Virtual label guided multi-view non-negative matrix factorization for data clustering

Non-negative matrix factorization (NMF) has attracted widespread attention due to its good performance and physical interpretation. However, it remains challenging when handling multi-view data for clustering. On one hand, the current multi-view NMF methods do not fully utilize the virtual label inf...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Digital signal processing Ročník 133; s. 103888
Hlavní autoři: Liu, Xiangyu, Song, Peng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.03.2023
Témata:
ISSN:1051-2004, 1095-4333
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Non-negative matrix factorization (NMF) has attracted widespread attention due to its good performance and physical interpretation. However, it remains challenging when handling multi-view data for clustering. On one hand, the current multi-view NMF methods do not fully utilize the virtual label information that can be learned in the clustering process. On the other hand, they usually perform the procedures of learning latent representation and clustering individually. To solve these problems, we develop a novel multi-view clustering model, named virtual label guided multi-view non-negative matrix factorization (VLMNMF). Specifically, we learn the virtual label information of each view, which is used to guide the learning of the latent representation of data. Then, we integrate the latent representation learning and clustering process of the data into a joint framework. A multi-view graph Laplacian is further imposed on the learned low-dimensional representation, which can well preserve the local geometric structure of multi-view data. Experiments on several benchmark datasets illustrate the efficacy of the proposed method.
AbstractList Non-negative matrix factorization (NMF) has attracted widespread attention due to its good performance and physical interpretation. However, it remains challenging when handling multi-view data for clustering. On one hand, the current multi-view NMF methods do not fully utilize the virtual label information that can be learned in the clustering process. On the other hand, they usually perform the procedures of learning latent representation and clustering individually. To solve these problems, we develop a novel multi-view clustering model, named virtual label guided multi-view non-negative matrix factorization (VLMNMF). Specifically, we learn the virtual label information of each view, which is used to guide the learning of the latent representation of data. Then, we integrate the latent representation learning and clustering process of the data into a joint framework. A multi-view graph Laplacian is further imposed on the learned low-dimensional representation, which can well preserve the local geometric structure of multi-view data. Experiments on several benchmark datasets illustrate the efficacy of the proposed method.
ArticleNumber 103888
Author Liu, Xiangyu
Song, Peng
Author_xml – sequence: 1
  givenname: Xiangyu
  surname: Liu
  fullname: Liu, Xiangyu
  email: xiangyuliu99@gmail.com
– sequence: 2
  givenname: Peng
  orcidid: 0000-0002-6567-663X
  surname: Song
  fullname: Song, Peng
  email: pengsong@ytu.edu.cn
BookMark eNp9kMtOwzAQRS1UJNrCB7DzD6SM7SROxQpVQJEqsaFsLcceV67SpLKd8vh6UsqKRVfzkM6M7pmQUdu1SMgtgxkDVt5tZzbuZxw4H2ZRVdUFGTOYF1kuhBgd-4JlHCC_IpMYtwAgc16Oyfrdh9Trhja6xoZuem_R0l3fJJ8dPH7Q4U_W4kYnf0C60yn4T-q0SV3w38Oya6nrArU6aWqaPiYMvt1ck0unm4g3f3VK1k-Pb4tltnp9flk8rDLDuUyZw1pi7rCSaE3NWOV0VWlTMg51LiBHwEJIFDKXjhln5wYcxzm4UhdM1FxMCTvdNaGLMaBT--B3OnwpBuroRW3V4EUdvaiTl4GR_xjj02-SFLRvzpL3JxKHSIOcoKLx2Bq0PqBJynb-DP0DGmuBaQ
CitedBy_id crossref_primary_10_1016_j_ins_2024_121859
crossref_primary_10_1016_j_dsp_2023_104230
crossref_primary_10_1016_j_dsp_2024_104527
crossref_primary_10_1016_j_dsp_2024_104879
crossref_primary_10_1016_j_dsp_2024_104713
crossref_primary_10_1016_j_eswa_2024_123645
