Hierarchical gradient parameter estimation algorithms for fractional order Wiener OEARMA system

In this paper, the identification of fractional order Wiener output error auto-regressive moving average (OEARMA) systems is discussed. The dynamic part of the Wiener OEARMA system is an OEARMA structure, and the static part is two-stage nonlinearity. The identification expression is obtained by key...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nonlinear dynamics Ročník 113; číslo 15; s. 19579 - 19598
Hlavní autori: Li, Junhong, Zhang, Hongrui, Xiao, Kang, Gu, Juping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Nature B.V 01.08.2025
Predmet:
ISSN:0924-090X, 1573-269X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, the identification of fractional order Wiener output error auto-regressive moving average (OEARMA) systems is discussed. The dynamic part of the Wiener OEARMA system is an OEARMA structure, and the static part is two-stage nonlinearity. The identification expression is obtained by key term separation technique and definition of the Grünwald Letnikov factional differential. Then, the hierarchical extended stochastic gradient (H-ESG) and hierarchical multi-innovation extended stochastic gradient (H-MIESG) methods are proposed for identification of the unknown parameter in the system and the the convergence is verified. Through numerical simulations, the feasibility of the derived algorithms is studied. The identification accuracy of H-MIESG is satisfactory, which reflects its excellent identification efficiency.
AbstractList In this paper, the identification of fractional order Wiener output error auto-regressive moving average (OEARMA) systems is discussed. The dynamic part of the Wiener OEARMA system is an OEARMA structure, and the static part is two-stage nonlinearity. The identification expression is obtained by key term separation technique and definition of the Grünwald Letnikov factional differential. Then, the hierarchical extended stochastic gradient (H-ESG) and hierarchical multi-innovation extended stochastic gradient (H-MIESG) methods are proposed for identification of the unknown parameter in the system and the the convergence is verified. Through numerical simulations, the feasibility of the derived algorithms is studied. The identification accuracy of H-MIESG is satisfactory, which reflects its excellent identification efficiency.
Author Zhang, Hongrui
Li, Junhong
Xiao, Kang
Gu, Juping
Author_xml – sequence: 1
  givenname: Junhong
  orcidid: 0000-0002-4864-0897
  surname: Li
  fullname: Li, Junhong
– sequence: 2
  givenname: Hongrui
  surname: Zhang
  fullname: Zhang, Hongrui
– sequence: 3
  givenname: Kang
  surname: Xiao
  fullname: Xiao, Kang
– sequence: 4
  givenname: Juping
  surname: Gu
  fullname: Gu, Juping
BookMark eNotkE1rAjEYhEOxULX9Az0t9Jw2X7tJjiK2FixCaam3kGQTXXE3NlkP-uuNtaeBl5lh3mcEBl3oHACPGD1jhPhLwhhxDBEpIcZYcHi6AUNccgpJJVcDMESSMIgkWt2BUUpbhBAlSAyBmjcu6mg3jdW7Yh113biuL_Y66tb1LhYu9U2r-yZ0hd6tQ2z6TZsKH2Lho7aXe86FWGfrT45mWc4mnx-TIh1T79p7cOv1LrmHfx2D79fZ13QOF8u39-lkAS0hoodUEsyxsLz0tBKOGetZ6SvrayGNZ9pgwTDBzjDtjNDGUEmJcVVNSsNlxekYPF179zH8HvJotQ2HmLclRQnhnCDJWHaRq8vGkFJ0Xu1j_i4eFUbqAlJdQaoMUv2BVCd6BmVaadk
Cites_doi 10.1109/JAS.2023.123027
10.1016/j.jfranklin.2019.04.027
10.1007/s00034-016-0394-4
10.1002/acs.3257
10.1016/j.sysconle.2021.105010
10.1007/s11071-018-4142-0
10.1016/j.jfranklin.2021.04.006
10.1016/j.chaos.2019.109444
10.1049/iet-cta.2019.0419
10.1016/j.chaos.2021.110735
10.1109/TII.2019.2931792
10.1002/asjc.1905
10.1080/00207160.2021.1906422
10.1080/01495739.2020.1748555
10.1016/j.jfranklin.2020.12.034
10.1007/s12555-019-1060-y
10.1016/j.apenergy.2020.115736
10.1002/acs.3148
10.1007/s10489-022-04220-w
10.1002/rnc.5086
10.1007/s12206-019-0803-2
10.1016/j.jfranklin.2016.10.002
10.1016/j.measurement.2020.107684
10.1007/s11071-021-06925-y
10.1016/j.measurement.2022.111951
10.1007/s00034-023-02477-1
10.1080/00207721.2020.1759729
10.1002/asjc.1747
10.1007/s11071-019-05331-9
10.1049/iet-cta.2018.6236
10.1016/j.jfranklin.2019.10.001
10.1002/asjc.3119
10.1002/rnc.6796
10.1109/TAC.2010.2050713
10.1109/JSEN.2021.3125748
10.1016/j.chaos.2022.112160
10.1016/j.colsurfb.2021.111754
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025.
DBID AAYXX
CITATION
DOI 10.1007/s11071-025-11187-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 19598
ExternalDocumentID 10_1007_s11071_025_11187_z
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z8Z
ZMTXR
~A9
~EX
AESKC
ID FETCH-LOGICAL-c228t-3921718c75f368e4bcf45f6cfd89bf4ab184121eb4aeb8abb3932be6d25b79673
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001472215300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-090X
IngestDate Wed Nov 05 08:38:14 EST 2025
Sat Nov 29 07:46:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c228t-3921718c75f368e4bcf45f6cfd89bf4ab184121eb4aeb8abb3932be6d25b79673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4864-0897
PQID 3227720944
PQPubID 2043746
PageCount 20
ParticipantIDs proquest_journals_3227720944
crossref_primary_10_1007_s11071_025_11187_z
PublicationCentury 2000
PublicationDate 2025-08-00
20250801
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-00
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Nonlinear dynamics
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References S Song (11187_CR6) 2020; 364
AM Kawala (11187_CR36) 2021; 98
Q Gao (11187_CR4) 2019; 21
Q Zhang (11187_CR26) 2021; 106
S Maiti (11187_CR12) 2021; 203
BB Shen (11187_CR34) 2017; 36
CK Qi (11187_CR13) 2021; 21
XH Wang (11187_CR14) 2020; 34
JX Ma (11187_CR18) 2019; 13
BB Mandelbrot (11187_CR7) 1982
CS Lin (11187_CR9) 2019; 33
F Ding (11187_CR32) 2010; 55
JL Rui (11187_CR29) 2022; 203
A Mehmood (11187_CR30) 2022; 159
K Hammar (11187_CR20) 2019; 98
CJ Zuniga Aguilar (11187_CR1) 2020; 130
D Yang (11187_CR23) 2023; 33
JC Wang (11187_CR16) 2020; 357
W Mi (11187_CR17) 2019; 361
D Yang (11187_CR38) 2024; 43
YJ Wang (11187_CR11) 2020; 278
JW Wang (11187_CR25) 2021; 35
DQ Wang (11187_CR22) 2020; 16
J Ding (11187_CR24) 2019; 356
TC Zong (11187_CR28) 2023; 53
11187_CR41
F Li (11187_CR19) 2021; 358
11187_CR40
BY Zhang (11187_CR5) 2021; 144
I Birs (11187_CR8) 2023; 10
11187_CR21
B Zhang (11187_CR15) 2020; 51
R Mohammadjani (11187_CR10) 2020; 37
11187_CR37
11187_CR35
J Guo (11187_CR2) 2021; 156
AG Wu (11187_CR31) 2019; 21
F Ding (11187_CR39) 2014
L Sersour (11187_CR27) 2018; 92
F Ding (11187_CR33) 2021; 358
Y Lu (11187_CR3) 2020; 158
References_xml – volume: 10
  start-page: 203
  issue: 1
  year: 2023
  ident: 11187_CR8
  publication-title: IEEE-CAA J. Autom. Sin.
  doi: 10.1109/JAS.2023.123027
– volume: 356
  start-page: 5521
  issue: 10
  year: 2019
  ident: 11187_CR24
  publication-title: J. Frankl. Inst. Eng. Appl. Math.
  doi: 10.1016/j.jfranklin.2019.04.027
– volume: 36
  start-page: 2166
  issue: 5
  year: 2017
  ident: 11187_CR34
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-016-0394-4
– volume: 35
  start-page: 1562
  issue: 8
  year: 2021
  ident: 11187_CR25
  publication-title: Int. J. Adapt. Control Signal Process.
  doi: 10.1002/acs.3257
– volume: 156
  start-page: 105010
  year: 2021
  ident: 11187_CR2
  publication-title: Syst. Control Lett.
  doi: 10.1016/j.sysconle.2021.105010
– volume: 92
  start-page: 1493
  issue: 4
  year: 2018
  ident: 11187_CR27
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4142-0
– volume: 358
  start-page: 5113
  issue: 9
  year: 2021
  ident: 11187_CR33
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2021.04.006
– volume: 130
  start-page: 109444
  year: 2020
  ident: 11187_CR1
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.109444
– ident: 11187_CR35
  doi: 10.1049/iet-cta.2019.0419
– volume: 144
  start-page: 110735
  year: 2021
  ident: 11187_CR5
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.110735
– volume: 16
  start-page: 2500
  issue: 4
  year: 2020
  ident: 11187_CR22
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2931792
– volume: 21
  start-page: 289
  issue: 1
  year: 2019
  ident: 11187_CR4
  publication-title: Asian J. Control.
  doi: 10.1002/asjc.1905
– volume: 98
  start-page: 2564
  issue: 12
  year: 2021
  ident: 11187_CR36
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2021.1906422
– volume: 37
  start-page: 829
  issue: 7
  year: 2020
  ident: 11187_CR10
  publication-title: J. Therm. Stress.
  doi: 10.1080/01495739.2020.1748555
– volume: 358
  start-page: 2115
  issue: 3
  year: 2021
  ident: 11187_CR19
  publication-title: J. Frankl. Inst. Eng. Appl. Math.
  doi: 10.1016/j.jfranklin.2020.12.034
– ident: 11187_CR40
  doi: 10.1007/s12555-019-1060-y
– volume: 278
  start-page: 115736
  year: 2020
  ident: 11187_CR11
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115736
– volume: 34
  start-page: 1321
  issue: 10
  year: 2020
  ident: 11187_CR14
  publication-title: Int. J. Adapt. Control Signal Process.
  doi: 10.1002/acs.3148
– volume: 53
  start-page: 14085
  issue: 11
  year: 2023
  ident: 11187_CR28
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-04220-w
– ident: 11187_CR37
  doi: 10.1002/rnc.5086
– volume: 33
  start-page: 4081
  issue: 9
  year: 2019
  ident: 11187_CR9
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-019-0803-2
– ident: 11187_CR21
  doi: 10.1016/j.jfranklin.2016.10.002
– volume: 158
  start-page: 107684
  year: 2020
  ident: 11187_CR3
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107684
– volume: 106
  start-page: 3215
  issue: 4
  year: 2021
  ident: 11187_CR26
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06925-y
– volume: 203
  start-page: 111951
  year: 2022
  ident: 11187_CR29
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111951
– volume: 43
  start-page: 124
  issue: 14
  year: 2024
  ident: 11187_CR38
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-023-02477-1
– volume: 51
  start-page: 1307
  issue: 7
  year: 2020
  ident: 11187_CR15
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2020.1759729
– volume: 21
  start-page: 509
  issue: 1
  year: 2019
  ident: 11187_CR31
  publication-title: Asian J. Control.
  doi: 10.1002/asjc.1747
– volume: 98
  start-page: 2327
  issue: 3
  year: 2019
  ident: 11187_CR20
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-05331-9
– volume: 13
  start-page: 1646
  issue: 11
  year: 2019
  ident: 11187_CR18
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2018.6236
– volume: 357
  start-page: 651
  issue: 1
  year: 2020
  ident: 11187_CR16
  publication-title: J. Frankl. Inst. Eng. Appl. Math.
  doi: 10.1016/j.jfranklin.2019.10.001
– volume: 361
  start-page: 354
  year: 2019
  ident: 11187_CR17
  publication-title: Appl. Math. Comput.
– ident: 11187_CR41
  doi: 10.1002/asjc.3119
– volume-title: System Identification-Performances Analysis for Identification Methods
  year: 2014
  ident: 11187_CR39
– volume: 33
  start-page: 7755
  issue: 13
  year: 2023
  ident: 11187_CR23
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.6796
– volume: 55
  start-page: 1976
  issue: 8
  year: 2010
  ident: 11187_CR32
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2010.2050713
– volume-title: The Fractal Geometry of Nature
  year: 1982
  ident: 11187_CR7
– volume: 21
  start-page: 27570
  issue: 24
  year: 2021
  ident: 11187_CR13
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3125748
– volume: 159
  start-page: 112160
  year: 2022
  ident: 11187_CR30
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2022.112160
– volume: 364
  start-page: 124662
  year: 2020
  ident: 11187_CR6
  publication-title: Appl. Math. Comput.
– volume: 203
  start-page: 111754
  year: 2021
  ident: 11187_CR12
  publication-title: Colloid Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2021.111754
SSID ssj0003208
Score 2.435618
Snippet In this paper, the identification of fractional order Wiener output error auto-regressive moving average (OEARMA) systems is discussed. The dynamic part of the...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 19579
SubjectTerms Accuracy
Algorithms
Autoregressive moving average
Calculus
Engineering
Estimates
Parameter estimation
Parameter identification
Title Hierarchical gradient parameter estimation algorithms for fractional order Wiener OEARMA system
URI https://www.proquest.com/docview/3227720944
Volume 113
WOSCitedRecordID wos001472215300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELaqigEGCgVEoSAPbGCR2M5rrFCrLhTEs5sVJ3aJ1AdKAkN_PWcnBSrB0B9gx7qL774vufsOoYs4YhFnKiWxpxnhLFEk0okm2lXKpdJnNIjtsIlgNArH4-i-ga7-_YN_XRiGApSXesQ1s7HJEgKu61fNWo8v32GXUTt-zgFCYT4-jOsOmb-3WM9C60HYZpZBa7Mz7aHdGkHiXuXyfdRQ8zZq1WgS13e1aKOdX1KDB0gMM9NqbCefTPEkt5VeJTbK3zNTEYON2kbVxojj6WSRZ-XbrMAAabHOq-YHWGeFOvFrZrSq8V2_93Dbw5UW9CF6HvSfboakHq5AEkrDkgAuciEvJQH4yA8Vl4nmnvYTnYaR1DyWQP1c6irJYyXDWEoGSE8qP6WeDCI_YEeoOV_M1THCOtVUUofxAPweOzKEJ8CSgDIJeIU7HXS5MrZ4rzQ0xI9asrGkAEsKa0mx7KDuyh-ivk-FgLADNACoKD_ZaLNTtE2Nl2zFXhc1y_xDnaGt5LPMivzcvkBf-fi-4w
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+gradient+parameter+estimation+algorithms+for+fractional+order+Wiener+OEARMA+system&rft.jtitle=Nonlinear+dynamics&rft.au=Li%2C+Junhong&rft.au=Zhang%2C+Hongrui&rft.au=Xiao%2C+Kang&rft.au=Gu%2C+Juping&rft.date=2025-08-01&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=113&rft.issue=15&rft.spage=19579&rft.epage=19598&rft_id=info:doi/10.1007%2Fs11071-025-11187-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11071_025_11187_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon