wang, Han-Kui, Wang, You-Bao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Shanghai Springer Nature B.V 01.07.2025
Témata:
ISSN:1001-8042, 2210-3147
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Nuclear mass is an important property in both nuclear and astrophysics. In this study, we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms. The sequential least squares programming (SLSQP) algorithm augments the precision of this multinomial mass model by reducing the error from 1.863 MeV to 1.631 MeV. These algorithms were further examined using 200 sample mass formulae derived from the δE term of the Eisospin mass model. The SLSQP method exhibited superior performance compared to the other algorithms in terms of errors and convergence speed. This algorithm is advantageous for handling large-scale multiparameter optimization tasks in nuclear physics.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1001-8042
2210-3147
DOI:10.1007/s41365-025-01726-z