Virtual label guided multi-view non-negative matrix factorization for data clustering
Non-negative matrix factorization (NMF) has attracted widespread attention due to its good performance and physical interpretation. However, it remains challenging when handling multi-view data for clustering. On one hand, the current multi-view NMF methods do not fully utilize the virtual label inf...
Uloženo v:
| Vydáno v: | Digital signal processing Ročník 133; s. 103888 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.03.2023
|
| Témata: | |
| ISSN: | 1051-2004, 1095-4333 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Non-negative matrix factorization (NMF) has attracted widespread attention due to its good performance and physical interpretation. However, it remains challenging when handling multi-view data for clustering. On one hand, the current multi-view NMF methods do not fully utilize the virtual label information that can be learned in the clustering process. On the other hand, they usually perform the procedures of learning latent representation and clustering individually. To solve these problems, we develop a novel multi-view clustering model, named virtual label guided multi-view non-negative matrix factorization (VLMNMF). Specifically, we learn the virtual label information of each view, which is used to guide the learning of the latent representation of data. Then, we integrate the latent representation learning and clustering process of the data into a joint framework. A multi-view graph Laplacian is further imposed on the learned low-dimensional representation, which can well preserve the local geometric structure of multi-view data. Experiments on several benchmark datasets illustrate the efficacy of the proposed method. |
|---|---|
| AbstractList | Non-negative matrix factorization (NMF) has attracted widespread attention due to its good performance and physical interpretation. However, it remains challenging when handling multi-view data for clustering. On one hand, the current multi-view NMF methods do not fully utilize the virtual label information that can be learned in the clustering process. On the other hand, they usually perform the procedures of learning latent representation and clustering individually. To solve these problems, we develop a novel multi-view clustering model, named virtual label guided multi-view non-negative matrix factorization (VLMNMF). Specifically, we learn the virtual label information of each view, which is used to guide the learning of the latent representation of data. Then, we integrate the latent representation learning and clustering process of the data into a joint framework. A multi-view graph Laplacian is further imposed on the learned low-dimensional representation, which can well preserve the local geometric structure of multi-view data. Experiments on several benchmark datasets illustrate the efficacy of the proposed method. |
| ArticleNumber | 103888 |
| Author | Liu, Xiangyu Song, Peng |
| Author_xml | – sequence: 1 givenname: Xiangyu surname: Liu fullname: Liu, Xiangyu email: xiangyuliu99@gmail.com – sequence: 2 givenname: Peng orcidid: 0000-0002-6567-663X surname: Song fullname: Song, Peng email: pengsong@ytu.edu.cn |
| BookMark | eNp9kMtOwzAQRS1UJNrCB7DzD6SM7SROxQpVQJEqsaFsLcceV67SpLKd8vh6UsqKRVfzkM6M7pmQUdu1SMgtgxkDVt5tZzbuZxw4H2ZRVdUFGTOYF1kuhBgd-4JlHCC_IpMYtwAgc16Oyfrdh9Trhja6xoZuem_R0l3fJJ8dPH7Q4U_W4kYnf0C60yn4T-q0SV3w38Oya6nrArU6aWqaPiYMvt1ck0unm4g3f3VK1k-Pb4tltnp9flk8rDLDuUyZw1pi7rCSaE3NWOV0VWlTMg51LiBHwEJIFDKXjhln5wYcxzm4UhdM1FxMCTvdNaGLMaBT--B3OnwpBuroRW3V4EUdvaiTl4GR_xjj02-SFLRvzpL3JxKHSIOcoKLx2Bq0PqBJynb-DP0DGmuBaQ |
| CitedBy_id | crossref_primary_10_1016_j_ins_2024_121859 crossref_primary_10_1016_j_dsp_2023_104230 crossref_primary_10_1016_j_dsp_2024_104527 crossref_primary_10_1016_j_dsp_2024_104879 crossref_primary_10_1016_j_dsp_2024_104713 crossref_primary_10_1016_j_eswa_2024_123645 crossref_primary_10_1016_j_apnum_2024_10_015 crossref_primary_10_1016_j_patcog_2024_110420 crossref_primary_10_1007_s12206_025_0808_y crossref_primary_10_1016_j_engappai_2024_107978 crossref_primary_10_1016_j_ins_2024_121396 crossref_primary_10_1016_j_eswa_2024_124191 crossref_primary_10_1515_phys_2024_0045 crossref_primary_10_1016_j_eswa_2024_125151 |
| Cites_doi | 10.1016/j.patcog.2018.04.004 10.1016/j.neucom.2010.01.018 10.1016/j.patcog.2020.107676 10.1162/NECO_a_00168 10.1109/TKDE.2018.2872063 10.1109/TIP.2017.2665976 10.1109/TIP.2019.2912290 10.1177/0278364917700714 10.1109/TKDE.2018.2873378 10.1016/j.knosys.2019.105126 10.1109/TKDE.2016.2603983 10.1016/j.neunet.2017.02.003 10.1145/2601434 10.1016/j.neucom.2020.02.104 10.1016/j.inffus.2021.12.001 10.1109/TKDE.2019.2903810 10.1016/j.ins.2020.07.018 10.1109/TPAMI.2002.1017623 10.1016/j.neucom.2014.01.043 10.1016/j.neucom.2017.10.023 10.1016/j.dsp.2022.103447 10.1093/bioinformatics/btn112 10.1109/TCYB.2020.2984552 10.1016/j.patcog.2017.08.024 10.1145/2987378 10.1023/A:1011139631724 10.1109/TKDE.2020.3025100 10.1016/j.ins.2017.11.038 10.1007/s00530-014-0397-6 10.1016/j.eswa.2021.114783 10.1038/44565 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Inc. |
| Copyright_xml | – notice: 2022 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.dsp.2022.103888 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1095-4333 |
| ExternalDocumentID | 10_1016_j_dsp_2022_103888 S105120042200505X |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K WUQ XPP ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c227t-feb7e4fe87edcb118fa88ac6120b4304e0e537e3747f1cfd9c0f2e90f6a513b23 |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000919554100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1051-2004 |
| IngestDate | Tue Nov 18 21:26:03 EST 2025 Sat Nov 29 07:08:58 EST 2025 Fri Feb 23 02:39:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Virtual label Non-negative matrix factorization Clustering Multi-view learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c227t-feb7e4fe87edcb118fa88ac6120b4304e0e537e3747f1cfd9c0f2e90f6a513b23 |
| ORCID | 0000-0002-6567-663X |
| ParticipantIDs | crossref_primary_10_1016_j_dsp_2022_103888 crossref_citationtrail_10_1016_j_dsp_2022_103888 elsevier_sciencedirect_doi_10_1016_j_dsp_2022_103888 |
| PublicationCentury | 2000 |
| PublicationDate | March 2023 2023-03-00 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Digital signal processing |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Hoyer (br0080) 2004; 5 Zeng, Yu, Li, You, Jin (br0280) 2014; 138 Dalal, Triggs (br0040) 2005 Xie, Pan, Lu (br0470) 2015; 21 Wang, Han, Wang, He, Tian, Gao (br0200) 2021 Bickel, Scheffer (br0300) 2004; vol. 4 Ding, He, Simon (br0410) 2005 Yang, Deng, Lu, Li, Gong, Hao (br0580) 2021; 544 Ojala, Pietikainen, Maenpaa (br0020) 2002; 24 Wen, Zhang, Xu, Yang, Han (br0520) 2018; 81 Liang, Zhou, Xiong, Liu, Wang, Zhu, Cai, Xu (br0430) 2020 Wang, Yang, Liu (br0540) 2019; 32 Liu, Wang, Gao, Han (br0360) 2013 Wang, Zhou (br0330) 2007 Zhang, Zhou, He, Wang, Huang (br0220) 2020; 189 Li, Yang, Liu, Zhou, Lu (br0400) 2012; vol. 26 Tang, Qu, Wang, Zhang, Yan, Mei (br0420) 2015 Wang, Zeng, Chen, Lu, Tao, Ma (br0290) 2003 Lee, Seung (br0070) 1999; 401 Luo, Peng, Guan, Fan (br0140) 2018; 294 Brbić, Kopriva (br0570) 2018; 73 Huang, Nie, Huang, Ding (br0250) 2014; 8 Wang, Li, Deng, Liu, Huang, Zhang (br0380) 2022 Févotte, Idier (br0230) 2011; 23 Damoulas, Girolami (br0350) 2008; 24 Peng, Kang, Hu, Cheng, Cheng (br0260) 2017; 8 Yaslan, Cataltepe (br0500) 2010; 73 Fu, Lin, Vasilakos, Wang (br0060) 2020; 402 Calli, Singh, Bruce, Walsman, Konolige, Srinivasa, Abbeel, Dollar (br0450) 2017; 36 Wang, Kong, Fu, Li, Zhang (br0120) 2015 Zhang, Zhang, Liu, Liu (br0340) 2016; 28 Ma, Zhang, Zhang (br0160) 2021; 111 Cao, Zhang, Fu, Liu, Zhang (br0530) 2015 Luong, Nayak (br0550) 2020 Cui, Li (br0390) 2022; 82 Zhu, Zhang, He, Hu, Lei, Zhu (br0210) 2018; 31 Wei, Xie, Cao, Philip (br0190) 2017 Boyd, Boyd, Vandenberghe (br0440) 2004 Zong, Zhang, Zhao, Yu, Zhao (br0130) 2017; 88 Cai (br0510) 2011 Li, Yang, Zhang (br0010) 2018; 31 Zhang, Lai, Huang, Wong, Xie, Liu, Shao (br0050) 2019; 28 Wu, Du, Cheng (br0460) 2018 Zhou, Du, Lü, Wang (br0170) 2021; 174 Kailing, Kriegel, Pryakhin, Schubert (br0310) 2004 Cai, He, Han, Huang (br0240) 2010; 33 Xu, Han, Nie, Li (br0490) 2017; 26 Liu, Song, Sheng, Zhang (br0180) 2022; 123 Liu, Liu, Yang, Liu, Wang, Liang, Shi (br0560) 2021 Zhang, Gao, Li, Zhao, Huo, Yin, Liu, Zheng (br0150) 2018; 432 Gao, Nie, Li, Huang (br0320) 2015 Jia, Kwong, Hou, Wu (br0100) 2019; 31 Ji, Zhang, Li, Salzmann, Reid (br0480) 2017 Oliva, Torralba (br0030) 2001; 42 Wang, Tian, Liu, Wang (br0090) 2015 Su, Maji, Kalogerakis, Learned-Miller (br0110) 2015 Li, Hou, Zhang, Cheng (br0270) 2001; vol. 1 Yang, Liang, Yan, Li, Xie (br0370) 2021; 51 Luo (10.1016/j.dsp.2022.103888_br0140) 2018; 294 Ding (10.1016/j.dsp.2022.103888_br0410) 2005 Févotte (10.1016/j.dsp.2022.103888_br0230) 2011; 23 Peng (10.1016/j.dsp.2022.103888_br0260) 2017; 8 Cao (10.1016/j.dsp.2022.103888_br0530) 2015 Zhang (10.1016/j.dsp.2022.103888_br0150) 2018; 432 Wang (10.1016/j.dsp.2022.103888_br0380) 2022 Huang (10.1016/j.dsp.2022.103888_br0250) 2014; 8 Gao (10.1016/j.dsp.2022.103888_br0320) 2015 Wang (10.1016/j.dsp.2022.103888_br0290) 2003 Xie (10.1016/j.dsp.2022.103888_br0470) 2015; 21 Oliva (10.1016/j.dsp.2022.103888_br0030) 2001; 42 Wu (10.1016/j.dsp.2022.103888_br0460) 2018 Brbić (10.1016/j.dsp.2022.103888_br0570) 2018; 73 Lee (10.1016/j.dsp.2022.103888_br0070) 1999; 401 Zong (10.1016/j.dsp.2022.103888_br0130) 2017; 88 Luong (10.1016/j.dsp.2022.103888_br0550) 2020 Boyd (10.1016/j.dsp.2022.103888_br0440) 2004 Yaslan (10.1016/j.dsp.2022.103888_br0500) 2010; 73 Liu (10.1016/j.dsp.2022.103888_br0360) 2013 Wang (10.1016/j.dsp.2022.103888_br0090) 2015 Zhou (10.1016/j.dsp.2022.103888_br0170) 2021; 174 Ji (10.1016/j.dsp.2022.103888_br0480) Wang (10.1016/j.dsp.2022.103888_br0120) 2015 Wei (10.1016/j.dsp.2022.103888_br0190) 2017 Liang (10.1016/j.dsp.2022.103888_br0430) 2020 Zeng (10.1016/j.dsp.2022.103888_br0280) 2014; 138 Ma (10.1016/j.dsp.2022.103888_br0160) 2021; 111 Zhang (10.1016/j.dsp.2022.103888_br0340) 2016; 28 Liu (10.1016/j.dsp.2022.103888_br0560) 2021 Zhu (10.1016/j.dsp.2022.103888_br0210) 2018; 31 Yang (10.1016/j.dsp.2022.103888_br0580) 2021; 544 Dalal (10.1016/j.dsp.2022.103888_br0040) 2005 Su (10.1016/j.dsp.2022.103888_br0110) 2015 Fu (10.1016/j.dsp.2022.103888_br0060) 2020; 402 Wen (10.1016/j.dsp.2022.103888_br0520) 2018; 81 Wang (10.1016/j.dsp.2022.103888_br0330) 2007 Li (10.1016/j.dsp.2022.103888_br0400) 2012; vol. 26 Cai (10.1016/j.dsp.2022.103888_br0510) Li (10.1016/j.dsp.2022.103888_br0270) 2001; vol. 1 Wang (10.1016/j.dsp.2022.103888_br0200) 2021 Li (10.1016/j.dsp.2022.103888_br0010) 2018; 31 Ojala (10.1016/j.dsp.2022.103888_br0020) 2002; 24 Liu (10.1016/j.dsp.2022.103888_br0180) 2022; 123 Kailing (10.1016/j.dsp.2022.103888_br0310) 2004 Bickel (10.1016/j.dsp.2022.103888_br0300) 2004; vol. 4 Zhang (10.1016/j.dsp.2022.103888_br0050) 2019; 28 Cui (10.1016/j.dsp.2022.103888_br0390) 2022; 82 Hoyer (10.1016/j.dsp.2022.103888_br0080) 2004; 5 Yang (10.1016/j.dsp.2022.103888_br0370) 2021; 51 Tang (10.1016/j.dsp.2022.103888_br0420) 2015 Xu (10.1016/j.dsp.2022.103888_br0490) 2017; 26 Wang (10.1016/j.dsp.2022.103888_br0540) 2019; 32 Damoulas (10.1016/j.dsp.2022.103888_br0350) 2008; 24 Zhang (10.1016/j.dsp.2022.103888_br0220) 2020; 189 Cai (10.1016/j.dsp.2022.103888_br0240) 2010; 33 Jia (10.1016/j.dsp.2022.103888_br0100) 2019; 31 Calli (10.1016/j.dsp.2022.103888_br0450) 2017; 36 |
| References_xml | – volume: vol. 26 start-page: 1026 year: 2012 end-page: 1032 ident: br0400 article-title: Unsupervised feature selection using nonnegative spectral analysis publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 73 start-page: 1652 year: 2010 end-page: 1661 ident: br0500 article-title: Co-training with relevant random subspaces publication-title: Neurocomputing – volume: 51 start-page: 3249 year: 2021 end-page: 3262 ident: br0370 article-title: Uniform distribution non-negative matrix factorization for multiview clustering publication-title: IEEE Trans. Cybern. – start-page: 886 year: 2005 end-page: 893 ident: br0040 article-title: Histograms of oriented gradients for human detection publication-title: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) – volume: 544 start-page: 117 year: 2021 end-page: 134 ident: br0580 article-title: Graphlshc: towards large scale spectral hypergraph clustering publication-title: Inf. Sci. – volume: 294 start-page: 1 year: 2018 end-page: 11 ident: br0140 article-title: Dual regularized multi-view non-negative matrix factorization for clustering publication-title: Neurocomputing – volume: 33 start-page: 1548 year: 2010 end-page: 1560 ident: br0240 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 31 start-page: 2510 year: 2019 end-page: 2521 ident: br0100 article-title: Semi-supervised non-negative matrix factorization with dissimilarity and similarity regularization publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2011 ident: br0510 article-title: Litekmeans: the fastest Matlab implementation of kmeans – volume: 23 start-page: 2421 year: 2011 end-page: 2456 ident: br0230 article-title: Algorithms for nonnegative matrix factorization with the publication-title: Neural Comput. – start-page: 1067 year: 2015 end-page: 1077 ident: br0420 article-title: LINE: large-scale information network embedding publication-title: Proceedings of the 24th International Conference on World Wide Web – start-page: 606 year: 2005 end-page: 610 ident: br0410 article-title: On the equivalence of nonnegative matrix factorization and spectral clustering publication-title: Proceedings of the 2005 SIAM International Conference on Data Mining – volume: 32 start-page: 1116 year: 2019 end-page: 1129 ident: br0540 article-title: GMC: graph-based multi-view clustering publication-title: IEEE Trans. Knowl. Data Eng. – volume: 88 start-page: 74 year: 2017 end-page: 89 ident: br0130 article-title: Multi-view clustering via multi-manifold regularized non-negative matrix factorization publication-title: Neural Netw. – start-page: 252 year: 2013 end-page: 260 ident: br0360 article-title: Multi-view clustering via joint nonnegative matrix factorization publication-title: Proceedings of the 2013 SIAM International Conference on Data Mining – volume: 31 start-page: 1863 year: 2018 end-page: 1883 ident: br0010 article-title: A survey of multi-view representation learning publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 865 year: 2020 end-page: 876 ident: br0550 article-title: A novel approach to learning consensus and complementary information for multi-view data clustering publication-title: 2020 IEEE 36th International Conference on Data Engineering (ICDE) – volume: 8 start-page: 1 year: 2014 end-page: 21 ident: br0250 article-title: Robust manifold nonnegative matrix factorization publication-title: ACM Trans. Knowl. Discov. Data – volume: 26 start-page: 3016 year: 2017 end-page: 3027 ident: br0490 article-title: Re-weighted discriminatively embedded publication-title: IEEE Trans. Image Process. – start-page: 394 year: 2004 end-page: 403 ident: br0310 article-title: Clustering multi-represented objects with noise publication-title: Pacific-Asia Conference on Knowledge Discovery and Data Mining – start-page: 12344 year: 2021 end-page: 12353 ident: br0560 article-title: One-pass multi-view clustering for large-scale data publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – volume: 81 start-page: 326 year: 2018 end-page: 340 ident: br0520 article-title: Adaptive weighted nonnegative low-rank representation publication-title: Pattern Recognit. – start-page: 4238 year: 2015 end-page: 4246 ident: br0320 article-title: Multi-view subspace clustering publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 274 year: 2003 end-page: 281 ident: br0290 article-title: ReCom: reinforcement clustering of multi-type interrelated data objects publication-title: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval – year: 2017 ident: br0480 article-title: Deep subspace clustering networks – start-page: 272 year: 2017 end-page: 287 ident: br0190 article-title: Rethinking unsupervised feature selection: from pseudo labels to pseudo must-links publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases – volume: 432 start-page: 463 year: 2018 end-page: 478 ident: br0150 article-title: Multi-view clustering based on graph-regularized nonnegative matrix factorization for object recognition publication-title: Inf. Sci. – volume: 24 start-page: 1264 year: 2008 end-page: 1270 ident: br0350 article-title: Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection publication-title: Bioinformatics – start-page: 945 year: 2015 end-page: 953 ident: br0110 article-title: Multi-view convolutional neural networks for 3d shape recognition publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 21 start-page: 525 year: 2015 end-page: 539 ident: br0470 article-title: Analyzing semantic correlation for cross-modal retrieval publication-title: Multimed. Syst. – year: 2021 ident: br0200 article-title: Pseudo-label guided collective matrix factorization for multiview clustering publication-title: IEEE Trans. Cybern. – volume: 111 year: 2021 ident: br0160 article-title: Discriminative subspace matrix factorization for multiview data clustering publication-title: Pattern Recognit. – volume: vol. 1 start-page: I year: 2001 ident: br0270 article-title: Learning spatially localized, parts-based representation publication-title: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001 – volume: 402 start-page: 148 year: 2020 end-page: 161 ident: br0060 article-title: An overview of recent multi-view clustering publication-title: Neurocomputing – volume: 174 year: 2021 ident: br0170 article-title: A network-based sparse and multi-manifold regularized multiple non-negative matrix factorization for multi-view clustering publication-title: Expert Syst. Appl. – volume: 73 start-page: 247 year: 2018 end-page: 258 ident: br0570 article-title: Multi-view low-rank sparse subspace clustering publication-title: Pattern Recognit. – volume: 36 start-page: 261 year: 2017 end-page: 268 ident: br0450 article-title: Yale-CMU-Berkeley dataset for robotic manipulation research publication-title: Int. J. Robot. Res. – volume: 24 start-page: 971 year: 2002 end-page: 987 ident: br0020 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: vol. 4 start-page: 19 year: 2004 end-page: 26 ident: br0300 article-title: Multi-view clustering publication-title: ICDM – volume: 28 start-page: 4803 year: 2019 end-page: 4818 ident: br0050 article-title: Scalable supervised asymmetric hashing with semantic and latent factor embedding publication-title: IEEE Trans. Image Process. – volume: 138 start-page: 209 year: 2014 end-page: 217 ident: br0280 article-title: Image clustering by hyper-graph regularized non-negative matrix factorization publication-title: Neurocomputing – volume: 31 start-page: 2022 year: 2018 end-page: 2034 ident: br0210 article-title: One-step multi-view spectral clustering publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 26 year: 2018 end-page: 38 ident: br0460 article-title: Multi-view k-means clustering with Bregman divergences publication-title: International CCF Conference on Artificial Intelligence – volume: 5 year: 2004 ident: br0080 article-title: Non-negative matrix factorization with sparseness constraints publication-title: J. Mach. Learn. Res. – volume: 123 year: 2022 ident: br0180 article-title: Robust multi-view non-negative matrix factorization for clustering publication-title: Digit. Signal Process. – start-page: 454 year: 2007 end-page: 465 ident: br0330 article-title: Analyzing co-training style algorithms publication-title: European Conference on Machine Learning – volume: 401 start-page: 788 year: 1999 end-page: 791 ident: br0070 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature – start-page: 3500 year: 2015 end-page: 3504 ident: br0120 article-title: Feature extraction via multi-view non-negative matrix factorization with local graph regularization publication-title: 2015 IEEE International Conference on Image Processing (ICIP) – volume: 189 year: 2020 ident: br0220 article-title: One-step kernel multi-view subspace clustering publication-title: Knowl.-Based Syst. – year: 2020 ident: br0430 article-title: Multi-view spectral clustering with high-order optimal neighborhood Laplacian matrix publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 1 year: 2015 end-page: 8 ident: br0090 article-title: Robust semi-supervised nonnegative matrix factorization publication-title: 2015 International Joint Conference on Neural Networks (IJCNN) – volume: 28 start-page: 3324 year: 2016 end-page: 3338 ident: br0340 article-title: Multi-task multi-view clustering publication-title: IEEE Trans. Knowl. Data Eng. – year: 2022 ident: br0380 article-title: A generalized deep learning algorithm based on nmf for multi-view clustering publication-title: IEEE Trans. Big Data – volume: 42 start-page: 145 year: 2001 end-page: 175 ident: br0030 article-title: Modeling the shape of the scene: a holistic representation of the spatial envelope publication-title: Int. J. Comput. Vis. – volume: 8 start-page: 1 year: 2017 end-page: 29 ident: br0260 article-title: Nonnegative matrix factorization with integrated graph and feature learning publication-title: ACM Trans. Intell. Syst. Technol. – year: 2004 ident: br0440 article-title: Convex Optimization – volume: 82 start-page: 86 year: 2022 end-page: 98 ident: br0390 article-title: Nonredundancy regularization based nonnegative matrix factorization with manifold learning for multiview data representation publication-title: Inf. Fusion – start-page: 586 year: 2015 end-page: 594 ident: br0530 article-title: Diversity-induced multi-view subspace clustering publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 3500 year: 2015 ident: 10.1016/j.dsp.2022.103888_br0120 article-title: Feature extraction via multi-view non-negative matrix factorization with local graph regularization – start-page: 272 year: 2017 ident: 10.1016/j.dsp.2022.103888_br0190 article-title: Rethinking unsupervised feature selection: from pseudo labels to pseudo must-links – volume: 81 start-page: 326 year: 2018 ident: 10.1016/j.dsp.2022.103888_br0520 article-title: Adaptive weighted nonnegative low-rank representation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.04.004 – start-page: 12344 year: 2021 ident: 10.1016/j.dsp.2022.103888_br0560 article-title: One-pass multi-view clustering for large-scale data – volume: 73 start-page: 1652 issue: 10–12 year: 2010 ident: 10.1016/j.dsp.2022.103888_br0500 article-title: Co-training with relevant random subspaces publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.01.018 – volume: 111 year: 2021 ident: 10.1016/j.dsp.2022.103888_br0160 article-title: Discriminative subspace matrix factorization for multiview data clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107676 – volume: 31 start-page: 2510 issue: 7 year: 2019 ident: 10.1016/j.dsp.2022.103888_br0100 article-title: Semi-supervised non-negative matrix factorization with dissimilarity and similarity regularization publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 26 year: 2018 ident: 10.1016/j.dsp.2022.103888_br0460 article-title: Multi-view k-means clustering with Bregman divergences – volume: 5 issue: 9 year: 2004 ident: 10.1016/j.dsp.2022.103888_br0080 article-title: Non-negative matrix factorization with sparseness constraints publication-title: J. Mach. Learn. Res. – volume: 23 start-page: 2421 issue: 9 year: 2011 ident: 10.1016/j.dsp.2022.103888_br0230 article-title: Algorithms for nonnegative matrix factorization with the β-divergence publication-title: Neural Comput. doi: 10.1162/NECO_a_00168 – start-page: 865 year: 2020 ident: 10.1016/j.dsp.2022.103888_br0550 article-title: A novel approach to learning consensus and complementary information for multi-view data clustering – volume: 31 start-page: 1863 issue: 10 year: 2018 ident: 10.1016/j.dsp.2022.103888_br0010 article-title: A survey of multi-view representation learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2872063 – year: 2022 ident: 10.1016/j.dsp.2022.103888_br0380 article-title: A generalized deep learning algorithm based on nmf for multi-view clustering publication-title: IEEE Trans. Big Data – start-page: 274 year: 2003 ident: 10.1016/j.dsp.2022.103888_br0290 article-title: ReCom: reinforcement clustering of multi-type interrelated data objects – volume: 26 start-page: 3016 issue: 6 year: 2017 ident: 10.1016/j.dsp.2022.103888_br0490 article-title: Re-weighted discriminatively embedded k-means for multi-view clustering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2665976 – start-page: 886 year: 2005 ident: 10.1016/j.dsp.2022.103888_br0040 article-title: Histograms of oriented gradients for human detection – volume: vol. 4 start-page: 19 year: 2004 ident: 10.1016/j.dsp.2022.103888_br0300 article-title: Multi-view clustering – volume: vol. 26 start-page: 1026 year: 2012 ident: 10.1016/j.dsp.2022.103888_br0400 article-title: Unsupervised feature selection using nonnegative spectral analysis – volume: 28 start-page: 4803 issue: 10 year: 2019 ident: 10.1016/j.dsp.2022.103888_br0050 article-title: Scalable supervised asymmetric hashing with semantic and latent factor embedding publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2912290 – start-page: 945 year: 2015 ident: 10.1016/j.dsp.2022.103888_br0110 article-title: Multi-view convolutional neural networks for 3d shape recognition – start-page: 454 year: 2007 ident: 10.1016/j.dsp.2022.103888_br0330 article-title: Analyzing co-training style algorithms – start-page: 4238 year: 2015 ident: 10.1016/j.dsp.2022.103888_br0320 article-title: Multi-view subspace clustering – volume: 36 start-page: 261 issue: 3 year: 2017 ident: 10.1016/j.dsp.2022.103888_br0450 article-title: Yale-CMU-Berkeley dataset for robotic manipulation research publication-title: Int. J. Robot. Res. doi: 10.1177/0278364917700714 – volume: 31 start-page: 2022 issue: 10 year: 2018 ident: 10.1016/j.dsp.2022.103888_br0210 article-title: One-step multi-view spectral clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2873378 – volume: 189 year: 2020 ident: 10.1016/j.dsp.2022.103888_br0220 article-title: One-step kernel multi-view subspace clustering publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105126 – volume: 28 start-page: 3324 issue: 12 year: 2016 ident: 10.1016/j.dsp.2022.103888_br0340 article-title: Multi-task multi-view clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2603983 – volume: 88 start-page: 74 year: 2017 ident: 10.1016/j.dsp.2022.103888_br0130 article-title: Multi-view clustering via multi-manifold regularized non-negative matrix factorization publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.02.003 – volume: 33 start-page: 1548 issue: 8 year: 2010 ident: 10.1016/j.dsp.2022.103888_br0240 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 8 start-page: 1 issue: 3 year: 2014 ident: 10.1016/j.dsp.2022.103888_br0250 article-title: Robust manifold nonnegative matrix factorization publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/2601434 – ident: 10.1016/j.dsp.2022.103888_br0510 – volume: 402 start-page: 148 year: 2020 ident: 10.1016/j.dsp.2022.103888_br0060 article-title: An overview of recent multi-view clustering publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.02.104 – volume: 82 start-page: 86 year: 2022 ident: 10.1016/j.dsp.2022.103888_br0390 article-title: Nonredundancy regularization based nonnegative matrix factorization with manifold learning for multiview data representation publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.12.001 – start-page: 1067 year: 2015 ident: 10.1016/j.dsp.2022.103888_br0420 article-title: LINE: large-scale information network embedding – volume: 32 start-page: 1116 issue: 6 year: 2019 ident: 10.1016/j.dsp.2022.103888_br0540 article-title: GMC: graph-based multi-view clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2903810 – volume: 544 start-page: 117 year: 2021 ident: 10.1016/j.dsp.2022.103888_br0580 article-title: Graphlshc: towards large scale spectral hypergraph clustering publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.07.018 – start-page: 394 year: 2004 ident: 10.1016/j.dsp.2022.103888_br0310 article-title: Clustering multi-represented objects with noise – volume: 24 start-page: 971 issue: 7 year: 2002 ident: 10.1016/j.dsp.2022.103888_br0020 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2002.1017623 – year: 2021 ident: 10.1016/j.dsp.2022.103888_br0200 article-title: Pseudo-label guided collective matrix factorization for multiview clustering publication-title: IEEE Trans. Cybern. – volume: 138 start-page: 209 year: 2014 ident: 10.1016/j.dsp.2022.103888_br0280 article-title: Image clustering by hyper-graph regularized non-negative matrix factorization publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.01.043 – volume: 294 start-page: 1 year: 2018 ident: 10.1016/j.dsp.2022.103888_br0140 article-title: Dual regularized multi-view non-negative matrix factorization for clustering publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.10.023 – volume: 123 year: 2022 ident: 10.1016/j.dsp.2022.103888_br0180 article-title: Robust multi-view non-negative matrix factorization for clustering publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2022.103447 – start-page: 1 year: 2015 ident: 10.1016/j.dsp.2022.103888_br0090 article-title: Robust semi-supervised nonnegative matrix factorization – volume: 24 start-page: 1264 issue: 10 year: 2008 ident: 10.1016/j.dsp.2022.103888_br0350 article-title: Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn112 – volume: 51 start-page: 3249 issue: 6 year: 2021 ident: 10.1016/j.dsp.2022.103888_br0370 article-title: Uniform distribution non-negative matrix factorization for multiview clustering publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2984552 – year: 2004 ident: 10.1016/j.dsp.2022.103888_br0440 – volume: 73 start-page: 247 year: 2018 ident: 10.1016/j.dsp.2022.103888_br0570 article-title: Multi-view low-rank sparse subspace clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.08.024 – start-page: 252 year: 2013 ident: 10.1016/j.dsp.2022.103888_br0360 article-title: Multi-view clustering via joint nonnegative matrix factorization – volume: vol. 1 start-page: I year: 2001 ident: 10.1016/j.dsp.2022.103888_br0270 article-title: Learning spatially localized, parts-based representation – volume: 8 start-page: 1 issue: 3 year: 2017 ident: 10.1016/j.dsp.2022.103888_br0260 article-title: Nonnegative matrix factorization with integrated graph and feature learning publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/2987378 – volume: 42 start-page: 145 issue: 3 year: 2001 ident: 10.1016/j.dsp.2022.103888_br0030 article-title: Modeling the shape of the scene: a holistic representation of the spatial envelope publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1011139631724 – year: 2020 ident: 10.1016/j.dsp.2022.103888_br0430 article-title: Multi-view spectral clustering with high-order optimal neighborhood Laplacian matrix publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2020.3025100 – ident: 10.1016/j.dsp.2022.103888_br0480 – volume: 432 start-page: 463 year: 2018 ident: 10.1016/j.dsp.2022.103888_br0150 article-title: Multi-view clustering based on graph-regularized nonnegative matrix factorization for object recognition publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.11.038 – start-page: 586 year: 2015 ident: 10.1016/j.dsp.2022.103888_br0530 article-title: Diversity-induced multi-view subspace clustering – volume: 21 start-page: 525 issue: 6 year: 2015 ident: 10.1016/j.dsp.2022.103888_br0470 article-title: Analyzing semantic correlation for cross-modal retrieval publication-title: Multimed. Syst. doi: 10.1007/s00530-014-0397-6 – volume: 174 year: 2021 ident: 10.1016/j.dsp.2022.103888_br0170 article-title: A network-based sparse and multi-manifold regularized multiple non-negative matrix factorization for multi-view clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114783 – volume: 401 start-page: 788 issue: 6755 year: 1999 ident: 10.1016/j.dsp.2022.103888_br0070 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – start-page: 606 year: 2005 ident: 10.1016/j.dsp.2022.103888_br0410 article-title: On the equivalence of nonnegative matrix factorization and spectral clustering |
| SSID | ssj0007426 |
| Score | 2.4031777 |
| Snippet | Non-negative matrix factorization (NMF) has attracted widespread attention due to its good performance and physical interpretation. However, it remains... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103888 |
| SubjectTerms | Clustering Multi-view learning Non-negative matrix factorization Virtual label |
| Title | Virtual label guided multi-view non-negative matrix factorization for data clustering |
| URI | https://dx.doi.org/10.1016/j.dsp.2022.103888 |
| Volume | 133 |
| WOSCitedRecordID | wos000919554100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-4333 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007426 issn: 1051-2004 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3PT9swFMetDjhsh2n8Eoxt8mEnqqDEdprkglRtRYAQ4gCotyixX6qgUqHSoO6_3_OP_AAGGgcOjarIcS1_HPs99_ueCflpsigBcG-gMuaJQr9zg0CL_UMZhZlCk9eQPovOz-PxOLno9Q7rWJiHaTSbxctlcveuqPEewtahs2_A3VSKN_A7QscrYsfrf4G_LucmJgTxwrQ_qUqFNqXRDXomSgX9fW8GE5vw-1Zn6F-6U3dcSKZRHmrlaF9OK51HoV7dnA37u5zok0b6Wvqh47hsqEFdSIt7ykqTG-PIm_ypmj0cJ_69AFfS7TUw3oqt3PSIr7Dt7O78yXlnBtQJ1-1Bfc8mZ7tPcHOg7nWiUMYO2rKPE2E_WaAa2WCtSLtJsYpUV5HaKj6QVRaFCU7Mq8OT0fi0WYvR8TfxZXW76_-1jcLvSTv-bZl0rI3LL-SzcxPo0OJdJz2YbZBPneSRm-TKgaYGNLWgaQuadkFTC5o-Ak0RNNWgaQt6i1wdjS5_HXvukAxPMhYtvALyCEQBcQRK5uguFlkcZxINVz8X3BfgQ8gj4Og2FoEsVCL9gkHiF4MsDHjO-DZZwfbADqGZSDIQQS58BQKkQleTSa4GEKgMP3yX-HUHpdJlkNcHmUzTF8Hskv3mkTubPuW1wqLu9dTZf9auS3EEvfzY17f8xh752A7sb2RlMa_gO1mTD4vyfv7DDZ-_mtt9DA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virtual+label+guided+multi-view+non-negative+matrix+factorization+for+data+clustering&rft.jtitle=Digital+signal+processing&rft.au=Liu%2C+Xiangyu&rft.au=Song%2C+Peng&rft.date=2023-03-01&rft.issn=1051-2004&rft.volume=133&rft.spage=103888&rft_id=info:doi/10.1016%2Fj.dsp.2022.103888&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dsp_2022_103888 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-2004&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-2004&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-2004&client=summon |