crossref_primary_10_1016_j_apnum_2024_10_015
crossref_primary_10_1016_j_patcog_2024_110420
crossref_primary_10_1007_s12206_025_0808_y
crossref_primary_10_1016_j_engappai_2024_107978
crossref_primary_10_1016_j_ins_2024_121396
crossref_primary_10_1016_j_eswa_2024_124191
crossref_primary_10_1515_phys_2024_0045
crossref_primary_10_1016_j_eswa_2024_125151
Cites_doi 10.1016/j.patcog.2018.04.004
10.1016/j.neucom.2010.01.018
10.1016/j.patcog.2020.107676
10.1162/NECO_a_00168
10.1109/TKDE.2018.2872063
10.1109/TIP.2017.2665976
10.1109/TIP.2019.2912290
10.1177/0278364917700714
10.1109/TKDE.2018.2873378
10.1016/j.knosys.2019.105126
10.1109/TKDE.2016.2603983
10.1016/j.neunet.2017.02.003
10.1145/2601434
10.1016/j.neucom.2020.02.104
10.1016/j.inffus.2021.12.001
10.1109/TKDE.2019.2903810
10.1016/j.ins.2020.07.018
10.1109/TPAMI.2002.1017623
10.1016/j.neucom.2014.01.043
10.1016/j.neucom.2017.10.023
10.1016/j.dsp.2022.103447
10.1093/bioinformatics/btn112
10.1109/TCYB.2020.2984552
10.1016/j.patcog.2017.08.024
10.1145/2987378
10.1023/A:1011139631724
10.1109/TKDE.2020.3025100
10.1016/j.ins.2017.11.038
10.1007/s00530-014-0397-6
10.1016/j.eswa.2021.114783
10.1038/44565
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.dsp.2022.103888
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1095-4333
ExternalDocumentID 10_1016_j_dsp_2022_103888
S105120042200505X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c227t-feb7e4fe87edcb118fa88ac6120b4304e0e537e3747f1cfd9c0f2e90f6a513b23
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000919554100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-2004
IngestDate Tue Nov 18 21:26:03 EST 2025
Sat Nov 29 07:08:58 EST 2025
Fri Feb 23 02:39:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Virtual label
Non-negative matrix factorization
Clustering
Multi-view learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227t-feb7e4fe87edcb118fa88ac6120b4304e0e537e3747f1cfd9c0f2e90f6a513b23
ORCID 0000-0002-6567-663X
ParticipantIDs crossref_primary_10_1016_j_dsp_2022_103888
crossref_citationtrail_10_1016_j_dsp_2022_103888
elsevier_sciencedirect_doi_10_1016_j_dsp_2022_103888
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Digital signal processing
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hoyer (br0080) 2004; 5
Zeng, Yu, Li, You, Jin (br0280) 2014; 138
Dalal, Triggs (br0040) 2005
Xie, Pan, Lu (br0470) 2015; 21
Wang, Han, Wang, He, Tian, Gao (br0200) 2021
Bickel, Scheffer (br0300) 2004; vol. 4
Ding, He, Simon (br0410) 2005
Yang, Deng, Lu, Li, Gong, Hao (br0580) 2021; 544
Ojala, Pietikainen, Maenpaa (br0020) 2002; 24
Wen, Zhang, Xu, Yang, Han (br0520) 2018; 81
Liang, Zhou, Xiong, Liu, Wang, Zhu, Cai, Xu (br0430) 2020
Wang, Yang, Liu (br0540) 2019; 32
Liu, Wang, Gao, Han (br0360) 2013
Wang, Zhou (br0330) 2007
Zhang, Zhou, He, Wang, Huang (br0220) 2020; 189
Li, Yang, Liu, Zhou, Lu (br0400) 2012; vol. 26
Tang, Qu, Wang, Zhang, Yan, Mei (br0420) 2015
Wang, Zeng, Chen, Lu, Tao, Ma (br0290) 2003
Lee, Seung (br0070) 1999; 401
Luo, Peng, Guan, Fan (br0140) 2018; 294
Brbić, Kopriva (br0570) 2018; 73
Huang, Nie, Huang, Ding (br0250) 2014; 8
Wang, Li, Deng, Liu, Huang, Zhang (br0380) 2022
Févotte, Idier (br0230) 2011; 23
Damoulas, Girolami (br0350) 2008; 24
Peng, Kang, Hu, Cheng, Cheng (br0260) 2017; 8
Yaslan, Cataltepe (br0500) 2010; 73
Fu, Lin, Vasilakos, Wang (br0060) 2020; 402
Calli, Singh, Bruce, Walsman, Konolige, Srinivasa, Abbeel, Dollar (br0450) 2017; 36
Wang, Kong, Fu, Li, Zhang (br0120) 2015
Zhang, Zhang, Liu, Liu (br0340) 2016; 28
Ma, Zhang, Zhang (br0160) 2021; 111
Cao, Zhang, Fu, Liu, Zhang (br0530) 2015
Luong, Nayak (br0550) 2020
Cui, Li (br0390) 2022; 82
Zhu, Zhang, He, Hu, Lei, Zhu (br0210) 2018; 31
Wei, Xie, Cao, Philip (br0190) 2017
Boyd, Boyd, Vandenberghe (br0440) 2004
Zong, Zhang, Zhao, Yu, Zhao (br0130) 2017; 88
Cai (br0510) 2011
Li, Yang, Zhang (br0010) 2018; 31
Zhang, Lai, Huang, Wong, Xie, Liu, Shao (br0050) 2019; 28
Wu, Du, Cheng (br0460) 2018
Zhou, Du, Lü, Wang (br0170) 2021; 174
Kailing, Kriegel, Pryakhin, Schubert (br0310) 2004
Cai, He, Han, Huang (br0240) 2010; 33
Xu, Han, Nie, Li (br0490) 2017; 26
Liu, Song, Sheng, Zhang (br0180) 2022; 123
Liu, Liu, Yang, Liu, Wang, Liang, Shi (br0560) 2021
Zhang, Gao, Li, Zhao, Huo, Yin, Liu, Zheng (br0150) 2018; 432
Gao, Nie, Li, Huang (br0320) 2015
Jia, Kwong, Hou, Wu (br0100) 2019; 31
Ji, Zhang, Li, Salzmann, Reid (br0480) 2017
Oliva, Torralba (br0030) 2001; 42
Wang, Tian, Liu, Wang (br0090) 2015
Su, Maji, Kalogerakis, Learned-Miller (br0110) 2015
Li, Hou, Zhang, Cheng (br0270) 2001; vol. 1
Yang, Liang, Yan, Li, Xie (br0370) 2021; 51
Luo (10.1016/j.dsp.2022.103888_br0140) 2018; 294
Ding (10.1016/j.dsp.2022.103888_br0410) 2005
Févotte (10.1016/j.dsp.2022.103888_br0230) 2011; 23
Peng (10.1016/j.dsp.2022.103888_br0260) 2017; 8
Cao (10.1016/j.dsp.2022.103888_br0530) 2015
Zhang (10.1016/j.dsp.2022.103888_br0150) 2018; 432
Wang (10.1016/j.dsp.2022.103888_br0380) 2022
Huang (10.1016/j.dsp.2022.103888_br0250) 2014; 8
Gao (10.1016/j.dsp.2022.103888_br0320) 2015
Wang (10.1016/j.dsp.2022.103888_br0290) 2003
Xie (10.1016/j.dsp.2022.103888_br0470) 2015; 21
Oliva (10.1016/j.dsp.2022.103888_br0030) 2001; 42
Wu (10.1016/j.dsp.2022.103888_br0460) 2018
Brbić (10.1016/j.dsp.2022.103888_br0570) 2018; 73
Lee (10.1016/j.dsp.2022.103888_br0070) 1999; 401
Zong (10.1016/j.dsp.2022.103888_br0130) 2017; 88
Luong (10.1016/j.dsp.2022.103888_br0550) 2020
Boyd (10.1016/j.dsp.2022.103888_br0440) 2004
Yaslan (10.1016/j.dsp.2022.103888_br0500) 2010; 73
Liu (10.1016/j.dsp.2022.103888_br0360) 2013
Wang (10.1016/j.dsp.2022.103888_br0090) 2015
Zhou (10.1016/j.dsp.2022.103888_br0170) 2021; 174
Ji (10.1016/j.dsp.2022.103888_br0480)
Wang (10.1016/j.dsp.2022.103888_br0120) 2015
Wei (10.1016/j.dsp.2022.103888_br0190) 2017
Liang (10.1016/j.dsp.2022.103888_br0430) 2020
Zeng (10.1016/j.dsp.2022.103888_br0280) 2014; 138
Ma (10.1016/j.dsp.2022.103888_br0160) 2021; 111
Zhang (10.1016/j.dsp.2022.103888_br0340) 2016; 28
Liu (10.1016/j.dsp.2022.103888_br0560) 2021
Zhu (10.1016/j.dsp.2022.103888_br0210) 2018; 31
Yang (10.1016/j.dsp.2022.103888_br0580) 2021; 544
Dalal (10.1016/j.dsp.2022.103888_br0040) 2005
Su (10.1016/j.dsp.2022.103888_br0110) 2015
Fu (10.1016/j.dsp.2022.103888_br0060) 2020; 402
Wen (10.1016/j.dsp.2022.103888_br0520) 2018; 81
Wang (10.1016/j.dsp.2022.103888_br0330) 2007
Li (10.1016/j.dsp.2022.103888_br0400) 2012; vol. 26
Cai (10.1016/j.dsp.2022.103888_br0510)
Li (10.1016/j.dsp.2022.103888_br0270) 2001; vol. 1
Wang (10.1016/j.dsp.2022.103888_br0200) 2021
Li (10.1016/j.dsp.2022.103888_br0010) 2018; 31
Ojala (10.1016/j.dsp.2022.103888_br0020) 2002; 24
Liu (10.1016/j.dsp.2022.103888_br0180) 2022; 123
Kailing (10.1016/j.dsp.2022.103888_br0310) 2004
Bickel (10.1016/j.dsp.2022.103888_br0300) 2004; vol. 4
Zhang (10.1016/j.dsp.2022.103888_br0050) 2019; 28
Cui (10.1016/j.dsp.2022.103888_br0390) 2022; 82
Hoyer (10.1016/j.dsp.2022.103888_br0080) 2004; 5
Yang (10.1016/j.dsp.2022.103888_br0370) 2021; 51
Tang (10.1016/j.dsp.2022.103888_br0420) 2015
Xu (10.1016/j.dsp.2022.103888_br0490) 2017; 26
Wang (10.1016/j.dsp.2022.103888_br0540) 2019; 32
Damoulas (10.1016/j.dsp.2022.103888_br0350) 2008; 24
Zhang (10.1016/j.dsp.2022.103888_br0220) 2020; 189
Cai (10.1016/j.dsp.2022.103888_br0240) 2010; 33
Jia (10.1016/j.dsp.2022.103888_br0100) 2019; 31
Calli (10.1016/j.dsp.2022.103888_br0450) 2017; 36
References_xml – volume: vol. 26
  start-page: 1026
  year: 2012
  end-page: 1032
  ident: br0400
  article-title: Unsupervised feature selection using nonnegative spectral analysis
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 73
  start-page: 1652
  year: 2010
  end-page: 1661
  ident: br0500
  article-title: Co-training with relevant random subspaces
  publication-title: Neurocomputing
– volume: 51
  start-page: 3249
  year: 2021
  end-page: 3262
  ident: br0370
  article-title: Uniform distribution non-negative matrix factorization for multiview clustering
  publication-title: IEEE Trans. Cybern.
– start-page: 886
  year: 2005
  end-page: 893
  ident: br0040
  article-title: Histograms of oriented gradients for human detection
  publication-title: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
– volume: 544
  start-page: 117
  year: 2021
  end-page: 134
  ident: br0580
  article-title: Graphlshc: towards large scale spectral hypergraph clustering
  publication-title: Inf. Sci.
– volume: 294
  start-page: 1
  year: 2018
  end-page: 11
  ident: br0140
  article-title: Dual regularized multi-view non-negative matrix factorization for clustering
  publication-title: Neurocomputing
– volume: 33
  start-page: 1548
  year: 2010
  end-page: 1560
  ident: br0240
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 31
  start-page: 2510
  year: 2019
  end-page: 2521
  ident: br0100
  article-title: Semi-supervised non-negative matrix factorization with dissimilarity and similarity regularization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2011
  ident: br0510
  article-title: Litekmeans: the fastest Matlab implementation of kmeans
– volume: 23
  start-page: 2421
  year: 2011
  end-page: 2456
  ident: br0230
  article-title: Algorithms for nonnegative matrix factorization with the
  publication-title: Neural Comput.
– start-page: 1067
  year: 2015
  end-page: 1077
  ident: br0420
  article-title: LINE: large-scale information network embedding
  publication-title: Proceedings of the 24th International Conference on World Wide Web
– start-page: 606
  year: 2005
  end-page: 610
  ident: br0410
  article-title: On the equivalence of nonnegative matrix factorization and spectral clustering
  publication-title: Proceedings of the 2005 SIAM International Conference on Data Mining
– volume: 32
  start-page: 1116
  year: 2019
  end-page: 1129
  ident: br0540
  article-title: GMC: graph-based multi-view clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 88
  start-page: 74
  year: 2017
  end-page: 89
  ident: br0130
  article-title: Multi-view clustering via multi-manifold regularized non-negative matrix factorization
  publication-title: Neural Netw.
– start-page: 252
  year: 2013
  end-page: 260
  ident: br0360
  article-title: Multi-view clustering via joint nonnegative matrix factorization
  publication-title: Proceedings of the 2013 SIAM International Conference on Data Mining
– volume: 31
  start-page: 1863
  year: 2018
  end-page: 1883
  ident: br0010
  article-title: A survey of multi-view representation learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 865
  year: 2020
  end-page: 876
  ident: br0550
  article-title: A novel approach to learning consensus and complementary information for multi-view data clustering
  publication-title: 2020 IEEE 36th International Conference on Data Engineering (ICDE)
– volume: 8
  start-page: 1
  year: 2014
  end-page: 21
  ident: br0250
  article-title: Robust manifold nonnegative matrix factorization
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 26
  start-page: 3016
  year: 2017
  end-page: 3027
  ident: br0490
  article-title: Re-weighted discriminatively embedded
  publication-title: IEEE Trans. Image Process.
– start-page: 394
  year: 2004
  end-page: 403
  ident: br0310
  article-title: Clustering multi-represented objects with noise
  publication-title: Pacific-Asia Conference on Knowledge Discovery and Data Mining
– start-page: 12344
  year: 2021
  end-page: 12353
  ident: br0560
  article-title: One-pass multi-view clustering for large-scale data
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 81
  start-page: 326
  year: 2018
  end-page: 340
  ident: br0520
  article-title: Adaptive weighted nonnegative low-rank representation
  publication-title: Pattern Recognit.
– start-page: 4238
  year: 2015
  end-page: 4246
  ident: br0320
  article-title: Multi-view subspace clustering
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 274
  year: 2003
  end-page: 281
  ident: br0290
  article-title: ReCom: reinforcement clustering of multi-type interrelated data objects
  publication-title: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
– year: 2017
  ident: br0480
  article-title: Deep subspace clustering networks
– start-page: 272
  year: 2017
  end-page: 287
  ident: br0190
  article-title: Rethinking unsupervised feature selection: from pseudo labels to pseudo must-links
  publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases
– volume: 432
  start-page: 463
  year: 2018
  end-page: 478
  ident: br0150
  article-title: Multi-view clustering based on graph-regularized nonnegative matrix factorization for object recognition
  publication-title: Inf. Sci.
– volume: 24
  start-page: 1264
  year: 2008
  end-page: 1270
  ident: br0350
  article-title: Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection
  publication-title: Bioinformatics
– start-page: 945
  year: 2015
  end-page: 953
  ident: br0110
  article-title: Multi-view convolutional neural networks for 3d shape recognition
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 21
  start-page: 525
  year: 2015
  end-page: 539
  ident: br0470
  article-title: Analyzing semantic correlation for cross-modal retrieval
  publication-title: Multimed. Syst.
– year: 2021
  ident: br0200
  article-title: Pseudo-label guided collective matrix factorization for multiview clustering
  publication-title: IEEE Trans. Cybern.
– volume: 111
  year: 2021
  ident: br0160
  article-title: Discriminative subspace matrix factorization for multiview data clustering
  publication-title: Pattern Recognit.
– volume: vol. 1
  start-page: I
  year: 2001
  ident: br0270
  article-title: Learning spatially localized, parts-based representation
  publication-title: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001
– volume: 402
  start-page: 148
  year: 2020
  end-page: 161
  ident: br0060
  article-title: An overview of recent multi-view clustering
  publication-title: Neurocomputing
– volume: 174
  year: 2021
  ident: br0170
  article-title: A network-based sparse and multi-manifold regularized multiple non-negative matrix factorization for multi-view clustering
  publication-title: Expert Syst. Appl.
– volume: 73
  start-page: 247
  year: 2018
  end-page: 258
  ident: br0570
  article-title: Multi-view low-rank sparse subspace clustering
  publication-title: Pattern Recognit.
– volume: 36
  start-page: 261
  year: 2017
  end-page: 268
  ident: br0450
  article-title: Yale-CMU-Berkeley dataset for robotic manipulation research
  publication-title: Int. J. Robot. Res.
– volume: 24
  start-page: 971
  year: 2002
  end-page: 987
  ident: br0020
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: vol. 4
  start-page: 19
  year: 2004
  end-page: 26
  ident: br0300
  article-title: Multi-view clustering
  publication-title: ICDM
– volume: 28
  start-page: 4803
  year: 2019
  end-page: 4818
  ident: br0050
  article-title: Scalable supervised asymmetric hashing with semantic and latent factor embedding
  publication-title: IEEE Trans. Image Process.
– volume: 138
  start-page: 209
  year: 2014
  end-page: 217
  ident: br0280
  article-title: Image clustering by hyper-graph regularized non-negative matrix factorization
  publication-title: Neurocomputing
– volume: 31
  start-page: 2022
  year: 2018
  end-page: 2034
  ident: br0210
  article-title: One-step multi-view spectral clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 26
  year: 2018
  end-page: 38
  ident: br0460
  article-title: Multi-view k-means clustering with Bregman divergences
  publication-title: International CCF Conference on Artificial Intelligence
– volume: 5
  year: 2004
  ident: br0080
  article-title: Non-negative matrix factorization with sparseness constraints
  publication-title: J. Mach. Learn. Res.
– volume: 123
  year: 2022
  ident: br0180
  article-title: Robust multi-view non-negative matrix factorization for clustering
  publication-title: Digit. Signal Process.
– start-page: 454
  year: 2007
  end-page: 465
  ident: br0330
  article-title: Analyzing co-training style algorithms
  publication-title: European Conference on Machine Learning
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: br0070
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– start-page: 3500
  year: 2015
  end-page: 3504
  ident: br0120
  article-title: Feature extraction via multi-view non-negative matrix factorization with local graph regularization
  publication-title: 2015 IEEE International Conference on Image Processing (ICIP)
– volume: 189
  year: 2020
  ident: br0220
  article-title: One-step kernel multi-view subspace clustering
  publication-title: Knowl.-Based Syst.
– year: 2020
  ident: br0430
  article-title: Multi-view spectral clustering with high-order optimal neighborhood Laplacian matrix
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 1
  year: 2015
  end-page: 8
  ident: br0090
  article-title: Robust semi-supervised nonnegative matrix factorization
  publication-title: 2015 International Joint Conference on Neural Networks (IJCNN)
– volume: 28
  start-page: 3324
  year: 2016
  end-page: 3338
  ident: br0340
  article-title: Multi-task multi-view clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2022
  ident: br0380
  article-title: A generalized deep learning algorithm based on nmf for multi-view clustering
  publication-title: IEEE Trans. Big Data
– volume: 42
  start-page: 145
  year: 2001
  end-page: 175
  ident: br0030
  article-title: Modeling the shape of the scene: a holistic representation of the spatial envelope
  publication-title: Int. J. Comput. Vis.
– volume: 8
  start-page: 1
  year: 2017
  end-page: 29
  ident: br0260
  article-title: Nonnegative matrix factorization with integrated graph and feature learning
  publication-title: ACM Trans. Intell. Syst. Technol.
– year: 2004
  ident: br0440
  article-title: Convex Optimization
– volume: 82
  start-page: 86
  year: 2022
  end-page: 98
  ident: br0390
  article-title: Nonredundancy regularization based nonnegative matrix factorization with manifold learning for multiview data representation
  publication-title: Inf. Fusion
– start-page: 586
  year: 2015
  end-page: 594
  ident: br0530
  article-title: Diversity-induced multi-view subspace clustering
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 3500
  year: 2015
  ident: 10.1016/j.dsp.2022.103888_br0120
  article-title: Feature extraction via multi-view non-negative matrix factorization with local graph regularization
– start-page: 272
  year: 2017
  ident: 10.1016/j.dsp.2022.103888_br0190
  article-title: Rethinking unsupervised feature selection: from pseudo labels to pseudo must-links
– volume: 81
  start-page: 326
  year: 2018
  ident: 10.1016/j.dsp.2022.103888_br0520
  article-title: Adaptive weighted nonnegative low-rank representation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.04.004
– start-page: 12344
  year: 2021
  ident: 10.1016/j.dsp.2022.103888_br0560
  article-title: One-pass multi-view clustering for large-scale data
– volume: 73
  start-page: 1652
  issue: 10–12
  year: 2010
  ident: 10.1016/j.dsp.2022.103888_br0500
  article-title: Co-training with relevant random subspaces
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.01.018
– volume: 111
  year: 2021
  ident: 10.1016/j.dsp.2022.103888_br0160
  article-title: Discriminative subspace matrix factorization for multiview data clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107676
– volume: 31
  start-page: 2510
  issue: 7
  year: 2019
  ident: 10.1016/j.dsp.2022.103888_br0100
  article-title: Semi-supervised non-negative matrix factorization with dissimilarity and similarity regularization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 26
  year: 2018
  ident: 10.1016/j.dsp.2022.103888_br0460
  article-title: Multi-view k-means clustering with Bregman divergences
– volume: 5
  issue: 9
  year: 2004
  ident: 10.1016/j.dsp.2022.103888_br0080
  article-title: Non-negative matrix factorization with sparseness constraints
  publication-title: J. Mach. Learn. Res.
– volume: 23
  start-page: 2421
  issue: 9
  year: 2011
  ident: 10.1016/j.dsp.2022.103888_br0230
  article-title: Algorithms for nonnegative matrix factorization with the β-divergence
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00168
– start-page: 865
  year: 2020
  ident: 10.1016/j.dsp.2022.103888_br0550
  article-title: A novel approach to learning consensus and complementary information for multi-view data clustering
– volume: 31
  start-page: 1863
  issue: 10
  year: 2018
  ident: 10.1016/j.dsp.2022.103888_br0010
  article-title: A survey of multi-view representation learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2872063
– year: 2022
  ident: 10.1016/j.dsp.2022.103888_br0380
  article-title: A generalized deep learning algorithm based on nmf for multi-view clustering
  publication-title: IEEE Trans. Big Data
– start-page: 274
  year: 2003
  ident: 10.1016/j.dsp.2022.103888_br0290
  article-title: ReCom: reinforcement clustering of multi-type interrelated data objects
– volume: 26
  start-page: 3016
  issue: 6
  year: 2017
  ident: 10.1016/j.dsp.2022.103888_br0490
  article-title: Re-weighted discriminatively embedded k-means for multi-view clustering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2665976
– start-page: 886
  year: 2005
  ident: 10.1016/j.dsp.2022.103888_br0040
  article-title: Histograms of oriented gradients for human detection
– volume: vol. 4
  start-page: 19
  year: 2004
  ident: 10.1016/j.dsp.2022.103888_br0300
  article-title: Multi-view clustering
– volume: vol. 26
  start-page: 1026
  year: 2012
  ident: 10.1016/j.dsp.2022.103888_br0400
  article-title: Unsupervised feature selection using nonnegative spectral analysis
– volume: 28
  start-page: 4803
  issue: 10
  year: 2019
  ident: 10.1016/j.dsp.2022.103888_br0050
  article-title: Scalable supervised asymmetric hashing with semantic and latent factor embedding
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2912290
– start-page: 945
  year: 2015
  ident: 10.1016/j.dsp.2022.103888_br0110
  article-title: Multi-view convolutional neural networks for 3d shape recognition
– start-page: 454
  year: 2007
  ident: 10.1016/j.dsp.2022.103888_br0330
  article-title: Analyzing co-training style algorithms
– start-page: 4238
  year: 2015
  ident: 10.1016/j.dsp.2022.103888_br0320
  article-title: Multi-view subspace clustering
– volume: 36
  start-page: 261
  issue: 3
  year: 2017
  ident: 10.1016/j.dsp.2022.103888_br0450
  article-title: Yale-CMU-Berkeley dataset for robotic manipulation research
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364917700714
– volume: 31
  start-page: 2022
  issue: 10
  year: 2018
  ident: 10.1016/j.dsp.2022.103888_br0210
  article-title: One-step multi-view spectral clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2873378
– volume: 189
  year: 2020
  ident: 10.1016/j.dsp.2022.103888_br0220
  article-title: One-step kernel multi-view subspace clustering
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105126
– volume: 28
  start-page: 3324
  issue: 12
  year: 2016
  ident: 10.1016/j.dsp.2022.103888_br0340
  article-title: Multi-task multi-view clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2603983
– volume: 88
  start-page: 74
  year: 2017
  ident: 10.1016/j.dsp.2022.103888_br0130
  article-title: Multi-view clustering via multi-manifold regularized non-negative matrix factorization
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.02.003
– volume: 33
  start-page: 1548
  issue: 8
  year: 2010
  ident: 10.1016/j.dsp.2022.103888_br0240
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 8
  start-page: 1
  issue: 3
  year: 2014
  ident: 10.1016/j.dsp.2022.103888_br0250
  article-title: Robust manifold nonnegative matrix factorization
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/2601434
– ident: 10.1016/j.dsp.2022.103888_br0510
– volume: 402
  start-page: 148
  year: 2020
  ident: 10.1016/j.dsp.2022.103888_br0060
  article-title: An overview of recent multi-view clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.02.104
– volume: 82
  start-page: 86
  year: 2022
  ident: 10.1016/j.dsp.2022.103888_br0390
  article-title: Nonredundancy regularization based nonnegative matrix factorization with manifold learning for multiview data representation
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.12.001
– start-page: 1067
  year: 2015
  ident: 10.1016/j.dsp.2022.103888_br0420
  article-title: LINE: large-scale information network embedding
– volume: 32
  start-page: 1116
  issue: 6
  year: 2019
  ident: 10.1016/j.dsp.2022.103888_br0540
  article-title: GMC: graph-based multi-view clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2903810
– volume: 544
  start-page: 117
  year: 2021
  ident: 10.1016/j.dsp.2022.103888_br0580
  article-title: Graphlshc: towards large scale spectral hypergraph clustering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.07.018
– start-page: 394
  year: 2004
  ident: 10.1016/j.dsp.2022.103888_br0310
  article-title: Clustering multi-represented objects with noise
– volume: 24
  start-page: 971
  issue: 7
  year: 2002
  ident: 10.1016/j.dsp.2022.103888_br0020
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1017623
– year: 2021
  ident: 10.1016/j.dsp.2022.103888_br0200
  article-title: Pseudo-label guided collective matrix factorization for multiview clustering
  publication-title: IEEE Trans. Cybern.
– volume: 138
  start-page: 209
  year: 2014
  ident: 10.1016/j.dsp.2022.103888_br0280
  article-title: Image clustering by hyper-graph regularized non-negative matrix factorization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.01.043
– volume: 294
  start-page: 1
  year: 2018
  ident: 10.1016/j.dsp.2022.103888_br0140
  article-title: Dual regularized multi-view non-negative matrix factorization for clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.10.023
– volume: 123
  year: 2022
  ident: 10.1016/j.dsp.2022.103888_br0180
  article-title: Robust multi-view non-negative matrix factorization for clustering
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2022.103447
– start-page: 1
  year: 2015
  ident: 10.1016/j.dsp.2022.103888_br0090
  article-title: Robust semi-supervised nonnegative matrix factorization
– volume: 24
  start-page: 1264
  issue: 10
  year: 2008
  ident: 10.1016/j.dsp.2022.103888_br0350
  article-title: Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn112
– volume: 51
  start-page: 3249
  issue: 6
  year: 2021
  ident: 10.1016/j.dsp.2022.103888_br0370
  article-title: Uniform distribution non-negative matrix factorization for multiview clustering
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2984552
– year: 2004
  ident: 10.1016/j.dsp.2022.103888_br0440
– volume: 73
  start-page: 247
  year: 2018
  ident: 10.1016/j.dsp.2022.103888_br0570
  article-title: Multi-view low-rank sparse subspace clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.08.024
– start-page: 252
  year: 2013
  ident: 10.1016/j.dsp.2022.103888_br0360
  article-title: Multi-view clustering via joint nonnegative matrix factorization
– volume: vol. 1
  start-page: I
  year: 2001
  ident: 10.1016/j.dsp.2022.103888_br0270
  article-title: Learning spatially localized, parts-based representation
– volume: 8
  start-page: 1
  issue: 3
  year: 2017
  ident: 10.1016/j.dsp.2022.103888_br0260
  article-title: Nonnegative matrix factorization with integrated graph and feature learning
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/2987378
– volume: 42
  start-page: 145
  issue: 3
  year: 2001
  ident: 10.1016/j.dsp.2022.103888_br0030
  article-title: Modeling the shape of the scene: a holistic representation of the spatial envelope
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1011139631724
– year: 2020
  ident: 10.1016/j.dsp.2022.103888_br0430
  article-title: Multi-view spectral clustering with high-order optimal neighborhood Laplacian matrix
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2020.3025100
– ident: 10.1016/j.dsp.2022.103888_br0480
– volume: 432
  start-page: 463
  year: 2018
  ident: 10.1016/j.dsp.2022.103888_br0150
  article-title: Multi-view clustering based on graph-regularized nonnegative matrix factorization for object recognition
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.11.038
– start-page: 586
  year: 2015
  ident: 10.1016/j.dsp.2022.103888_br0530
  article-title: Diversity-induced multi-view subspace clustering
– volume: 21
  start-page: 525
  issue: 6
  year: 2015
  ident: 10.1016/j.dsp.2022.103888_br0470
  article-title: Analyzing semantic correlation for cross-modal retrieval
  publication-title: Multimed. Syst.
  doi: 10.1007/s00530-014-0397-6
– volume: 174
  year: 2021
  ident: 10.1016/j.dsp.2022.103888_br0170
  article-title: A network-based sparse and multi-manifold regularized multiple non-negative matrix factorization for multi-view clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114783
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: 10.1016/j.dsp.2022.103888_br0070
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– start-page: 606
  year: 2005
  ident: 10.1016/j.dsp.2022.103888_br0410
  article-title: On the equivalence of nonnegative matrix factorization and spectral clustering
SSID ssj0007426
Score 2.4031777
Snippet Non-negative matrix factorization (NMF) has attracted widespread attention due to its good performance and physical interpretation. However, it remains...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103888
SubjectTerms Clustering
Multi-view learning
Non-negative matrix factorization
Virtual label
Title Virtual label guided multi-view non-negative matrix factorization for data clustering
URI https://dx.doi.org/10.1016/j.dsp.2022.103888
Volume 133
WOSCitedRecordID wos000919554100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-4333
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007426
  issn: 1051-2004
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3PT9swFMetDjhsh2n8Eoxt8mEnqqDEdprkglRtRYAQ4gCotyixX6qgUqHSoO6_3_OP_AAGGgcOjarIcS1_HPs99_ueCflpsigBcG-gMuaJQr9zg0CL_UMZhZlCk9eQPovOz-PxOLno9Q7rWJiHaTSbxctlcveuqPEewtahs2_A3VSKN_A7QscrYsfrf4G_LucmJgTxwrQ_qUqFNqXRDXomSgX9fW8GE5vw-1Zn6F-6U3dcSKZRHmrlaF9OK51HoV7dnA37u5zok0b6Wvqh47hsqEFdSIt7ykqTG-PIm_ypmj0cJ_69AFfS7TUw3oqt3PSIr7Dt7O78yXlnBtQJ1-1Bfc8mZ7tPcHOg7nWiUMYO2rKPE2E_WaAa2WCtSLtJsYpUV5HaKj6QVRaFCU7Mq8OT0fi0WYvR8TfxZXW76_-1jcLvSTv-bZl0rI3LL-SzcxPo0OJdJz2YbZBPneSRm-TKgaYGNLWgaQuadkFTC5o-Ak0RNNWgaQt6i1wdjS5_HXvukAxPMhYtvALyCEQBcQRK5uguFlkcZxINVz8X3BfgQ8gj4Og2FoEsVCL9gkHiF4MsDHjO-DZZwfbADqGZSDIQQS58BQKkQleTSa4GEKgMP3yX-HUHpdJlkNcHmUzTF8Hskv3mkTubPuW1wqLu9dTZf9auS3EEvfzY17f8xh752A7sb2RlMa_gO1mTD4vyfv7DDZ-_mtt9DA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virtual+label+guided+multi-view+non-negative+matrix+factorization+for+data+clustering&rft.jtitle=Digital+signal+processing&rft.au=Liu%2C+Xiangyu&rft.au=Song%2C+Peng&rft.date=2023-03-01&rft.issn=1051-2004&rft.volume=133&rft.spage=103888&rft_id=info:doi/10.1016%2Fj.dsp.2022.103888&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dsp_2022_103888
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-2004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-2004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-2004&client=summon