Stochastic forward-backward-half forward splitting algorithm with variance reduction

In this paper, we present a stochastic forward-backward-half forward splitting algorithm with variance reduction for solving the structured monotone inclusion problem composed of a maximally monotone operator, a maximally monotone operator and a cocoercive operator in a separable real Hilbert space....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization letters Ročník 19; číslo 9; s. 1997 - 2010
Hlavní autoři: Qin, Liqian, Zhang, Yaxuan, Dong, Qiao-Li, Rassias, Michael Th
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg Springer Nature B.V 01.12.2025
Témata:
ISSN:1862-4472, 1862-4480
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we present a stochastic forward-backward-half forward splitting algorithm with variance reduction for solving the structured monotone inclusion problem composed of a maximally monotone operator, a maximally monotone operator and a cocoercive operator in a separable real Hilbert space. By defining a Lyapunov function, we establish the weak almost sure convergence of the proposed algorithm, and obtain the linear convergence when one of the maximally monotone operators is strongly monotone. Numerical examples are provided to show the performance of the proposed algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-025-02201-9