DLEA: A dynamic learning evolution algorithm for many-objective optimization

For many-objective problems, how to maintain the diversity and convergence of the distribution of the solution set over Pareto front (PF) has always been the research emphasis. In the iteration process, the state of population is critical to improve the level of evolution. Therefore, this paper will...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information sciences Ročník 574; s. 567 - 589
Hlavní autori: Li, Gui, Wang, Gai-Ge, Dong, Junyu, Yeh, Wei-Chang, Li, Keqin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.10.2021
Predmet:
ISSN:0020-0255, 1872-6291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract For many-objective problems, how to maintain the diversity and convergence of the distribution of the solution set over Pareto front (PF) has always been the research emphasis. In the iteration process, the state of population is critical to improve the level of evolution. Therefore, this paper will use two convergence and diversity indicators to further strengthen the usage of evolutionary state information and propose a dynamic learning strategy. In addition, a dynamic learning strategy based many-objective evolutionary algorithm (MaOEA) is proposed, called dynamic learning evolution algorithm (DLEA), which continuously changes the direction of learning: convergence and diversity in the iteration process. The purpose is to make the algorithm prefer to convergence in the early iteration and prefer to diversity when it is close to PF in the late iteration, so that the convergence and diversity of the final solution set can be well maintained. And then, the performance of DLEA is measured by two indicators. Meanwhile, DLEA will be compared with four state-of-the-art algorithms on the DTLZ and MaF, and its performance will be verified on a many-objective combinatorial problem. And the experimental results and Friedman test show that DLEA has great advantages.
AbstractList For many-objective problems, how to maintain the diversity and convergence of the distribution of the solution set over Pareto front (PF) has always been the research emphasis. In the iteration process, the state of population is critical to improve the level of evolution. Therefore, this paper will use two convergence and diversity indicators to further strengthen the usage of evolutionary state information and propose a dynamic learning strategy. In addition, a dynamic learning strategy based many-objective evolutionary algorithm (MaOEA) is proposed, called dynamic learning evolution algorithm (DLEA), which continuously changes the direction of learning: convergence and diversity in the iteration process. The purpose is to make the algorithm prefer to convergence in the early iteration and prefer to diversity when it is close to PF in the late iteration, so that the convergence and diversity of the final solution set can be well maintained. And then, the performance of DLEA is measured by two indicators. Meanwhile, DLEA will be compared with four state-of-the-art algorithms on the DTLZ and MaF, and its performance will be verified on a many-objective combinatorial problem. And the experimental results and Friedman test show that DLEA has great advantages.
Author Li, Gui
Dong, Junyu
Li, Keqin
Wang, Gai-Ge
Yeh, Wei-Chang
Author_xml – sequence: 1
  givenname: Gui
  surname: Li
  fullname: Li, Gui
  email: liguiatqingdao@gmail.com
  organization: Department of Computer Science and Technology, Ocean University of China, 266100 Qingdao, China
– sequence: 2
  givenname: Gai-Ge
  orcidid: 0000-0002-3295-8972
  surname: Wang
  fullname: Wang, Gai-Ge
  email: gaigewang@gmail.com, gaigewang@163.com
  organization: Department of Computer Science and Technology, Ocean University of China, 266100 Qingdao, China
– sequence: 3
  givenname: Junyu
  surname: Dong
  fullname: Dong, Junyu
  email: dongjunyu@ouc.edu.cn
  organization: Department of Computer Science and Technology, Ocean University of China, 266100 Qingdao, China
– sequence: 4
  givenname: Wei-Chang
  surname: Yeh
  fullname: Yeh, Wei-Chang
  email: yeh@ieee.org
  organization: Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan
– sequence: 5
  givenname: Keqin
  surname: Li
  fullname: Li, Keqin
  email: lik@newpaltz.edu
  organization: Department of Computer Science, State University of New York, NY 12561, USA
BookMark eNp9kL1OwzAUhS1UJNrCA7D5BRKuHdtJYapK-ZEisXS3blynOErsygmVytOTUiaGTnc539G534xMfPCWkHsGKQOmHprU-T7lwFkKMgUlrsiUFTlPFF-wCZkCcEiAS3lDZn3fAIDIlZqS8rlcLx_pkm6PHjtnaGsxeud31B5C-zW44Cm2uxDd8NnROkTaoT8moWqsGdzB0rAfXOe-8ZS8Jdc1tr29-7tzsnlZb1ZvSfnx-r5alonhPB-SurCZxIwLC0UtinxRoeJSZdwWC7GQFWKOGWZSGFMzJUEwyWUleFUrzBVmc5Kfa00MfR9trY0bfgcMEV2rGeiTE93o0Yk-OdEg9ehkJNk_ch9dh_F4kXk6M3b86OBs1L1x1hu7dXF0oLfBXaB_AIv9fDw
CitedBy_id crossref_primary_10_1016_j_eswa_2021_115805
crossref_primary_10_1016_j_aei_2025_103173
crossref_primary_10_1016_j_engappai_2023_105819
crossref_primary_10_1038_s41598_022_06718_2
crossref_primary_10_1155_2022_7300788
crossref_primary_10_1016_j_compbiomed_2023_107727
crossref_primary_10_1016_j_compbiomed_2022_106214
crossref_primary_10_1016_j_ins_2022_09_057
crossref_primary_10_1016_j_ins_2022_10_053
crossref_primary_10_1016_j_eswa_2022_116621
crossref_primary_10_1007_s13042_024_02197_1
crossref_primary_10_1007_s40747_023_01177_2
crossref_primary_10_1016_j_sasc_2022_200041
crossref_primary_10_1016_j_eswa_2024_126060
crossref_primary_10_1038_s41598_022_05112_2
crossref_primary_10_1049_cth2_12277
crossref_primary_10_1093_jcde_qwac038
crossref_primary_10_1007_s10586_022_03644_w
crossref_primary_10_1016_j_ins_2023_03_137
crossref_primary_10_1016_j_knosys_2022_108447
crossref_primary_10_1016_j_ins_2023_119115
crossref_primary_10_1016_j_compbiomed_2022_105917
crossref_primary_10_1002_oca_2810
crossref_primary_10_1016_j_knosys_2023_110808
crossref_primary_10_1016_j_eswa_2023_120911
crossref_primary_10_1016_j_compbiomed_2023_107777
crossref_primary_10_1016_j_ins_2022_09_048
crossref_primary_10_1016_j_asoc_2021_108096
crossref_primary_10_1016_j_compbiomed_2022_106521
crossref_primary_10_1109_TIA_2023_3249147
crossref_primary_10_1002_int_22658
crossref_primary_10_1007_s10489_022_04296_4
crossref_primary_10_1016_j_eswa_2023_121541
crossref_primary_10_1007_s40430_022_03911_2
crossref_primary_10_1016_j_ress_2023_109297
crossref_primary_10_1016_j_compbiomed_2022_106083
Cites_doi 10.1162/EVCO_a_00009
10.1016/j.ins.2014.02.084
10.1109/TEVC.2007.894202
10.1162/106365602760234108
10.1109/TEVC.2016.2592479
10.1016/j.swevo.2018.12.003
10.1016/j.asoc.2017.08.051
10.1016/j.asoc.2018.08.015
10.1016/j.swevo.2019.03.015
10.1016/j.swevo.2018.09.002
10.1109/TCYB.2017.2780274
10.1007/1-84628-137-7_6
10.1016/j.knosys.2016.04.005
10.1016/j.swevo.2019.02.010
10.1109/TEVC.2007.892759
10.1109/TCYB.2019.2909806
10.1016/j.knosys.2017.01.020
10.1109/TEVC.2014.2350987
10.1109/TNNLS.2018.2806481
10.1109/TEVC.2013.2281535
10.1016/j.ins.2014.10.005
10.1109/TEVC.2005.851275
10.1016/j.swevo.2018.02.004
10.1016/j.asoc.2018.02.042
10.1137/S1052623496307510
10.1016/j.ins.2019.06.001
10.1109/TCYB.2019.2899225
10.1109/TCYB.2016.2602561
10.1109/TEVC.2014.2339823
10.1109/TEVC.2018.2865590
10.1016/j.ins.2017.10.037
10.1109/4235.996017
10.1109/TNNLS.2017.2652478
10.1109/TEVC.2013.2281525
10.1109/TEVC.2016.2521175
10.1007/s00521-015-1923-y
10.1162/EVCO_a_00075
10.1016/j.ast.2020.105783
10.1109/TEVC.2014.2373386
10.1016/j.ins.2018.04.056
10.1109/TEVC.2008.925798
10.1016/j.asoc.2015.06.033
10.1109/TEVC.2013.2281534
10.1016/j.ins.2014.02.123
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2021.05.064
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 589
ExternalDocumentID 10_1016_j_ins_2021_05_064
S0020025521005363
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c227t-f8e35a324e08f4879ba625632e89495baa7a3a354ccf165041525b42bf6a76a3
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000691237400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 07:28:28 EST 2025
Tue Nov 18 21:12:35 EST 2025
Fri Feb 23 02:42:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Evolutionary algorithms (EAs)
Many-objective optimization
Performance indicators
Dynamic learning strategy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227t-f8e35a324e08f4879ba625632e89495baa7a3a354ccf165041525b42bf6a76a3
ORCID 0000-0002-3295-8972
PageCount 23
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2021_05_064
crossref_primary_10_1016_j_ins_2021_05_064
elsevier_sciencedirect_doi_10_1016_j_ins_2021_05_064
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Jiang, Yang (b0085) 2017; 21
Wang, Zhu, Liu, Liao, Cai, Wei, Ren, Yang (b0200) 2019; 501
Kordestani, Ranginkaman, Meybodi, Novoa-Hernández (b0095) 2019; 44
Chen, Tian, Pedrycz, Wu, Wang, Wang (b0025) 2020; 50
Gee, Tan, Alippi (b0050) 2016; 47
Nseef, Abdullah, Turky, Kendall (b0150) 2016; 104
Wang, Guo, Gandomi, Hao, Wang (b0175) 2014; 274
Xiang, Zhou (b0220) 2015; 35
Das, Dennis (b0030) 1998; 8
Nebro, Ruiz, Barba-González, García-Nieto, Luque, Aldana-Montes (b0145) 2018; 40
Leung, Wang (b0105) 2018; 29
Liu, Li, Fan, Jiao (b0135) 2018; 73
Liu, Lin, Wong, Ma, Coello, Gong (b0140) 2019; 48
Riquelme, Lücken, Baran (b0160) 2015
Russo, Francisco (b0165) 2014; 18
He, Zhou, Chen, Zhang (b0065) 2019; 23
Wang, Zhang, Zhang (b0205) 2016; 20
Rambabu, Vadakkepat, Tan, Jiang (b0155) 2020; 50
Yao, Dong, Wang, Ren (b0230) 2019; 50
Ye, Feng, Fan (b0235) 2017; 61
Wang, Tan (b0180) 2019; 49
Yang, Liu, Wang (b0225) 2018; 29
Hadka, Reed (b0060) 2013; 21
Jiang, Wang, Cheng, Zhu, Li, Lin, Yu, Hei, Zhao, Lu (b0080) 2017; 121
Jain, Deb (b0075) 2014; 18
Wang, Deb, Cui (b0185) 2019; 31
Deb, Pratap, Agarwal, Meyarivan (b0035) 2002; 6
Li, Jiao, Shang, Stolkin (b0125) 2015; 294
Zhang, Zheng, Cheng, Qiu, Jin (b0250) 2018; 427
Kennedy, Eberhart (b0090) 1995
Li, Deb, Zhang, Kwong (b0115) 2015; 19
Zhang, Li (b0240) 2007; 11
Turky, Abdullah (b0170) 2014; 272
While, Hingston, Barone, Huband (b0210) 2006; 10
Li, Zheng (b0120) 2009
Wang, Jiao, Yao (b0195) 2015; 19
Wang, Jiang (b0190) 2007
Li, Zhang (b0110) 2009; 13
Champasak, Panagant, Pholdee, Bureerat, Yildiz (b0020) 2020; 100
Bader, Zitzler (b0010) 2011; 19
Guo, Yang, Chen, Cheng, Gong (b0055) 2019; 48
Xia, Gui, Zhan (b0215) 2018; 67
Deb, Thiele, Laumanns, Zitzler (b0040) 2005
Deb, Jain (b0045) 2014; 18
Asafuddoula, Ray, Sarker (b0005) 2015; 19
Cao, Xu, Goodman (b0015) 2018; 453
Hernández Gómez, Coello Coello (b0070) 2015
Zhang, Zhou, Jin (b0245) 2008; 12
Laumanns, Thiele, Deb, Zitzler (b0100) 2002; 10
Lin, Zhu, Wang, Huang, Wang, Chen, Ming (b0130) 2019; 50
Riquelme (10.1016/j.ins.2021.05.064_b0160) 2015
Li (10.1016/j.ins.2021.05.064_b0110) 2009; 13
Yao (10.1016/j.ins.2021.05.064_b0230) 2019; 50
Yang (10.1016/j.ins.2021.05.064_b0225) 2018; 29
Hernández Gómez (10.1016/j.ins.2021.05.064_b0070) 2015
Rambabu (10.1016/j.ins.2021.05.064_b0155) 2020; 50
Das (10.1016/j.ins.2021.05.064_b0030) 1998; 8
Turky (10.1016/j.ins.2021.05.064_b0170) 2014; 272
Wang (10.1016/j.ins.2021.05.064_b0180) 2019; 49
Zhang (10.1016/j.ins.2021.05.064_b0250) 2018; 427
Jiang (10.1016/j.ins.2021.05.064_b0080) 2017; 121
Xiang (10.1016/j.ins.2021.05.064_b0220) 2015; 35
Li (10.1016/j.ins.2021.05.064_b0120) 2009
Lin (10.1016/j.ins.2021.05.064_b0130) 2019; 50
Zhang (10.1016/j.ins.2021.05.064_b0240) 2007; 11
Ye (10.1016/j.ins.2021.05.064_b0235) 2017; 61
Laumanns (10.1016/j.ins.2021.05.064_b0100) 2002; 10
Li (10.1016/j.ins.2021.05.064_b0115) 2015; 19
Chen (10.1016/j.ins.2021.05.064_b0025) 2020; 50
Jiang (10.1016/j.ins.2021.05.064_b0085) 2017; 21
Asafuddoula (10.1016/j.ins.2021.05.064_b0005) 2015; 19
Li (10.1016/j.ins.2021.05.064_b0125) 2015; 294
Bader (10.1016/j.ins.2021.05.064_b0010) 2011; 19
Wang (10.1016/j.ins.2021.05.064_b0185) 2019; 31
He (10.1016/j.ins.2021.05.064_b0065) 2019; 23
Kennedy (10.1016/j.ins.2021.05.064_b0090) 1995
While (10.1016/j.ins.2021.05.064_b0210) 2006; 10
Xia (10.1016/j.ins.2021.05.064_b0215) 2018; 67
Cao (10.1016/j.ins.2021.05.064_b0015) 2018; 453
Hadka (10.1016/j.ins.2021.05.064_b0060) 2013; 21
Deb (10.1016/j.ins.2021.05.064_b0045) 2014; 18
Liu (10.1016/j.ins.2021.05.064_b0140) 2019; 48
Liu (10.1016/j.ins.2021.05.064_b0135) 2018; 73
Gee (10.1016/j.ins.2021.05.064_b0050) 2016; 47
Wang (10.1016/j.ins.2021.05.064_b0200) 2019; 501
Champasak (10.1016/j.ins.2021.05.064_b0020) 2020; 100
Wang (10.1016/j.ins.2021.05.064_b0195) 2015; 19
Nebro (10.1016/j.ins.2021.05.064_b0145) 2018; 40
Zhang (10.1016/j.ins.2021.05.064_b0245) 2008; 12
Guo (10.1016/j.ins.2021.05.064_b0055) 2019; 48
Jain (10.1016/j.ins.2021.05.064_b0075) 2014; 18
Leung (10.1016/j.ins.2021.05.064_b0105) 2018; 29
Wang (10.1016/j.ins.2021.05.064_b0190) 2007
Deb (10.1016/j.ins.2021.05.064_b0035) 2002; 6
Wang (10.1016/j.ins.2021.05.064_b0205) 2016; 20
Kordestani (10.1016/j.ins.2021.05.064_b0095) 2019; 44
Russo (10.1016/j.ins.2021.05.064_b0165) 2014; 18
Wang (10.1016/j.ins.2021.05.064_b0175) 2014; 274
Deb (10.1016/j.ins.2021.05.064_b0040) 2005
Nseef (10.1016/j.ins.2021.05.064_b0150) 2016; 104
References_xml – volume: 73
  start-page: 434
  year: 2018
  end-page: 459
  ident: b0135
  article-title: A dynamic multiple populations particle swarm optimization algorithm based on decomposition and prediction
  publication-title: Appl. Soft Comput.
– volume: 18
  start-page: 481
  year: 2014
  end-page: 502
  ident: b0165
  article-title: Quick hypervolume
  publication-title: IEEE Trans. Evol. Comput.
– volume: 10
  start-page: 263
  year: 2002
  end-page: 282
  ident: b0100
  article-title: Combining convergence and diversity in evolutionary multiobjective optimization
  publication-title: Evol. Comput.
– start-page: 105
  year: 2005
  end-page: 145
  ident: b0040
  publication-title: Advanced Information and Knowledge ProcessingEvolutionary Multiobjective Optimization
– volume: 294
  start-page: 408
  year: 2015
  end-page: 422
  ident: b0125
  article-title: Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation
  publication-title: Inf. Sci.
– volume: 501
  start-page: 337
  year: 2019
  end-page: 362
  ident: b0200
  article-title: A new resource allocation strategy based on the relationship between subproblems for MOEA/D
  publication-title: Inf. Sci.
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: b0045
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems eith box constraints
  publication-title: IEEE Trans. Evol. Comput.
– volume: 50
  year: 2019
  ident: b0130
  article-title: A multi-objective immune algorithm with dynamic population strategy
  publication-title: Swarm Evol. Comput.
– volume: 49
  start-page: 542
  year: 2019
  end-page: 555
  ident: b0180
  article-title: Improving metaheuristic algorithms with information feedback models
  publication-title: IEEE Trans. Cybern.
– volume: 50
  start-page: 18
  year: 2019
  end-page: 35
  ident: b0230
  article-title: A multiobjective multifactorial optimization algorithm based on decomposition and dynamic resource allocation strategy
  publication-title: Inf. Sci.
– volume: 453
  start-page: 463
  year: 2018
  end-page: 485
  ident: b0015
  article-title: A neighbor-based learning particle swarm optimizer with short-term and long-term memory for dynamic optimization problems
  publication-title: Inf. Sci.
– volume: 35
  start-page: 766
  year: 2015
  end-page: 785
  ident: b0220
  article-title: A dynamic multi-colony artificial bee colony algorithm for multi-objective optimization
  publication-title: Appl. Soft Comput.
– volume: 19
  start-page: 45
  year: 2011
  end-page: 76
  ident: b0010
  article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evol. Comput.
– volume: 274
  start-page: 17
  year: 2014
  end-page: 34
  ident: b0175
  article-title: Chaotic krill herd algorithm
  publication-title: Inf. Sci.
– volume: 8
  start-page: 631
  year: 1998
  end-page: 657
  ident: b0030
  article-title: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
– volume: 13
  start-page: 284
  year: 2009
  end-page: 302
  ident: b0110
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 47
  start-page: 4223
  year: 2016
  end-page: 4234
  ident: b0050
  article-title: Solving multiobjective optimization problems in unknown dynamic environments: An inverse modeling approach
  publication-title: IEEE Trans. Cybern.
– volume: 18
  start-page: 602
  year: 2014
  end-page: 622
  ident: b0075
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 694
  year: 2015
  end-page: 716
  ident: b0115
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 67
  start-page: 126
  year: 2018
  end-page: 140
  ident: b0215
  article-title: A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful detecting
  publication-title: Appl. Soft Comput.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b0240
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 195
  year: 2007
  end-page: 198
  ident: b0190
  article-title: Fuzzy-dominance and its application in evolutionary many objective optimization
  publication-title: Proceedings of the International Conference on Computational Intelligence and Security Workshops
– volume: 19
  start-page: 524
  year: 2015
  end-page: 541
  ident: b0195
  article-title: Two_Arch2: An improved two-archive algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0035
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 50
  start-page: 3367
  year: 2020
  end-page: 3380
  ident: b0025
  article-title: Hyperplane assisted evolutionary algorithm for many-objective optimization problems
  publication-title: IEEE Trans. Cybern.
– volume: 29
  start-page: 5738
  year: 2018
  end-page: 5748
  ident: b0105
  article-title: A collaborative neurodynamic approach to multiobjective optimization
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 10
  start-page: 29
  year: 2006
  end-page: 38
  ident: b0210
  article-title: A faster algorithm for calculating hypervolume
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 445
  year: 2015
  end-page: 460
  ident: b0005
  article-title: A decomposition-based evolutionary algorithm for many objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 44
  start-page: 788
  year: 2019
  end-page: 805
  ident: b0095
  article-title: A novel framework for improving multi-population algorithms for dynamic optimization problems: A scheduling approach
  publication-title: Swarm Evol. Comput.
– volume: 104
  start-page: 14
  year: 2016
  end-page: 23
  ident: b0150
  article-title: An adaptive multi-population artificial bee colony algorithm for dynamic optimisation problems
  publication-title: Knowl.-Based Syst.
– volume: 121
  start-page: 111
  year: 2017
  end-page: 128
  ident: b0080
  article-title: Multi-objective differential evolution with dynamic covariance matrix learning for multi-objective optimization problems with variable linkages
  publication-title: Knowl.-Based Syst.
– volume: 29
  start-page: 981
  year: 2018
  end-page: 992
  ident: b0225
  article-title: A collaborative neurodynamic approach to multiple-objective distributed optimization
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 12
  start-page: 41
  year: 2008
  end-page: 63
  ident: b0245
  article-title: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm
  publication-title: IEEE Trans. Evol. Comput.
– volume: 40
  start-page: 184
  year: 2018
  end-page: 195
  ident: b0145
  article-title: InDM2: Interactive dynamic multi-objective decision making using evolutionary algorithms
  publication-title: Swarm Evol. Comput.
– volume: 21
  start-page: 329
  year: 2017
  end-page: 346
  ident: b0085
  article-title: A strength Pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 679
  year: 2015
  end-page: 686
  ident: b0070
  article-title: Improved metaheuristic based on the R2 indicator for many-objective optimization
  publication-title: in: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation
– start-page: 216
  year: 2009
  end-page: 230
  ident: b0120
  article-title: Spread assessment for evolutionary multi-objective optimization
  publication-title: Proceedings of the Evolutionary Multi-Criterion Optimization
– volume: 48
  start-page: 156
  year: 2019
  end-page: 171
  ident: b0055
  article-title: Ensemble prediction-based dynamic robust multi-objective optimization methods
  publication-title: Swarm Evol. Comput.
– start-page: 1
  year: 2015
  end-page: 11
  ident: b0160
  article-title: Performance metrics in multi-objective optimization
  publication-title: Proceedings of the 2015 Latin American Computing Conference (CLEI)
– volume: 48
  start-page: 182
  year: 2019
  end-page: 200
  ident: b0140
  article-title: A novel multi-objective evolutionary algorithm with dynamic decomposition strategy
  publication-title: Swarm Evol. Comput.
– volume: 50
  start-page: 5099
  year: 2020
  end-page: 5112
  ident: b0155
  article-title: A mixture-of-experts prediction framework for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 272
  start-page: 84
  year: 2014
  end-page: 95
  ident: b0170
  article-title: A multi-population harmony search algorithm with external archive for dynamic optimization problems
  publication-title: Inf. Sci.
– volume: 20
  start-page: 821
  year: 2016
  end-page: 837
  ident: b0205
  article-title: Decomposition-based algorithms using Pareto adaptive scalarizing methods
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: b0090
  article-title: Particle swarm optimization
  publication-title: in: Proceedings of the International Conference on Neural Networks
– volume: 31
  start-page: 1995
  year: 2019
  end-page: 2014
  ident: b0185
  article-title: Monarch butterfly optimization
  publication-title: Neural Comput. Appl.
– volume: 21
  start-page: 231
  year: 2013
  end-page: 259
  ident: b0060
  article-title: Borg: An auto-adaptive many-objective evolutionary computing framework
  publication-title: Evol. Comput.
– volume: 427
  start-page: 63
  year: 2018
  end-page: 76
  ident: b0250
  article-title: A competitive mechanism based multi-objective particle swarm optimizer with fast convergence
  publication-title: Inf. Sci.
– volume: 100
  year: 2020
  ident: b0020
  article-title: Self-adaptive many-objective meta-heuristic based on decomposition for many-objective conceptual design of a fixed wing unmanned aerial vehicle
  publication-title: Aerosp. Sci. Technol.
– volume: 23
  start-page: 361
  year: 2019
  end-page: 375
  ident: b0065
  article-title: Evolutionary many-objective optimization based on dynamical decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 61
  start-page: 832
  year: 2017
  end-page: 843
  ident: b0235
  article-title: A novel multi-swarm particle swarm optimization with dynamic learning strategy
  publication-title: Appl. Soft Comput.
– volume: 19
  start-page: 45
  issue: 1
  year: 2011
  ident: 10.1016/j.ins.2021.05.064_b0010
  article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00009
– volume: 272
  start-page: 84
  year: 2014
  ident: 10.1016/j.ins.2021.05.064_b0170
  article-title: A multi-population harmony search algorithm with external archive for dynamic optimization problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.02.084
– volume: 12
  start-page: 41
  issue: 1
  year: 2008
  ident: 10.1016/j.ins.2021.05.064_b0245
  article-title: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.894202
– volume: 10
  start-page: 263
  issue: 3
  year: 2002
  ident: 10.1016/j.ins.2021.05.064_b0100
  article-title: Combining convergence and diversity in evolutionary multiobjective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/106365602760234108
– volume: 21
  start-page: 329
  issue: 3
  year: 2017
  ident: 10.1016/j.ins.2021.05.064_b0085
  article-title: A strength Pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2592479
– volume: 50
  year: 2019
  ident: 10.1016/j.ins.2021.05.064_b0130
  article-title: A multi-objective immune algorithm with dynamic population strategy
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.12.003
– volume: 61
  start-page: 832
  year: 2017
  ident: 10.1016/j.ins.2021.05.064_b0235
  article-title: A novel multi-swarm particle swarm optimization with dynamic learning strategy
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.08.051
– volume: 73
  start-page: 434
  year: 2018
  ident: 10.1016/j.ins.2021.05.064_b0135
  article-title: A dynamic multiple populations particle swarm optimization algorithm based on decomposition and prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.08.015
– volume: 48
  start-page: 156
  year: 2019
  ident: 10.1016/j.ins.2021.05.064_b0055
  article-title: Ensemble prediction-based dynamic robust multi-objective optimization methods
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.03.015
– volume: 44
  start-page: 788
  year: 2019
  ident: 10.1016/j.ins.2021.05.064_b0095
  article-title: A novel framework for improving multi-population algorithms for dynamic optimization problems: A scheduling approach
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.09.002
– volume: 49
  start-page: 542
  issue: 2
  year: 2019
  ident: 10.1016/j.ins.2021.05.064_b0180
  article-title: Improving metaheuristic algorithms with information feedback models
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2780274
– start-page: 105
  year: 2005
  ident: 10.1016/j.ins.2021.05.064_b0040
  doi: 10.1007/1-84628-137-7_6
– start-page: 679
  year: 2015
  ident: 10.1016/j.ins.2021.05.064_b0070
  article-title: Improved metaheuristic based on the R2 indicator for many-objective optimization
– volume: 104
  start-page: 14
  year: 2016
  ident: 10.1016/j.ins.2021.05.064_b0150
  article-title: An adaptive multi-population artificial bee colony algorithm for dynamic optimisation problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.04.005
– volume: 48
  start-page: 182
  year: 2019
  ident: 10.1016/j.ins.2021.05.064_b0140
  article-title: A novel multi-objective evolutionary algorithm with dynamic decomposition strategy
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.02.010
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.ins.2021.05.064_b0240
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 50
  start-page: 5099
  issue: 12
  year: 2020
  ident: 10.1016/j.ins.2021.05.064_b0155
  article-title: A mixture-of-experts prediction framework for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2909806
– start-page: 1
  year: 2015
  ident: 10.1016/j.ins.2021.05.064_b0160
  article-title: Performance metrics in multi-objective optimization
– volume: 121
  start-page: 111
  year: 2017
  ident: 10.1016/j.ins.2021.05.064_b0080
  article-title: Multi-objective differential evolution with dynamic covariance matrix learning for multi-objective optimization problems with variable linkages
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.01.020
– volume: 19
  start-page: 524
  issue: 4
  year: 2015
  ident: 10.1016/j.ins.2021.05.064_b0195
  article-title: Two_Arch2: An improved two-archive algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2350987
– volume: 29
  start-page: 5738
  issue: 11
  year: 2018
  ident: 10.1016/j.ins.2021.05.064_b0105
  article-title: A collaborative neurodynamic approach to multiobjective optimization
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2018.2806481
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.ins.2021.05.064_b0045
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems eith box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 294
  start-page: 408
  year: 2015
  ident: 10.1016/j.ins.2021.05.064_b0125
  article-title: Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.10.005
– volume: 10
  start-page: 29
  issue: 1
  year: 2006
  ident: 10.1016/j.ins.2021.05.064_b0210
  article-title: A faster algorithm for calculating hypervolume
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.851275
– volume: 40
  start-page: 184
  year: 2018
  ident: 10.1016/j.ins.2021.05.064_b0145
  article-title: InDM2: Interactive dynamic multi-objective decision making using evolutionary algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.02.004
– volume: 67
  start-page: 126
  year: 2018
  ident: 10.1016/j.ins.2021.05.064_b0215
  article-title: A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful detecting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.02.042
– volume: 8
  start-page: 631
  issue: 3
  year: 1998
  ident: 10.1016/j.ins.2021.05.064_b0030
  article-title: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496307510
– volume: 501
  start-page: 337
  year: 2019
  ident: 10.1016/j.ins.2021.05.064_b0200
  article-title: A new resource allocation strategy based on the relationship between subproblems for MOEA/D
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.06.001
– start-page: 216
  year: 2009
  ident: 10.1016/j.ins.2021.05.064_b0120
  article-title: Spread assessment for evolutionary multi-objective optimization
– volume: 50
  start-page: 3367
  issue: 7
  year: 2020
  ident: 10.1016/j.ins.2021.05.064_b0025
  article-title: Hyperplane assisted evolutionary algorithm for many-objective optimization problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2899225
– volume: 47
  start-page: 4223
  issue: 12
  year: 2016
  ident: 10.1016/j.ins.2021.05.064_b0050
  article-title: Solving multiobjective optimization problems in unknown dynamic environments: An inverse modeling approach
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2602561
– volume: 19
  start-page: 445
  issue: 3
  year: 2015
  ident: 10.1016/j.ins.2021.05.064_b0005
  article-title: A decomposition-based evolutionary algorithm for many objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2339823
– volume: 50
  start-page: 18
  year: 2019
  ident: 10.1016/j.ins.2021.05.064_b0230
  article-title: A multiobjective multifactorial optimization algorithm based on decomposition and dynamic resource allocation strategy
  publication-title: Inf. Sci.
– volume: 23
  start-page: 361
  issue: 3
  year: 2019
  ident: 10.1016/j.ins.2021.05.064_b0065
  article-title: Evolutionary many-objective optimization based on dynamical decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2865590
– volume: 427
  start-page: 63
  year: 2018
  ident: 10.1016/j.ins.2021.05.064_b0250
  article-title: A competitive mechanism based multi-objective particle swarm optimizer with fast convergence
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.10.037
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.ins.2021.05.064_b0035
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 29
  start-page: 981
  issue: 4
  year: 2018
  ident: 10.1016/j.ins.2021.05.064_b0225
  article-title: A collaborative neurodynamic approach to multiple-objective distributed optimization
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2017.2652478
– volume: 18
  start-page: 481
  issue: 4
  year: 2014
  ident: 10.1016/j.ins.2021.05.064_b0165
  article-title: Quick hypervolume
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281525
– volume: 20
  start-page: 821
  issue: 6
  year: 2016
  ident: 10.1016/j.ins.2021.05.064_b0205
  article-title: Decomposition-based algorithms using Pareto adaptive scalarizing methods
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2521175
– volume: 31
  start-page: 1995
  issue: 7
  year: 2019
  ident: 10.1016/j.ins.2021.05.064_b0185
  article-title: Monarch butterfly optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1923-y
– volume: 21
  start-page: 231
  issue: 2
  year: 2013
  ident: 10.1016/j.ins.2021.05.064_b0060
  article-title: Borg: An auto-adaptive many-objective evolutionary computing framework
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00075
– start-page: 1942
  year: 1995
  ident: 10.1016/j.ins.2021.05.064_b0090
  article-title: Particle swarm optimization
– volume: 100
  year: 2020
  ident: 10.1016/j.ins.2021.05.064_b0020
  article-title: Self-adaptive many-objective meta-heuristic based on decomposition for many-objective conceptual design of a fixed wing unmanned aerial vehicle
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.105783
– volume: 19
  start-page: 694
  issue: 5
  year: 2015
  ident: 10.1016/j.ins.2021.05.064_b0115
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2373386
– volume: 453
  start-page: 463
  year: 2018
  ident: 10.1016/j.ins.2021.05.064_b0015
  article-title: A neighbor-based learning particle swarm optimizer with short-term and long-term memory for dynamic optimization problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.04.056
– volume: 13
  start-page: 284
  issue: 2
  year: 2009
  ident: 10.1016/j.ins.2021.05.064_b0110
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.925798
– start-page: 195
  year: 2007
  ident: 10.1016/j.ins.2021.05.064_b0190
  article-title: Fuzzy-dominance and its application in evolutionary many objective optimization
– volume: 35
  start-page: 766
  year: 2015
  ident: 10.1016/j.ins.2021.05.064_b0220
  article-title: A dynamic multi-colony artificial bee colony algorithm for multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.06.033
– volume: 18
  start-page: 602
  issue: 4
  year: 2014
  ident: 10.1016/j.ins.2021.05.064_b0075
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281534
– volume: 274
  start-page: 17
  year: 2014
  ident: 10.1016/j.ins.2021.05.064_b0175
  article-title: Chaotic krill herd algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.02.123
SSID ssj0004766
Score 2.5169747
Snippet For many-objective problems, how to maintain the diversity and convergence of the distribution of the solution set over Pareto front (PF) has always been the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 567
SubjectTerms Dynamic learning strategy
Evolutionary algorithms (EAs)
Many-objective optimization
Performance indicators
Title DLEA: A dynamic learning evolution algorithm for many-objective optimization
URI https://dx.doi.org/10.1016/j.ins.2021.05.064
Volume 574
WOSCitedRecordID wos000691237400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5BygEOqBRQS1u0B8SByFL8XLu3iIYAiioOkcjNmt2si6PGqdKkKv-e8T5st1BED1ysyIrHTr7PszOz8wB4x1GmkZBIb1pBDopKUk8ojDzCX0Rijlko9dSSCT87S2ez7JsNZV_pcQK8qtKbm-zyv0JN5wjsunT2AXA3QukEfSbQ6Uiw0_GfgD-djIam3nxups27yRDnfXVt79zHi_PVutz8WOo0wyVpBG8lFkb59VekRpa2PrNrvNrSJS3ArpyNRT7RWQHjbdlG6I0WGWPpjRv2nLoM4G31c9vGa3Vs57sqPV3s0I1EBH6T09ZWBtCJwLTdddo15lFHP8Zm9oZdamMzPeg3LW4CCgtyPeqG6oGve6uaZue3O2bfWcma_EKXurbISURei8gHcU4iHsNOwMmH6sHO8Mto9rUtoeVmW9v9BLcBrlMB7zzHn02Yjlky3YXn1p9gQ8ODF_BIVXvwrNNlcg-ObW0Ke886CDKr1V_CpGbMCRsyyxfm-MIavrCGL4wEsNt8YV2-vILpp9H042fPDtnwZBDwjVekKoyRzGo1SAvyXjOB5BInYaDSjJxngcgxxDCOpCx8Mudrgy8WUSCKBHmC4WvoVatK7QMrMnJvBR_4WMTk9CdCSH9ebxsnGPnI_QMYuL8tl7YBfT0H5SK_F64D-NBccmm6r_zty5HDIrcvgTELc-LV_Ze9ecg9DuFpy_wj6G3WW3UMT-T1prxav7Wk-gXI8I6u
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DLEA%3A+A+dynamic+learning+evolution+algorithm+for+many-objective+optimization&rft.jtitle=Information+sciences&rft.au=Li%2C+Gui&rft.au=Wang%2C+Gai-Ge&rft.au=Dong%2C+Junyu&rft.au=Yeh%2C+Wei-Chang&rft.date=2021-10-01&rft.issn=0020-0255&rft.volume=574&rft.spage=567&rft.epage=589&rft_id=info:doi/10.1016%2Fj.ins.2021.05.064&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2021_05_064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon