Coupling RBF-based meshless method and Landweber iteration algorithm for approximating a space-dependent source term in a time fractional diffusion equation

The problem of determining a space-dependent source term in a time fractional diffusion equation is considered from the measured data at the final time. To find an approximation of the source term, a methodology involving minimization of the cost functional is applied. Also, in order to construct th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and applied mathematics Ročník 417; s. 114531
Hlavní autor: Salehi Shayegan, Amir Hossein
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2023
Témata:
ISSN:0377-0427, 1879-1778
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The problem of determining a space-dependent source term in a time fractional diffusion equation is considered from the measured data at the final time. To find an approximation of the source term, a methodology involving minimization of the cost functional is applied. Also, in order to construct the Landweber iteration algorithm, an explicit formula for the gradient of the cost functional J is given via the solution of an adjoint problem. The resulting adjoint problem is treated by a radial basis function method for spatial dimension and a finite difference scheme for the time fractional derivative followed by an iterative domain decomposition method to achieve a desired accuracy. In addition, Lipschitz continuity of the gradient of the cost functional, monotonicity and convergence of Landweber iteration algorithm are proved. At the end, a numerical example is given to show the validation of the iterative algorithm.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2022.114531