Stochastic forward-backward-half forward splitting algorithm with variance reduction

In this paper, we present a stochastic forward-backward-half forward splitting algorithm with variance reduction for solving the structured monotone inclusion problem composed of a maximally monotone operator, a maximally monotone operator and a cocoercive operator in a separable real Hilbert space....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization letters Ročník 19; číslo 9; s. 1997 - 2010
Hlavní autori: Qin, Liqian, Zhang, Yaxuan, Dong, Qiao-Li, Rassias, Michael Th
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Heidelberg Springer Nature B.V 01.12.2025
Predmet:
ISSN:1862-4472, 1862-4480
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we present a stochastic forward-backward-half forward splitting algorithm with variance reduction for solving the structured monotone inclusion problem composed of a maximally monotone operator, a maximally monotone operator and a cocoercive operator in a separable real Hilbert space. By defining a Lyapunov function, we establish the weak almost sure convergence of the proposed algorithm, and obtain the linear convergence when one of the maximally monotone operators is strongly monotone. Numerical examples are provided to show the performance of the proposed algorithm.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-025-02201-9