Research on cross‐hierarchical graph network recommendation algorithm based on random walk and convolutional neural network
Convolutional network (CNN) has been widely used in processing various graphics and network data analysis tasks. Therefore, facing the recommendation problem of large‐scale heterogeneous interaction, some studies have raised the problem of whether graph convolution neural network (GCN) can optimize...
Gespeichert in:
| Veröffentlicht in: | Concurrency and computation |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
08.11.2021
|
| ISSN: | 1532-0626, 1532-0634 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Convolutional network (CNN) has been widely used in processing various graphics and network data analysis tasks. Therefore, facing the recommendation problem of large‐scale heterogeneous interaction, some studies have raised the problem of whether graph convolution neural network (GCN) can optimize the integration of node features and topology in complex graphs with rich information, but GCN may not be able to adaptively learn some deep related information between topology and node features, Therefore, the ability of GCN in some classification tasks may be seriously hindered. Therefore, this article proposes a heterogeneous network recommendation algorithm based on random walk and convolutional neural network (RW‐CNN), which can not only obtain the deep information of network structure but also aggregate the node representation. The core idea is to use the rule items based on meta‐path similarity to constrain the implicit representation of users and goods and make full use of the rich structural and semantic information of heterogeneous information networks. Then, combined with convolution neural network, the cross‐correlation information between project and user nodes is processed, so as to fully mine the semantic features of nodes. Finally, through the attention mechanism and fully connected network, the global user feature vector and project feature vector of path fusion at different levels are obtained. Finally, the two characteristic matrices are multiplied to obtain the prediction score. |
|---|---|
| AbstractList | Convolutional network (CNN) has been widely used in processing various graphics and network data analysis tasks. Therefore, facing the recommendation problem of large‐scale heterogeneous interaction, some studies have raised the problem of whether graph convolution neural network (GCN) can optimize the integration of node features and topology in complex graphs with rich information, but GCN may not be able to adaptively learn some deep related information between topology and node features, Therefore, the ability of GCN in some classification tasks may be seriously hindered. Therefore, this article proposes a heterogeneous network recommendation algorithm based on random walk and convolutional neural network (RW‐CNN), which can not only obtain the deep information of network structure but also aggregate the node representation. The core idea is to use the rule items based on meta‐path similarity to constrain the implicit representation of users and goods and make full use of the rich structural and semantic information of heterogeneous information networks. Then, combined with convolution neural network, the cross‐correlation information between project and user nodes is processed, so as to fully mine the semantic features of nodes. Finally, through the attention mechanism and fully connected network, the global user feature vector and project feature vector of path fusion at different levels are obtained. Finally, the two characteristic matrices are multiplied to obtain the prediction score. |
| Author | Sun, Guohui Huang, Meng |
| Author_xml | – sequence: 1 givenname: Meng orcidid: 0000-0002-2830-022X surname: Huang fullname: Huang, Meng organization: College of Software Jilin University Changchun China – sequence: 2 givenname: Guohui surname: Sun fullname: Sun, Guohui organization: Hangzhou Xinhe Shengshi Technology Co., Ltd Hangzhou China |
| BookMark | eNplkM1Kw0AUhQdRsK2CjzBLN6nzl7-lFP-gIIiuw-3MTTM2mSmT1OJC8BF8Rp_EJIoLXd3D5ZwPzpmSQ-cdEnLG2ZwzJi70FudJytQBmfBYioglUh3-apEck2nbPjPGOZN8Qt4esEUIuqLeUR18236-f1QWw_CzGmq6DrCtqMNu78OGBtS-adAZ6GyfgHrtg-2qhq6gRTNAAjjjG7qHekN7SbV3L77eDfae5nAXxjPiTshRCXWLpz93Rp6urx4Xt9Hy_uZucbmMtBBpF6HRMcY87ruwzORxWQKmCkRm0lzGiZKQaoR8xTk3muUcM8OUZEasRKaUKeWMnH9zx4YBy2IbbAPhteCsGGYr-tmKYbbeOv9j1bYby3YBbP0_8AWM53ZG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3323353 |
| Cites_doi | 10.1109/TBIOM.2021.3104014 10.1016/j.displa.2021.102053 10.1109/TKDE.2018.2833443 10.1145/3097983.3098063 10.1145/2556195.2556259 10.1145/2959100.2959165 10.1109/ICDM.2010.127 10.1145/3097983.3098096 10.1109/ICWS49710.2020.00073 10.1145/2939672.2939754 10.1145/3219819.3219890 10.1145/2623330.2623732 10.1016/j.knosys.2021.107456 10.1145/2481244.2481248 10.1109/ACCESS.2019.2925778 10.1109/ACCESS.2019.2950698 10.24963/ijcai.2017/435 10.1109/TCSVT.2020.3043026 10.1145/3132847.3132963 10.1016/j.displa.2021.102022 10.24963/ijcai.2018/471 10.1145/3109859.3109890 10.1145/3097983.3098036 10.1002/cpe.6177 10.3390/s19122749 10.1587/transinf.2019EDL8103 10.1109/TCYB.2020.2999492 10.1109/LSP.2020.3032277 10.1145/2339530.2339729 10.1145/3178876.3186070 10.1145/3132847.3132953 10.1016/j.neucom.2020.05.106 10.1587/transinf.2018EDL8239 10.1145/2736277.2741093 10.1109/MC.2009.263 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1002/cpe.6704 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| ExternalDocumentID | 10_1002_cpe_6704 |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AGHNM AGYGG AHBTC AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O8X O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT |
| ID | FETCH-LOGICAL-c227t-edc5e51506308d95ffae74a28d7935643a7cea9b111dc091e8d0430d2b2844df3 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000715585000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1532-0626 |
| IngestDate | Tue Nov 18 21:47:06 EST 2025 Sat Nov 29 01:41:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c227t-edc5e51506308d95ffae74a28d7935643a7cea9b111dc091e8d0430d2b2844df3 |
| ORCID | 0000-0002-2830-022X |
| ParticipantIDs | crossref_primary_10_1002_cpe_6704 crossref_citationtrail_10_1002_cpe_6704 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-08 |
| PublicationDateYYYYMMDD | 2021-11-08 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2021 |
| References | e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_15_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Ning X (e_1_2_7_4_1) 2020; 6147 Yan C (e_1_2_7_43_1) 2021 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_8_1 Cai W (e_1_2_7_45_1) 2021; 69 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Yizhou S (e_1_2_7_17_1) 2011; 11 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 Wang G (e_1_2_7_9_1) 2021 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Zhang Y (e_1_2_7_41_1) 2020 |
| References_xml | – ident: e_1_2_7_39_1 doi: 10.1109/TBIOM.2021.3104014 – ident: e_1_2_7_44_1 doi: 10.1016/j.displa.2021.102053 – ident: e_1_2_7_20_1 – ident: e_1_2_7_51_1 – start-page: 1 year: 2021 ident: e_1_2_7_43_1 article-title: Beyond triplet loss: person re‐identification with fine‐grained difference‐aware pairwise loss publication-title: IEEE Trans Multimedia – ident: e_1_2_7_35_1 doi: 10.1109/TKDE.2018.2833443 – ident: e_1_2_7_54_1 doi: 10.1145/3097983.3098063 – ident: e_1_2_7_48_1 – ident: e_1_2_7_53_1 doi: 10.1145/2556195.2556259 – ident: e_1_2_7_47_1 doi: 10.1145/2959100.2959165 – ident: e_1_2_7_52_1 doi: 10.1109/ICDM.2010.127 – ident: e_1_2_7_28_1 doi: 10.1145/3097983.3098096 – ident: e_1_2_7_29_1 doi: 10.1109/ICWS49710.2020.00073 – ident: e_1_2_7_32_1 doi: 10.1145/2939672.2939754 – ident: e_1_2_7_49_1 doi: 10.1145/3219819.3219890 – ident: e_1_2_7_16_1 – ident: e_1_2_7_13_1 – ident: e_1_2_7_24_1 – ident: e_1_2_7_19_1 – ident: e_1_2_7_30_1 doi: 10.1145/2623330.2623732 – ident: e_1_2_7_7_1 doi: 10.1016/j.knosys.2021.107456 – ident: e_1_2_7_11_1 doi: 10.1145/2481244.2481248 – ident: e_1_2_7_34_1 doi: 10.1109/ACCESS.2019.2925778 – ident: e_1_2_7_40_1 doi: 10.1109/ACCESS.2019.2950698 – ident: e_1_2_7_26_1 doi: 10.24963/ijcai.2017/435 – ident: e_1_2_7_42_1 doi: 10.1109/TCSVT.2020.3043026 – ident: e_1_2_7_23_1 doi: 10.1145/3132847.3132963 – ident: e_1_2_7_5_1 doi: 10.1016/j.displa.2021.102022 – ident: e_1_2_7_21_1 doi: 10.24963/ijcai.2018/471 – ident: e_1_2_7_27_1 doi: 10.1145/3109859.3109890 – ident: e_1_2_7_36_1 doi: 10.1145/3097983.3098036 – ident: e_1_2_7_2_1 doi: 10.1002/cpe.6177 – ident: e_1_2_7_22_1 – ident: e_1_2_7_46_1 doi: 10.3390/s19122749 – ident: e_1_2_7_10_1 doi: 10.1587/transinf.2019EDL8103 – ident: e_1_2_7_6_1 doi: 10.1109/TCYB.2020.2999492 – volume: 11 start-page: 992 issue: 4 year: 2011 ident: e_1_2_7_17_1 article-title: PathSim: meta‐path‐based top‐k similarity search in heterogeneous information networks publication-title: VLDB Endowment – ident: e_1_2_7_38_1 doi: 10.1109/LSP.2020.3032277 – ident: e_1_2_7_14_1 doi: 10.1145/2339530.2339729 – ident: e_1_2_7_25_1 doi: 10.1145/3178876.3186070 – ident: e_1_2_7_37_1 doi: 10.1145/3132847.3132953 – ident: e_1_2_7_8_1 doi: 10.1016/j.neucom.2020.05.106 – start-page: e5697 year: 2020 ident: e_1_2_7_41_1 article-title: AGCNN: adaptive Gabor convolutional neural networks with receptive fields for vein biometric recognition publication-title: Concurr Comput Pract Exp – start-page: 1 year: 2021 ident: e_1_2_7_9_1 article-title: Encoder‐X: solving unknown coefficients automatically in polynomial fitting by using an autoencoder publication-title: IEEE Trans Neural Netw Learn Syst – ident: e_1_2_7_18_1 – ident: e_1_2_7_3_1 doi: 10.1587/transinf.2018EDL8239 – ident: e_1_2_7_33_1 doi: 10.1145/2736277.2741093 – ident: e_1_2_7_12_1 – ident: e_1_2_7_50_1 doi: 10.1109/MC.2009.263 – ident: e_1_2_7_31_1 – volume: 69 issue: 1 year: 2021 ident: e_1_2_7_45_1 article-title: Voxel‐based three‐view hybrid parallel network for 3D object classification publication-title: Displays – volume: 6147 start-page: e6147 year: 2020 ident: e_1_2_7_4_1 article-title: Multi‐view frontal face image generation: a survey publication-title: Concurr Comput Pract Exp – ident: e_1_2_7_15_1 |
| SSID | ssj0011031 |
| Score | 2.283498 |
| Snippet | Convolutional network (CNN) has been widely used in processing various graphics and network data analysis tasks. Therefore, facing the recommendation problem... |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| Title | Research on cross‐hierarchical graph network recommendation algorithm based on random walk and convolutional neural network |
| WOSCitedRecordID | wos000715585000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgy4EL5SnaAjISEocokDrJOjmiQukBVQi1Um8rxw-66m6y2m76OFTiJ_Ab-SXM-JEm7aUcuGQjy5nd5Mt6xp7x9xHyzqQmrySKZmgDE5RUm7iQ2zLmKbhLzbVKTWXFJvj-fnF0VH73mq2nVk6A13VxcVEu_ivU0AZg49bZf4C7MwoNcA6gwxFgh-OdgA-1dJgGcKLooZ4BZa9t4gBxsUzVUe2qwCOcF8_n2issRWL2s1lOV8fzCL2cQlPg01Qzj87F7MTvhavP_H2ANaTFtB_WXD_i3WlqaTmg5GXYQ7doh_n_vdYvWmOJ7XWWyo6HX9vmuJ321ybYtt2kNxxOWZyMmSe77re5JcxbA7gjhJUL_WHMnS7xkCP7hu_qKgod-zKbwJUTvPI-WWM8L4sRWfv8Y_fwW5dZQlkLx6HrflkgJE7Yx_CtvRClF2scPCaP_CSBfnLgPiH3dP2UrAcBDurH42fkKmBNm5paY39-_e6jTC3K1MNChyjTDmVqUUYjDmWKKFM4pQOUqUM5mHtODne_HOzsxV5PI5aM8VWslcx1jpSSaVKoMjdGaJ4JVigYpHMITQWXWpQVuD8lIY7UhUJGOMUqiGEyZdIXZFQ3tX5JKPyVM1VmXCVCZJwp5EFUKhkrWY1zI_IN8j48won0ZPOoeTKb3ARqg7ztei4cwcqtPpt36LNFHl6_ga_IaLVs9WvyQJ6tpqfLN_4t-AvD23i4 |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+cross%E2%80%90hierarchical+graph+network+recommendation+algorithm+based+on+random+walk+and+convolutional+neural+network&rft.jtitle=Concurrency+and+computation&rft.au=Huang%2C+Meng&rft.au=Sun%2C+Guohui&rft.date=2021-11-08&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002%2Fcpe.6704&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_6704 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |