Faster algorithm for pathwidth one vertex deletion

In the Pathwidth One Vertex Deletion (POVD) problem the input is a graph G and an integer k, and the goal is to decide whether there is a set of at most k vertices whose removal from G results in a graph with pathwidth at most 1. In this paper we give an algorithm for POVD whose running time is O⁎(3...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 921; s. 63 - 74
Hlavní autor: Tsur, Dekel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 19.06.2022
Témata:
ISSN:0304-3975, 1879-2294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the Pathwidth One Vertex Deletion (POVD) problem the input is a graph G and an integer k, and the goal is to decide whether there is a set of at most k vertices whose removal from G results in a graph with pathwidth at most 1. In this paper we give an algorithm for POVD whose running time is O⁎(3.888k).
AbstractList In the Pathwidth One Vertex Deletion (POVD) problem the input is a graph G and an integer k, and the goal is to decide whether there is a set of at most k vertices whose removal from G results in a graph with pathwidth at most 1. In this paper we give an algorithm for POVD whose running time is O⁎(3.888k).
Author Tsur, Dekel
Author_xml – sequence: 1
  givenname: Dekel
  orcidid: 0000-0001-9763-3784
  surname: Tsur
  fullname: Tsur, Dekel
  email: dekelts@cs.bgu.ac.il
  organization: Department of computer science, Ben-Gurion University of the Negev, Israel
BookMark eNp9j7FOwzAQhi1UJNLCA7DlBRJsJ6kdMaGKUqRKLN0t53ymjtKksq0Cb4-rMjH0hrvpu___5mQ2TiMS8shoyShbPvVlhFByynlJ65JSdkMyJkVbcN7WM5LRitZF1YrmjsxD6GmaRiwzwtc6RPS5Hj4n7-L-kNvJ50cd91_OxH2eUvIT-ojfucEBo5vGe3Jr9RDw4e8uyG79ulttiu3H2_vqZVsA5yIWVrJOyqrtEJfcdjU3WltjmEQhm4aDAIatQABZNWnzxuoaW60ZdsAoVAsiLm_BTyF4tApc1OcC0Ws3KEbV2Vz1Kpmrs7mitUrmiWT_yKN3B-1_rjLPFwaT0cmhVwEcjoDGeYSozOSu0L93JHTc
CitedBy_id crossref_primary_10_1007_s10878_022_00917_3
crossref_primary_10_1016_j_tcs_2024_114928
crossref_primary_10_1016_j_ipl_2024_106493
Cites_doi 10.1007/s00453-011-9578-2
10.1016/j.tcs.2019.03.013
10.1016/j.ipl.2019.03.009
10.1016/j.disopt.2017.02.002
10.1016/j.jcss.2017.07.008
10.1016/j.dam.2020.11.019
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.tcs.2022.04.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
EndPage 74
ExternalDocumentID 10_1016_j_tcs_2022_04_001
S0304397522002067
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSV
SSW
T5K
TN5
WH7
YNT
ZMT
~G-
29Q
9DU
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
G-2
HZ~
R2-
SEW
SSZ
TAE
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c227t-f81b8839bee62fb42daafdd18e78552c7c1e97ecc835ecc25fa4e9aa1ebc10c3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001068696400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Sat Nov 29 07:22:31 EST 2025
Tue Nov 18 22:24:36 EST 2025
Fri Feb 23 02:40:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Parameterized complexity
Branching algorithms
Graph algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227t-f81b8839bee62fb42daafdd18e78552c7c1e97ecc835ecc25fa4e9aa1ebc10c3
ORCID 0000-0001-9763-3784
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_tcs_2022_04_001
crossref_primary_10_1016_j_tcs_2022_04_001
elsevier_sciencedirect_doi_10_1016_j_tcs_2022_04_001
PublicationCentury 2000
PublicationDate 2022-06-19
PublicationDateYYYYMMDD 2022-06-19
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-19
  day: 19
PublicationDecade 2020
PublicationTitle Theoretical computer science
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tsur (br0090) 2019; 783
Červenỳ, Suchỳ (br0040) 2019
Mnich, van Leeuwen (br0060) 2017; 25
Philip, Raman, Villanger (br0070) 2010
Arnborg, Proskurowski, Seese (br0030) 1990
Agrawal, Saurabh, Sharma, Zehavi (br0020) 2018
Tsur (br0080) 2019; 147
Agrawal, Saurabh, Sharma, Zehavi (br0010) 2018; 92
Tsur (br0100) 2021; 291
Cygan, Pilipczuk, Pilipczuk, Wojtaszczyk (br0050) 2012; 64
Tsur (10.1016/j.tcs.2022.04.001_br0080) 2019; 147
Mnich (10.1016/j.tcs.2022.04.001_br0060) 2017; 25
Tsur (10.1016/j.tcs.2022.04.001_br0100) 2021; 291
Červenỳ (10.1016/j.tcs.2022.04.001_br0040) 2019
Agrawal (10.1016/j.tcs.2022.04.001_br0020) 2018
Philip (10.1016/j.tcs.2022.04.001_br0070) 2010
Agrawal (10.1016/j.tcs.2022.04.001_br0010) 2018; 92
Tsur (10.1016/j.tcs.2022.04.001_br0090) 2019; 783
Arnborg (10.1016/j.tcs.2022.04.001_br0030) 1990
Cygan (10.1016/j.tcs.2022.04.001_br0050) 2012; 64
References_xml – volume: 25
  start-page: 48
  year: 2017
  end-page: 76
  ident: br0060
  article-title: Polynomial kernels for deletion to classes of acyclic digraphs
  publication-title: Discrete Optim.
– volume: 147
  start-page: 74
  year: 2019
  end-page: 76
  ident: br0080
  article-title: Faster parameterized algorithm for pumpkin vertex deletion set
  publication-title: Inf. Process. Lett.
– year: 2019
  ident: br0040
  article-title: Faster FPT algorithm for 5-path vertex cover
  publication-title: Proc. 44th Symposium on Mathematical Foundations of Computer Science (MFCS)
– volume: 92
  start-page: 9
  year: 2018
  end-page: 21
  ident: br0010
  article-title: Kernels for deletion to classes of acyclic digraphs
  publication-title: J. Comput. Syst. Sci.
– start-page: 1
  year: 2018
  end-page: 30
  ident: br0020
  article-title: Parameterised algorithms for deletion to classes of DAGs
  publication-title: Theory Comput. Syst.
– volume: 783
  start-page: 1
  year: 2019
  end-page: 8
  ident: br0090
  article-title: Parameterized algorithm for 3-path vertex cover
  publication-title: Theor. Comput. Sci.
– volume: 64
  start-page: 170
  year: 2012
  end-page: 188
  ident: br0050
  article-title: An improved FPT algorithm and a quadratic kernel for pathwidth one vertex deletion
  publication-title: Algorithmica
– start-page: 196
  year: 2010
  end-page: 207
  ident: br0070
  article-title: A quartic kernel for pathwidth-one vertex deletion
  publication-title: Proc 36th International Workshop on Graph-Theoretic Concepts in Computer Science (WG)
– start-page: 1
  year: 1990
  end-page: 16
  ident: br0030
  article-title: Monadic second order logic, tree automata and forbidden minors
  publication-title: Proc. 4th International Workshop on Computer Science Logic (CSL)
– volume: 291
  start-page: 1
  year: 2021
  end-page: 14
  ident: br0100
  article-title: An
  publication-title: Discrete Appl. Math.
– start-page: 1
  year: 2018
  ident: 10.1016/j.tcs.2022.04.001_br0020
  article-title: Parameterised algorithms for deletion to classes of DAGs
  publication-title: Theory Comput. Syst.
– start-page: 1
  year: 1990
  ident: 10.1016/j.tcs.2022.04.001_br0030
  article-title: Monadic second order logic, tree automata and forbidden minors
– volume: 64
  start-page: 170
  issue: 1
  year: 2012
  ident: 10.1016/j.tcs.2022.04.001_br0050
  article-title: An improved FPT algorithm and a quadratic kernel for pathwidth one vertex deletion
  publication-title: Algorithmica
  doi: 10.1007/s00453-011-9578-2
– volume: 783
  start-page: 1
  year: 2019
  ident: 10.1016/j.tcs.2022.04.001_br0090
  article-title: Parameterized algorithm for 3-path vertex cover
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2019.03.013
– year: 2019
  ident: 10.1016/j.tcs.2022.04.001_br0040
  article-title: Faster FPT algorithm for 5-path vertex cover
– volume: 147
  start-page: 74
  year: 2019
  ident: 10.1016/j.tcs.2022.04.001_br0080
  article-title: Faster parameterized algorithm for pumpkin vertex deletion set
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2019.03.009
– volume: 25
  start-page: 48
  year: 2017
  ident: 10.1016/j.tcs.2022.04.001_br0060
  article-title: Polynomial kernels for deletion to classes of acyclic digraphs
  publication-title: Discrete Optim.
  doi: 10.1016/j.disopt.2017.02.002
– volume: 92
  start-page: 9
  year: 2018
  ident: 10.1016/j.tcs.2022.04.001_br0010
  article-title: Kernels for deletion to classes of acyclic digraphs
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2017.07.008
– start-page: 196
  year: 2010
  ident: 10.1016/j.tcs.2022.04.001_br0070
  article-title: A quartic kernel for pathwidth-one vertex deletion
– volume: 291
  start-page: 1
  year: 2021
  ident: 10.1016/j.tcs.2022.04.001_br0100
  article-title: An O⁎(2.619k) algorithm for 4-path vertex cover
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2020.11.019
SSID ssj0000576
Score 2.3763118
Snippet In the Pathwidth One Vertex Deletion (POVD) problem the input is a graph G and an integer k, and the goal is to decide whether there is a set of at most k...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 63
SubjectTerms Branching algorithms
Graph algorithms
Parameterized complexity
Title Faster algorithm for pathwidth one vertex deletion
URI https://dx.doi.org/10.1016/j.tcs.2022.04.001
Volume 921
WOSCitedRecordID wos001068696400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 20211214
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELagZYCBN6K85IGJKihx7DoeEQIBEoihQ7cocRxogVC1KfTnc44d80YwsFhRlDiP73KP3Pk-hPaZTxSlIvR00goClJR5UZiFXtDJcpmKLGU5rcgm-NVV1OuJa0umOK7oBHhRRNOpGP4r1LAPwNZLZ_8At5sUdsA2gA4jwA7jr4A_TXTvg3Zyf_MIgf_tQ1VIqImHn_tZedt-BK9SczCraVtz4DhcBk5s3MJGaRkf2tZMuih_PBkZXXVnC-7tbwOIODXfjnijXUKdEhGGtqRWhcKsVrbKzGoeYxYNl84nhWti_8FhKXXvc0KqvrH298S75tYfjI4rBayrzAYxTBHrKWKf6kq7WdQknAlQts2j85Pexat9ZdxkoO0D1Lnqqmrvw3187W288SC6y2jRuv74yEC2gmZUsYqWaloNbLXsKlq4dK10x2uIGDyxwxMDntjhiQFPbPDENZ7rqHt60j0-8yzRhScJ4aWXQ-wQgaeaKtUheUpJliR5lgWR4hFjRHIZKMHhYwN3GUbC8oQqkSSBSmXgy3ADNQq42ibCgYSPUkexeeJTmUaiI8F-UZZSnT_npIX8-n3E0jaB11wk9_G3OLTQgTtlaDqg_HQwrV9ybGXTuGYxCMz3p2395RrbaP5VoHdQoxxN1C6ak09lfzzas9LyAlIBZug
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Faster+algorithm+for+pathwidth+one+vertex+deletion&rft.jtitle=Theoretical+computer+science&rft.au=Tsur%2C+Dekel&rft.date=2022-06-19&rft.issn=0304-3975&rft.volume=921&rft.spage=63&rft.epage=74&rft_id=info:doi/10.1016%2Fj.tcs.2022.04.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcs_2022_04_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon