A Hybrid Framework Model Based on Wavelet Neural Network with Improved Fruit Fly Optimization Algorithm for Traffic Flow Prediction

Accurate traffic flow prediction can provide sufficient information for the formation of symmetric traffic flow. To overcome the problem that the basic fruit fly optimization algorithm (FOA) is easy to fall into local optimum and the search method is single, an improved fruit fly optimization algori...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) Vol. 14; no. 7; p. 1333
Main Authors: Zhang, Qingyong, Li, Changwu, Yin, Conghui, Zhang, Hang, Su, Fuwen
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.07.2022
Subjects:
ISSN:2073-8994, 2073-8994
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate traffic flow prediction can provide sufficient information for the formation of symmetric traffic flow. To overcome the problem that the basic fruit fly optimization algorithm (FOA) is easy to fall into local optimum and the search method is single, an improved fruit fly optimization algorithm (IFOA) based on parallel search strategy and group cooperation strategy is proposed. The multi-swarm mechanism is introduced in the parallel search strategy, in which each subswarm is independent and multiple center positions are determined in the iterative process, thereby avoiding the problems of reduced diversity and premature convergence. To increase communication between fruit fly subswarms, the informative fruit flies selected from subswarms are guided by the randomly generated binary fruit fly to achieve the crossover operation in the group cooperation strategy. Then a hybrid framework model based on wavelet neural network (WNN) with IFOA (IFOA-WNN) for traffic flow prediction is designed, in which IFOA is applied to explore appropriate structure parameters for WNN to achieve better prediction performance. The simulation results verify that the IFOA can provide high-quality structural parameters for WNN, and the hybrid IFOA-WNN prediction model can achieve higher prediction accuracy and stability than the compared methods.
AbstractList Accurate traffic flow prediction can provide sufficient information for the formation of symmetric traffic flow. To overcome the problem that the basic fruit fly optimization algorithm (FOA) is easy to fall into local optimum and the search method is single, an improved fruit fly optimization algorithm (IFOA) based on parallel search strategy and group cooperation strategy is proposed. The multi-swarm mechanism is introduced in the parallel search strategy, in which each subswarm is independent and multiple center positions are determined in the iterative process, thereby avoiding the problems of reduced diversity and premature convergence. To increase communication between fruit fly subswarms, the informative fruit flies selected from subswarms are guided by the randomly generated binary fruit fly to achieve the crossover operation in the group cooperation strategy. Then a hybrid framework model based on wavelet neural network (WNN) with IFOA (IFOA-WNN) for traffic flow prediction is designed, in which IFOA is applied to explore appropriate structure parameters for WNN to achieve better prediction performance. The simulation results verify that the IFOA can provide high-quality structural parameters for WNN, and the hybrid IFOA-WNN prediction model can achieve higher prediction accuracy and stability than the compared methods.
Author Zhang, Hang
Li, Changwu
Su, Fuwen
Yin, Conghui
Zhang, Qingyong
Author_xml – sequence: 1
  givenname: Qingyong
  surname: Zhang
  fullname: Zhang, Qingyong
– sequence: 2
  givenname: Changwu
  orcidid: 0000-0002-1407-8875
  surname: Li
  fullname: Li, Changwu
– sequence: 3
  givenname: Conghui
  surname: Yin
  fullname: Yin, Conghui
– sequence: 4
  givenname: Hang
  surname: Zhang
  fullname: Zhang, Hang
– sequence: 5
  givenname: Fuwen
  surname: Su
  fullname: Su, Fuwen
BookMark eNptkM1OAjEUhRuDiYisfIEmLg3adjrTzhKJCAmKC4zLSenc0eIMxU6BjFtf3AIuiPFuzl185_6cc9Ra2iUgdEnJTRSl5LZuKsqJoFEUnaA2IyLqyTTlraP-DHXrekFCxSTmCWmj7z4eNXNncjx0qoKtdR_40eZQ4jtVQ47tEr-qDZTg8ROsnSqD-D21Nf4dj6uVsxvYudfG42HZ4OnKm8p8KW-Ct1--WRfAChfW4ZlTRWF0wOwWPzvIjd5RF-i0UGUN3V_toJfh_Www6k2mD-NBf9LTjEnfE_FcpXkqgUmaUEEhPKvzJE6kyIEnivO5kErPmSiE1lKnkoKOGQUCKVOSRR10dZgbbv5cQ-2zhV27ZViZsSTlhMVc8EDRA6WdrWsHRaaN33_jnTJlRkm2izs7ijt4rv94Vs5UyjX_0j8NpoPF
CitedBy_id crossref_primary_10_1145_3632173
crossref_primary_10_1016_j_egyr_2023_01_050
crossref_primary_10_1016_j_physa_2023_129448
crossref_primary_10_3390_agriculture15090919
crossref_primary_10_3390_su142113872
crossref_primary_10_3390_jmse12112091
crossref_primary_10_1186_s13677_022_00313_6
crossref_primary_10_1007_s11831_024_10189_1
crossref_primary_10_3390_jmse11091636
crossref_primary_10_1088_1402_4896_ad92ae
crossref_primary_10_3390_app12167978
crossref_primary_10_1016_j_cities_2024_105086
crossref_primary_10_1109_ACCESS_2023_3317276
Cites_doi 10.1007/s10462-012-9328-0
10.1016/j.engappai.2020.103922
10.1109/TITS.2021.3055258
10.1016/j.trc.2014.02.005
10.1109/JSEN.2020.3007809
10.1109/ACCESS.2020.3039410
10.1186/s40537-018-0157-0
10.1016/S0968-090X(02)00009-8
10.1109/4235.797971
10.1016/j.knosys.2011.07.001
10.1016/j.neucom.2019.02.062
10.1109/TIE.2012.2213556
10.1016/j.apm.2021.09.040
10.1109/TNSM.2021.3056912
10.1016/j.advengsoft.2013.12.007
10.1016/0191-2615(84)90002-X
10.1016/j.epsr.2022.107893
10.1016/S0968-090X(97)00015-6
10.1016/j.comcom.2019.09.007
10.1007/s40857-015-0018-3
10.1007/s11721-007-0002-0
10.1007/s00521-020-04932-5
10.1016/j.engfracmech.2020.107105
10.1016/j.energy.2019.116779
10.1016/j.physa.2019.123913
10.1016/j.advengsoft.2016.01.008
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.3390/sym14071333
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest MSED
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2073-8994
ExternalDocumentID 10_3390_sym14071333
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c228t-75ba9d98e2816171e407cd65687de46a44b78acb27f7cc8c981ec521e0e92a823
IEDL.DBID PIMPY
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000832134500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-8994
IngestDate Fri Jul 25 11:59:06 EDT 2025
Tue Nov 18 20:45:12 EST 2025
Sat Nov 29 07:08:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c228t-75ba9d98e2816171e407cd65687de46a44b78acb27f7cc8c981ec521e0e92a823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1407-8875
OpenAccessLink https://www.proquest.com/publiccontent/docview/2694025474?pq-origsite=%requestingapplication%
PQID 2694025474
PQPubID 2032326
ParticipantIDs proquest_journals_2694025474
crossref_citationtrail_10_3390_sym14071333
crossref_primary_10_3390_sym14071333
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Mirjalili (ref_17) 2014; 69
Okutani (ref_3) 1984; 18
Yan (ref_23) 2022; 102
Qiao (ref_30) 2020; 235
Karaboga (ref_15) 2014; 42
Liao (ref_2) 2022; 32
Harik (ref_13) 1999; 3
Ma (ref_32) 2021; 23
Ledoux (ref_11) 1997; 5
Liu (ref_20) 2020; 96
Jiang (ref_29) 2020; 193
Sharma (ref_10) 2018; 5
Garg (ref_7) 2015; 43
Smith (ref_4) 2002; 10
Yang (ref_27) 2020; 224
Mirjalili (ref_18) 2016; 95
Li (ref_24) 2019; 7
Tsao (ref_16) 2012; 26
Jian (ref_5) 2014; 43
Abolghasem (ref_22) 2020; 8
Mahshid (ref_26) 2022; 208
Wang (ref_6) 2015; 4
Chen (ref_28) 2021; 33
Ruby (ref_31) 2020; 149
Wu (ref_1) 2021; 18
Alqatawna (ref_9) 2021; 58
Chen (ref_8) 2020; 23
Peng (ref_25) 2020; 549
Zhang (ref_19) 2020; 416
Chan (ref_21) 2013; 60
Poli (ref_12) 2007; 1
Dorigo (ref_14) 1999; 2
References_xml – volume: 42
  start-page: 21
  year: 2014
  ident: ref_15
  article-title: A comprehensive survey: Artificial bee colony algorithm and applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-012-9328-0
– volume: 32
  start-page: 1
  year: 2022
  ident: ref_2
  article-title: An improved dynamic Chebyshev graph convolution network for traffic flow prediction with spatial-temporal attention
  publication-title: Appl. Intell.
– volume: 96
  start-page: 103922
  year: 2020
  ident: ref_20
  article-title: A probability-based core dandelion guided dandelion algorithm and application to traffic flow prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103922
– volume: 23
  start-page: 5615
  year: 2021
  ident: ref_32
  article-title: Short-term traffic flow prediction for urban road sections based on time series analysis and LSTM_BiLSTM method
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3055258
– volume: 43
  start-page: 79
  year: 2014
  ident: ref_5
  article-title: New Bayesian combination method for short-term traffic flow forecasting
  publication-title: Transp. Res. Pract. C-Emerg. Technol.
  doi: 10.1016/j.trc.2014.02.005
– volume: 2
  start-page: 1470
  year: 1999
  ident: ref_14
  article-title: Ant colony optimization: A new meta-heuristic
  publication-title: Evol. Comput.
– volume: 23
  start-page: 14317
  year: 2020
  ident: ref_8
  article-title: Sensing data supported traffic flow prediction via denoising schemes and ann: A comparison
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3007809
– volume: 8
  start-page: 217526
  year: 2020
  ident: ref_22
  article-title: Short-term traffic flow prediction using the modified elman recurrent neural network optimized through a genetic algorithm
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.3039410
– volume: 5
  start-page: 48
  year: 2018
  ident: ref_10
  article-title: Ann based short-term traffic flow forecasting in undivided two lane highway
  publication-title: J. Big Data.
  doi: 10.1186/s40537-018-0157-0
– volume: 10
  start-page: 303
  year: 2002
  ident: ref_4
  article-title: Comparison of parametric and nonparametric models for traffic flow forecasting
  publication-title: Transp. Res. Pract. C-Emerg. Technol.
  doi: 10.1016/S0968-090X(02)00009-8
– volume: 3
  start-page: 287
  year: 1999
  ident: ref_13
  article-title: The compact genetic algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.797971
– volume: 26
  start-page: 69
  year: 2012
  ident: ref_16
  article-title: A new Fruit fly optimization algorithm: Taking the financial distress model as an example
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.07.001
– volume: 416
  start-page: 117
  year: 2020
  ident: ref_19
  article-title: A short-term traffic forecasting model based on echo state network optimized by improved fruit fly optimization algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.02.062
– volume: 60
  start-page: 4714
  year: 2013
  ident: ref_21
  article-title: An intelligent particle swarm optimization for short-term traffic flow forecasting using on-road sensor systems
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2213556
– volume: 224
  start-page: 165322
  year: 2020
  ident: ref_27
  article-title: Wavelet neural network with soa based on dynamic adaptive search step size for network traffic prediction
  publication-title: Int. J. OPract.
– volume: 102
  start-page: 385
  year: 2022
  ident: ref_23
  article-title: Short-term traffic flow prediction based on a hybrid optimization algorithm
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2021.09.040
– volume: 18
  start-page: 780
  year: 2021
  ident: ref_1
  article-title: Tensor-based recurrent neural network and multi-modal prediction with its applications in traffic network management
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2021.3056912
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_17
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 58
  start-page: 277
  year: 2021
  ident: ref_9
  article-title: Comparison of multivariate regression models and artificial neural networks for prediction highway traffic accidents in spain: A case study
  publication-title: Transp. Res. Pract. C-Emerg. Technol.
– volume: 18
  start-page: 1
  year: 1984
  ident: ref_3
  article-title: Dynamic prediction of traffic volume through Kalman filtering theory
  publication-title: Transp. Res. Pract. B-Methodol.
  doi: 10.1016/0191-2615(84)90002-X
– volume: 208
  start-page: 107893
  year: 2022
  ident: ref_26
  article-title: A wavelet feature-based neural network approach to estimate electrical arc characteristics
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.107893
– volume: 5
  start-page: 287
  year: 1997
  ident: ref_11
  article-title: An urban traffic flow model integrating neural networks
  publication-title: Transp. Res. Pract. C
  doi: 10.1016/S0968-090X(97)00015-6
– volume: 149
  start-page: 134
  year: 2020
  ident: ref_31
  article-title: Implementation of fruit fly optimization algorithm to escalate the attacking efficiency of node capture attack in wireless sensor networks
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.comcom.2019.09.007
– volume: 43
  start-page: 179
  year: 2015
  ident: ref_7
  article-title: Comparison of ann and analytical models in traffic noise modeling and predictions
  publication-title: Acoust. Aust.
  doi: 10.1007/s40857-015-0018-3
– volume: 1
  start-page: 33
  year: 2007
  ident: ref_12
  article-title: Particle swarm optimization
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-007-0002-0
– volume: 33
  start-page: 8181
  year: 2021
  ident: ref_28
  article-title: Short-term traffic flow prediction based on improved wavelet neural network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04932-5
– volume: 235
  start-page: 107105
  year: 2020
  ident: ref_30
  article-title: Application of generalized regression neural network optimized by fruit fly optimization algorithm for fracture toughness in a pearlitic steel
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2020.107105
– volume: 193
  start-page: 116779
  year: 2020
  ident: ref_29
  article-title: Holt–Winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116779
– volume: 7
  start-page: 64
  year: 2019
  ident: ref_24
  article-title: Network traffic prediction of the optimized bp neural network based on glowworm swarm algorithm
  publication-title: Int. J. Syst. Sci.
– volume: 549
  start-page: 123913
  year: 2020
  ident: ref_25
  article-title: Short-term traffic volume prediction using GA-BP based on wavelet denoising and phase space reconstruction
  publication-title: Physica. A
  doi: 10.1016/j.physa.2019.123913
– volume: 4
  start-page: 159
  year: 2015
  ident: ref_6
  article-title: A novel work zone short-term vehicle-type specific traffic speed prediction model through the hybrid emd–arima framework
  publication-title: Transp. B-Transp. Dyn.
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_18
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
SSID ssj0000505460
Score 2.3104103
Snippet Accurate traffic flow prediction can provide sufficient information for the formation of symmetric traffic flow. To overcome the problem that the basic fruit...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1333
SubjectTerms Accuracy
Algorithms
Cooperation
Experiments
Foraging behavior
Intelligence
Iterative methods
Mathematical models
Neural networks
Optimization
Optimization algorithms
Parameters
Prediction models
Roads & highways
Search methods
Time series
Traffic congestion
Traffic flow
Traffic information
Vehicles
Title A Hybrid Framework Model Based on Wavelet Neural Network with Improved Fruit Fly Optimization Algorithm for Traffic Flow Prediction
URI https://www.proquest.com/docview/2694025474
Volume 14
WOSCitedRecordID wos000832134500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF6VpAcuPAqIZzQHDi2SlXi9ya5PKFSJqATBKrSFk-XsrgEpD4gNVS699I8zY69bkBAnLr54vFp5Zue1M98wtq8VT5HNvudbRakbYb3E-Innp5ZrGyiZFqmLnydyMFCXl2Hk2qMzV1ZZ6cRCUZdoz1S3jUq4aaaaMuZN6r-kPm4pDu_uPZohRXetbqDGAqsT8FarxurRt9Po6l_Ohaa2iU6rbNMLMNpvZvOxL4pALXhpmF7q5cLY9Jffd5srbMk5ndAtpWSVfbCTT2zVHesMPjvs6S9r7G8XjufUxAX9qmoLaFzaCI7Q3BmYTuBXQrMqciBYD1x0UNaRAyV0oUxRWPr64TaH_mgOZ6iTxq7ZE7qja9xefjMG9JUB7SQBWCDZ9DdEM7oyIqp19qPfu_h67Lk5DZ7mXOWebA-T0ITKckXRkm_xj2qDjqKSxopOIsRQqkQPuUyl1kqHyrca3QbbsiFPFA82WG0yndhNBsqkQg7bBLLTFkmAy5oOOhSGwlaklVvsoGJSrB2IOc3SGMUYzBBH42cc3UJRrIjvSuyO18l2K1bG7gBn8X_Obb_9eoctcuqIKCp4d1ktnz3YPfZRP-a32azB6ke9QfS9QSWl5_T802s4qXwCvFvx-A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKVK5UPpA9AHMoZVaJKvxepNdHxAKjyhR0zSH0sfJOLtrWimPNnZb5cz_4Tcy4wdQCXHrgbPHe9j9dl473wzAjtEioWP2Pd9pTt1I58XWjz0_ccK4QKskT12c9lS_r8_Pw8EC_Ki4MFxWWenEXFHbqeEc-QEzLpm5reT76xuPp0bx62o1QqOAxaGb31PIlr7rfqLz3RWi_fnkY8crpwp4RgideaoxjEMbaic0-_a-o5DGWHJrtLJONmMph0rHZihUoozRJtS-M2TkXN2FItbc6IBU_qIksNdrsDjoHg0ufmV1eC6cbNYLImAQhPWDdD72ZR4KBg9N30PNn5uz9vL_thHP4VnpOGOrQPoKLLjJKqyUqinFvbJ_9v4afG9hZ85ENGxXlWfII99G-IFMtsXpBM9inreRIbcmoUX7RS08clIaizSL479vrzJsj-Z4THp1XBJWsTX6RtuRXY6R_H0kW89NOEhseo-DGT97sdQ6fHmUzXgBtcl04l4CaptINWxwo6CGjANa1jbJKbIcepOs2oC3FQwiUzZi53kgo4gCMsZM9AdmNug6VcLXRf-Rv4ttV2CJSiWURr-Rsvnvz29gqXNy1It63f7hFjwVzPDIK5K3oZbNbt0reGLusqt09rrEO8LXx0bWT65TPy0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW4S4FMpDtBSYA0iAFO3G8a6dQ4W2tFGrVmGFePQWsrbTVtpH2aRUe-6_4tcxkzhAJcStB86Z-GB_npdn5gN4YbQo6JjDIHSaUzfSBbkN8yAsnDAu0qqoUxefj1Sa6uPjeLQCP9peGC6rbHVirajt3HCOvMsdl9y5rWS38GURo93k7fm3gBmk-KW1pdNoIHLolpcUvpXbB7t01i-FSPY-vtsPPMNAYITQVaD64zy2sXZCs58fOgpvjCUXRyvr5CCXcqx0bsZCFcoYbWIdOkMGz_VcLHLNQw9I_a-qiIKeDqzu7KWjD78yPMwRJwe9pikwiuJet1xOQ1mHhdF1M3jdCtSmLbn7P2_KPVjzDjUOmxuwDitudh_Wvcoq8ZWfq_36AVwNcX_JDWqYtBVpyFRwE9whU25xPsMvOfNwVMgjS2jRtKmRR05WY5N-cfz3xVmFyWSJ70nfTn0jKw4nJ7Qd1ekUKQ5A8gF4OAeJzS9xtODnMJZ6CJ9uZDMeQWc2n7nHgNoWUo37PECoL_OIlrUDcpYsh-QkqzbgTQuJzPgB7cwTMskoUGP8ZH_gZ4OuWSt83swl-bvYVguczCunMvuNms1_f34OtwlO2dFBevgE7ghu_KgLlbegUy0u3FO4Zb5XZ-XimYc-wtebBtZPbOlHxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Framework+Model+Based+on+Wavelet+Neural+Network+with+Improved+Fruit+Fly+Optimization+Algorithm+for+Traffic+Flow+Prediction&rft.jtitle=Symmetry+%28Basel%29&rft.au=Zhang%2C+Qingyong&rft.au=Li%2C+Changwu&rft.au=Yin%2C+Conghui&rft.au=Zhang%2C+Hang&rft.date=2022-07-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=14&rft.issue=7&rft.spage=1333&rft_id=info:doi/10.3390%2Fsym14071333&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym14071333
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon