An efficient time-dependent auxiliary variable approach for the three-phase conservative Allen–Cahn fluids

•A linear, totally decoupled, and second-order scheme for the ternary CAC fluids.•The proposed scheme is highly efficient and is very easy to implement.•The discrete energy dissipation law of the numerical scheme is proven. Based on a time-dependent auxiliary variable approach, we propose linear, to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 438; s. 127599
Hlavní autoři: Tan, Zhijun, Yang, Junxiang, Chen, Jianjun, Kim, Junseok
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.02.2023
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A linear, totally decoupled, and second-order scheme for the ternary CAC fluids.•The proposed scheme is highly efficient and is very easy to implement.•The discrete energy dissipation law of the numerical scheme is proven. Based on a time-dependent auxiliary variable approach, we propose linear, totally decoupled, and energy dissipative methods for the three-phase conservative Allen–Cahn (CAC) fluid system. The three-phase CAC equation has been extensively applied in the simulation of multi-component fluid flows because of the following advantages: (i) Total mass is conserved, (ii) Topological change of the interface can be implicitly captured. Compared with the ternary Cahn–Hilliard (CH) model, the CAC-type model is simple to solve. When we solve the CAC model by using the classical scalar auxiliary variable (SAV) approach, extra computational time is needed because we must decouple the local and non-local variables. The variant of SAV approach considered in the present study not only leads to linear and energy stable schemes, but also achieves highly efficient computation. Linear and decoupled equations need to be updated at each time step. We adopt the linear multigrid algorithm to speed up the convergence. Extensive numerical experiments with and without fluid flows are conducted to validate the temporal accuracy, mass conservation, and energy law.
AbstractList •A linear, totally decoupled, and second-order scheme for the ternary CAC fluids.•The proposed scheme is highly efficient and is very easy to implement.•The discrete energy dissipation law of the numerical scheme is proven. Based on a time-dependent auxiliary variable approach, we propose linear, totally decoupled, and energy dissipative methods for the three-phase conservative Allen–Cahn (CAC) fluid system. The three-phase CAC equation has been extensively applied in the simulation of multi-component fluid flows because of the following advantages: (i) Total mass is conserved, (ii) Topological change of the interface can be implicitly captured. Compared with the ternary Cahn–Hilliard (CH) model, the CAC-type model is simple to solve. When we solve the CAC model by using the classical scalar auxiliary variable (SAV) approach, extra computational time is needed because we must decouple the local and non-local variables. The variant of SAV approach considered in the present study not only leads to linear and energy stable schemes, but also achieves highly efficient computation. Linear and decoupled equations need to be updated at each time step. We adopt the linear multigrid algorithm to speed up the convergence. Extensive numerical experiments with and without fluid flows are conducted to validate the temporal accuracy, mass conservation, and energy law.
ArticleNumber 127599
Author Kim, Junseok
Chen, Jianjun
Yang, Junxiang
Tan, Zhijun
Author_xml – sequence: 1
  givenname: Zhijun
  surname: Tan
  fullname: Tan, Zhijun
  organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 2
  givenname: Junxiang
  surname: Yang
  fullname: Yang, Junxiang
  organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 3
  givenname: Jianjun
  orcidid: 0000-0001-7503-1889
  surname: Chen
  fullname: Chen, Jianjun
  organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 4
  givenname: Junseok
  orcidid: 0000-0002-0484-9189
  surname: Kim
  fullname: Kim, Junseok
  email: cfdkim@korea.ac.kr
  organization: Department of Mathematics, Korea University, Seoul, 02841, Republic of Korea
BookMark eNp9kE1qwzAQRkVJoUnaA3SnCziVFFuO6SqE_kGgm3YtxqMRUXBkIzmh3fUOvWFPUod01UUWwzCLN3zfm7BRaAMxdivFTAqp77Yz2OFMCaVmUpVFVV2wsVyU86zQeTViYyEqnc2FmF-xSUpbIUSpZT5mzTJwcs6jp9Dz3u8os9RRsMcT9h--8RA_-QGih7ohDl0XW8ANd23k_YaGiURZt4FEHNuQKB6g9wfiy6ah8PP1vYJN4K7Ze5uu2aWDJtHN356y98eHt9Vztn59elkt1xkqVfaZRZWTzqWVTqFwFmvMa0IooCyLxaKGEqrC6QpzUgIKi7qQUGnUpGuNVT6fsvL0F2ObUiRn0PdDqjb0EXxjpDBHaWZrBmnmKM2cpA2k_Ed20e8GA2eZ-xNDQ6WDp2jS0SaS9ZGwN7b1Z-hf7pqKwQ
CitedBy_id crossref_primary_10_3934_dcdsb_2025123
crossref_primary_10_1063_5_0261749
Cites_doi 10.1016/j.cma.2021.113987
10.1155/2016/9532608
10.1016/j.cma.2020.113382
10.1063/5.0049971
10.1090/mcom/3578
10.4208/cicp.OA-2019-0175
10.1016/j.jcp.2020.109718
10.1016/j.euromechflu.2014.08.001
10.1051/m2an:2006028
10.1051/m2an/2010072
10.1016/j.cma.2021.113918
10.1007/s11075-019-00804-9
10.1016/j.compfluid.2017.07.009
10.1016/j.cnsns.2021.105923
10.1017/jfm.2018.702
10.1016/j.camwa.2018.09.021
10.1063/5.0018391
10.1103/PhysRevE.89.053320
10.1016/j.jcp.2021.110703
10.1016/j.jcp.2021.110536
10.1016/j.jcp.2021.110909
10.1016/j.cma.2019.112743
10.1016/j.cam.2021.113778
10.1007/s10665-011-9504-2
10.1007/s10915-018-0690-1
10.1016/j.ijmecsci.2022.107342
10.3390/math8010097
10.1016/j.cam.2018.05.039
10.1016/j.compfluid.2018.08.023
10.1007/s10915-021-01564-2
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2022.127599
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
ExternalDocumentID 10_1016_j_amc_2022_127599
S0096300322006725
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
5VS
9DU
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
TAE
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c227t-dc24e641d1f2c0fdcbc4beca5a77588ba7a95f69c4e20a5dc651a96c6e6b6c943
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000876442900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Sat Nov 29 07:26:57 EST 2025
Tue Nov 18 22:18:38 EST 2025
Fri Feb 23 02:38:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Three-phase conservative allen–Cahn fluids
Multigrid algorithm
Finite difference method
Dissipation law
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227t-dc24e641d1f2c0fdcbc4beca5a77588ba7a95f69c4e20a5dc651a96c6e6b6c943
ORCID 0000-0001-7503-1889
0000-0002-0484-9189
ParticipantIDs crossref_citationtrail_10_1016_j_amc_2022_127599
crossref_primary_10_1016_j_amc_2022_127599
elsevier_sciencedirect_doi_10_1016_j_amc_2022_127599
PublicationCentury 2000
PublicationDate 2023-02-01
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied mathematics and computation
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Liu, Li (bib0015) 2021
Liu, Li (bib0029) 2021; 447
J. Yang, J. Chen, Z. Tan, Highly efficient variant of SAV approach for two-phase incompressible conservative AllenCahn fluids, Eng. Comput. doi
Qin, Xu, Zhang, Zhang (bib0019) 2020; 28
Lee, Jeong, Yang, Kim (bib0032) 2020; 8
Aihara, Takaki, Takada (bib0028) 2019; 178
Yang, Kim (bib0007) 2020; 372
Boyer, Minjeaud (bib0024) 2011; 45
Li, Qiao, Wang (bib0018) 2021; 90
Yang, Tan, Kim (bib0020) 2022; 452
Mu, Qiao, Si, Cheng, Ding (bib0005) 2021; 33
Lee, Kim (bib0036) 2012; 75
Park (bib0034) 2018; 330
Deville, Fischer, Mund (bib0031) 2002; vol. 9
Xia, Yu, Li (bib0013) 2021; 384
Yang, Tan (bib0030) 2022; 225
Kim, Lee, Choi, Lee, Jeong (bib0001) 2016; 2016
Li, Mei (bib0016) 2021; 88
Liu, Li (bib0012) 2020; 85
Boyer, Lapuerta (bib0023) 2006; 40
Jeong, Kim (bib0026) 2017; 156
Zhao, Han (bib0022) 2021; 443
Liu, Zhang, Gao, Lu, Ding (bib0003) 2018; 854
Bartels, Kurzeja, Mosler (bib0002) 2021; 383
Li, Liu, Xia, He, Li (bib0014) 2022; 401
Zhang, Yang (bib0033) 2020; 361
Yang, Kim (bib0025) 2021; 102
Zhang, Liu, Ding (bib0004) 2020; 32
Liang, Shi, Guo, Chai (bib0006) 2014; 89
Cheng, Feng, Wang, Wise (bib0011) 2019; 362
.
Feng, Guan, Lowengrub, Wang, Wise, Chen (bib0010) 2018; 76
Yu, Wang, Xia, Li (bib0017) 2021; 405
Dehghan, Gharibi (bib0008) 2021; 410
Huang, Lin, Ardenaki (bib0027) 2020; 420
Lee, Kim (bib0035) 2015; 49
Lee, Shin (bib0009) 2019; 77
Liu (10.1016/j.amc.2022.127599_bib0029) 2021; 447
Aihara (10.1016/j.amc.2022.127599_bib0028) 2019; 178
Dehghan (10.1016/j.amc.2022.127599_bib0008) 2021; 410
Cheng (10.1016/j.amc.2022.127599_bib0011) 2019; 362
Xia (10.1016/j.amc.2022.127599_bib0013) 2021; 384
Li (10.1016/j.amc.2022.127599_bib0018) 2021; 90
Yang (10.1016/j.amc.2022.127599_bib0020) 2022; 452
Boyer (10.1016/j.amc.2022.127599_bib0024) 2011; 45
Lee (10.1016/j.amc.2022.127599_bib0009) 2019; 77
Zhao (10.1016/j.amc.2022.127599_bib0022) 2021; 443
Zhang (10.1016/j.amc.2022.127599_bib0004) 2020; 32
Deville (10.1016/j.amc.2022.127599_bib0031) 2002; vol. 9
Liu (10.1016/j.amc.2022.127599_bib0015) 2021
Yu (10.1016/j.amc.2022.127599_bib0017) 2021; 405
Huang (10.1016/j.amc.2022.127599_bib0027) 2020; 420
Mu (10.1016/j.amc.2022.127599_bib0005) 2021; 33
Yang (10.1016/j.amc.2022.127599_bib0007) 2020; 372
Lee (10.1016/j.amc.2022.127599_bib0035) 2015; 49
Bartels (10.1016/j.amc.2022.127599_bib0002) 2021; 383
Kim (10.1016/j.amc.2022.127599_bib0001) 2016; 2016
Lee (10.1016/j.amc.2022.127599_bib0036) 2012; 75
Liu (10.1016/j.amc.2022.127599_bib0012) 2020; 85
Li (10.1016/j.amc.2022.127599_bib0016) 2021; 88
Li (10.1016/j.amc.2022.127599_bib0014) 2022; 401
Qin (10.1016/j.amc.2022.127599_bib0019) 2020; 28
Lee (10.1016/j.amc.2022.127599_bib0032) 2020; 8
10.1016/j.amc.2022.127599_bib0021
Liu (10.1016/j.amc.2022.127599_bib0003) 2018; 854
Yang (10.1016/j.amc.2022.127599_bib0025) 2021; 102
Liang (10.1016/j.amc.2022.127599_bib0006) 2014; 89
Park (10.1016/j.amc.2022.127599_bib0034) 2018; 330
Jeong (10.1016/j.amc.2022.127599_bib0026) 2017; 156
Yang (10.1016/j.amc.2022.127599_bib0030) 2022; 225
Feng (10.1016/j.amc.2022.127599_bib0010) 2018; 76
Boyer (10.1016/j.amc.2022.127599_bib0023) 2006; 40
Zhang (10.1016/j.amc.2022.127599_bib0033) 2020; 361
References_xml – volume: 156
  start-page: 239
  year: 2017
  end-page: 246
  ident: bib0026
  article-title: Conservative allen–cahn–navier–stokes systems for incompressible two-phase fluid flows
  publication-title: Comput. Fluid
– volume: 401
  start-page: 113778
  year: 2022
  ident: bib0014
  article-title: First- and second-order unconditionally stable direct discretization methods for multi-component cahn–hilliard system on surfaces
  publication-title: J. Comput. Anal. Math.
– volume: 28
  start-page: 1389
  year: 2020
  end-page: 1414
  ident: bib0019
  article-title: Fully decoupled, linear and unconditionally energy stable schemes for the binary fluid-surfactant model
  publication-title: Commun. Comput. Phys.
– volume: 8
  start-page: 97
  year: 2020
  ident: bib0032
  article-title: Nonlinear multigrid implementation for the two-dimensional cahn–hilliard equation
  publication-title: Mathematics
– volume: vol. 9
  year: 2002
  ident: bib0031
  article-title: High-order methods for incompressible fluid flow
– volume: 384
  start-page: 113987
  year: 2021
  ident: bib0013
  article-title: A second-order accurate, unconditionally energy stable numerical scheme for binary fluid flows on arbitrarily curved surfaces
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 372
  start-page: 113382
  year: 2020
  ident: bib0007
  article-title: A phase-field model and its efficient numerical method for two-phase flows on arbitrarily curved surfaces in 3d space
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 49
  start-page: 77
  year: 2015
  end-page: 88
  ident: bib0035
  article-title: Two-dimensional kelvin–helmholtz instabilities of multi-component fluids
  publication-title: Eur. J. Mec. B Fluids
– volume: 410
  start-page: 126487
  year: 2021
  ident: bib0008
  article-title: Numerical analysis of fully discrete energy stable weak galerkin finite element scheme for a coupled cahn–hilliard–navier–stokes phase-field model
  publication-title: Appl. Math. Comput.
– volume: 443
  start-page: 110536
  year: 2021
  ident: bib0022
  article-title: Second-order decoupled energy-stable schemes for cahn–hilliard–navier–stokes equations
  publication-title: J. Comput. Phys.
– volume: 75
  start-page: 15
  year: 2012
  end-page: 27
  ident: bib0036
  article-title: A comparison study of the boussinesq and the variable density models on buoyancy-driven flows
  publication-title: J. Eng. Math.
– volume: 178
  start-page: 141
  year: 2019
  end-page: 151
  ident: bib0028
  article-title: Multi-phase-field modeling using a conservative allen–cahn equation for multiphase flow
  publication-title: Comput. Fluid
– volume: 77
  start-page: 189
  year: 2019
  end-page: 198
  ident: bib0009
  article-title: Energy stable compact scheme for cahn–hilliard equation with periodic boundary condition
  publication-title: Comput. Math. Appl.
– volume: 89
  start-page: 053320
  year: 2014
  ident: bib0006
  article-title: Phase-field-based multiple-relaxation-time lattice boltzmann model for incompressible multiphase flows
  publication-title: Phys. Rev. E
– volume: 420
  start-page: 109718
  year: 2020
  ident: bib0027
  article-title: Consistent and conservative scheme for incompressible two-phase flows using the conservative allen–cahn model
  publication-title: J. Comput. Phys.
– volume: 225
  start-page: 107342
  year: 2022
  ident: bib0030
  article-title: Simple and practical method for the simulations of two-component PFC models for binary colloidal crystals on curved surfaces
  publication-title: Int. J. Mech. Sci.
– volume: 361
  start-page: 112743
  year: 2020
  ident: bib0033
  article-title: Unconditionally energy stable large time stepping method for the
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 90
  start-page: 171
  year: 2021
  end-page: 188
  ident: bib0018
  article-title: Convergence analysis for a stabilized linear semi-implicit numerical scheme for the nonlocal cahn–hilliard equation
  publication-title: Math. Comput.
– volume: 45
  start-page: 697
  year: 2011
  end-page: 738
  ident: bib0024
  article-title: Numerical schemes for a three component cahn–hilliard model
  publication-title: ESAIM Math. Model. Numer. Anal.
– volume: 447
  start-page: 110703
  year: 2021
  ident: bib0029
  article-title: A highly efficient and accurate exponential semi-implicit scalar auxiliary variable (ESI-SAV) approach for dissipative system
  publication-title: J. Comput. Phys.
– volume: 362
  start-page: 574
  year: 2019
  end-page: 595
  ident: bib0011
  article-title: An energy stable fourth order finite difference scheme for the cahn–hilliard equation
  publication-title: J. Comput. Appl. Math.
– reference: .
– volume: 2016
  start-page: 9532608
  year: 2016
  ident: bib0001
  article-title: Basic principles and practical applications of the cahn–hilliard equation
  publication-title: Math. Probl. Eng.
– volume: 102
  start-page: 105923
  year: 2021
  ident: bib0025
  article-title: Numerical study of the ternary cahn–hilliard fluids by using an efficient modified scalar auxiliary variable approach
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
– volume: 32
  start-page: 082106
  year: 2020
  ident: bib0004
  article-title: Head-on collision of two immiscible droplets of different components
  publication-title: Phys. Fluids
– volume: 854
  start-page: R6
  year: 2018
  ident: bib0003
  article-title: On the maximal spreading of impacting compound drops
  publication-title: J. Fluid Mech.
– volume: 452
  start-page: 110909
  year: 2022
  ident: bib0020
  article-title: Linear and fully decoupled scheme for a hydrodynamics coupled phase-field surfactant system based on a multiple auxiliary variables approach
  publication-title: J. Comput. Phys.
– volume: 33
  start-page: 052118
  year: 2021
  ident: bib0005
  article-title: Interfacial instability and transition of jetting and dripping modes in a co-flow focusing process
  publication-title: Phys. Fluids
– volume: 330
  start-page: 11
  year: 2018
  end-page: 22
  ident: bib0034
  article-title: Mathematical modeling and computational simulation of phase separation in ternary mixtures
  publication-title: Appl. Math. Comput.
– volume: 88
  start-page: 60
  year: 2021
  ident: bib0016
  article-title: Numerical approximation of the two-component PFC models for binary colloidal crystals: efficient, decoupled, and second-order unconditionally energy stable schemes
  publication-title: J. Sci. Comput.
– volume: 383
  start-page: 113918
  year: 2021
  ident: bib0002
  article-title: Cahn–Hilliard phase field theory coupled to mechanics: fundamentals, numerical implementation and application to topology optimization
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2021
  ident: bib0015
  article-title: Step-by-step solving schemes based on scalar auxiliary variable and invariant energy quadratization approaches for gradient flows
  publication-title: Numer. Algor.
– volume: 76
  start-page: 1938
  year: 2018
  end-page: 1967
  ident: bib0010
  article-title: A uniquely solvable, energy stable numerical scheme for the functionalized cahn–hilliard equation and its convergence analysis
  publication-title: J. Sci. Comput.
– volume: 85
  start-page: 107
  year: 2020
  end-page: 132
  ident: bib0012
  article-title: Efficient modified stabilized invariant energy quadratization approaches for phase-field crystal equation
  publication-title: Numer. Algor.
– reference: J. Yang, J. Chen, Z. Tan, Highly efficient variant of SAV approach for two-phase incompressible conservative AllenCahn fluids, Eng. Comput. doi:
– volume: 40
  start-page: 653
  year: 2006
  end-page: 687
  ident: bib0023
  article-title: Study of a three component cahn–hilliard flow model
  publication-title: ESAIM Math. Model. Numer. Anal.
– volume: 405
  start-page: 126267
  year: 2021
  ident: bib0017
  article-title: First and second order unconditionally energy stable schemes for topology optimization based on phase field method
  publication-title: Appl. Math. Comput.
– volume: 384
  start-page: 113987
  year: 2021
  ident: 10.1016/j.amc.2022.127599_bib0013
  article-title: A second-order accurate, unconditionally energy stable numerical scheme for binary fluid flows on arbitrarily curved surfaces
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.113987
– volume: 2016
  start-page: 9532608
  year: 2016
  ident: 10.1016/j.amc.2022.127599_bib0001
  article-title: Basic principles and practical applications of the cahn–hilliard equation
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2016/9532608
– volume: 372
  start-page: 113382
  year: 2020
  ident: 10.1016/j.amc.2022.127599_bib0007
  article-title: A phase-field model and its efficient numerical method for two-phase flows on arbitrarily curved surfaces in 3d space
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113382
– volume: 33
  start-page: 052118
  year: 2021
  ident: 10.1016/j.amc.2022.127599_bib0005
  article-title: Interfacial instability and transition of jetting and dripping modes in a co-flow focusing process
  publication-title: Phys. Fluids
  doi: 10.1063/5.0049971
– volume: 90
  start-page: 171
  year: 2021
  ident: 10.1016/j.amc.2022.127599_bib0018
  article-title: Convergence analysis for a stabilized linear semi-implicit numerical scheme for the nonlocal cahn–hilliard equation
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3578
– volume: 28
  start-page: 1389
  year: 2020
  ident: 10.1016/j.amc.2022.127599_bib0019
  article-title: Fully decoupled, linear and unconditionally energy stable schemes for the binary fluid-surfactant model
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2019-0175
– volume: 420
  start-page: 109718
  year: 2020
  ident: 10.1016/j.amc.2022.127599_bib0027
  article-title: Consistent and conservative scheme for incompressible two-phase flows using the conservative allen–cahn model
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109718
– volume: 49
  start-page: 77
  year: 2015
  ident: 10.1016/j.amc.2022.127599_bib0035
  article-title: Two-dimensional kelvin–helmholtz instabilities of multi-component fluids
  publication-title: Eur. J. Mec. B Fluids
  doi: 10.1016/j.euromechflu.2014.08.001
– volume: 40
  start-page: 653
  year: 2006
  ident: 10.1016/j.amc.2022.127599_bib0023
  article-title: Study of a three component cahn–hilliard flow model
  publication-title: ESAIM Math. Model. Numer. Anal.
  doi: 10.1051/m2an:2006028
– volume: 45
  start-page: 697
  year: 2011
  ident: 10.1016/j.amc.2022.127599_bib0024
  article-title: Numerical schemes for a three component cahn–hilliard model
  publication-title: ESAIM Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2010072
– volume: 383
  start-page: 113918
  year: 2021
  ident: 10.1016/j.amc.2022.127599_bib0002
  article-title: Cahn–Hilliard phase field theory coupled to mechanics: fundamentals, numerical implementation and application to topology optimization
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.113918
– volume: 85
  start-page: 107
  year: 2020
  ident: 10.1016/j.amc.2022.127599_bib0012
  article-title: Efficient modified stabilized invariant energy quadratization approaches for phase-field crystal equation
  publication-title: Numer. Algor.
  doi: 10.1007/s11075-019-00804-9
– volume: 156
  start-page: 239
  year: 2017
  ident: 10.1016/j.amc.2022.127599_bib0026
  article-title: Conservative allen–cahn–navier–stokes systems for incompressible two-phase fluid flows
  publication-title: Comput. Fluid
  doi: 10.1016/j.compfluid.2017.07.009
– ident: 10.1016/j.amc.2022.127599_bib0021
– volume: 102
  start-page: 105923
  year: 2021
  ident: 10.1016/j.amc.2022.127599_bib0025
  article-title: Numerical study of the ternary cahn–hilliard fluids by using an efficient modified scalar auxiliary variable approach
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
  doi: 10.1016/j.cnsns.2021.105923
– year: 2021
  ident: 10.1016/j.amc.2022.127599_bib0015
  article-title: Step-by-step solving schemes based on scalar auxiliary variable and invariant energy quadratization approaches for gradient flows
  publication-title: Numer. Algor.
– volume: vol. 9
  year: 2002
  ident: 10.1016/j.amc.2022.127599_bib0031
– volume: 854
  start-page: R6
  year: 2018
  ident: 10.1016/j.amc.2022.127599_bib0003
  article-title: On the maximal spreading of impacting compound drops
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.702
– volume: 77
  start-page: 189
  year: 2019
  ident: 10.1016/j.amc.2022.127599_bib0009
  article-title: Energy stable compact scheme for cahn–hilliard equation with periodic boundary condition
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.09.021
– volume: 32
  start-page: 082106
  issue: 8
  year: 2020
  ident: 10.1016/j.amc.2022.127599_bib0004
  article-title: Head-on collision of two immiscible droplets of different components
  publication-title: Phys. Fluids
  doi: 10.1063/5.0018391
– volume: 89
  start-page: 053320
  year: 2014
  ident: 10.1016/j.amc.2022.127599_bib0006
  article-title: Phase-field-based multiple-relaxation-time lattice boltzmann model for incompressible multiphase flows
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.053320
– volume: 405
  start-page: 126267
  year: 2021
  ident: 10.1016/j.amc.2022.127599_bib0017
  article-title: First and second order unconditionally energy stable schemes for topology optimization based on phase field method
  publication-title: Appl. Math. Comput.
– volume: 447
  start-page: 110703
  year: 2021
  ident: 10.1016/j.amc.2022.127599_bib0029
  article-title: A highly efficient and accurate exponential semi-implicit scalar auxiliary variable (ESI-SAV) approach for dissipative system
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110703
– volume: 410
  start-page: 126487
  year: 2021
  ident: 10.1016/j.amc.2022.127599_bib0008
  article-title: Numerical analysis of fully discrete energy stable weak galerkin finite element scheme for a coupled cahn–hilliard–navier–stokes phase-field model
  publication-title: Appl. Math. Comput.
– volume: 443
  start-page: 110536
  year: 2021
  ident: 10.1016/j.amc.2022.127599_bib0022
  article-title: Second-order decoupled energy-stable schemes for cahn–hilliard–navier–stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110536
– volume: 452
  start-page: 110909
  year: 2022
  ident: 10.1016/j.amc.2022.127599_bib0020
  article-title: Linear and fully decoupled scheme for a hydrodynamics coupled phase-field surfactant system based on a multiple auxiliary variables approach
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110909
– volume: 361
  start-page: 112743
  year: 2020
  ident: 10.1016/j.amc.2022.127599_bib0033
  article-title: Unconditionally energy stable large time stepping method for the l2-gradient flow based ternary phase-field model with precise nonlocal volume conservation
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112743
– volume: 401
  start-page: 113778
  year: 2022
  ident: 10.1016/j.amc.2022.127599_bib0014
  article-title: First- and second-order unconditionally stable direct discretization methods for multi-component cahn–hilliard system on surfaces
  publication-title: J. Comput. Anal. Math.
  doi: 10.1016/j.cam.2021.113778
– volume: 75
  start-page: 15
  year: 2012
  ident: 10.1016/j.amc.2022.127599_bib0036
  article-title: A comparison study of the boussinesq and the variable density models on buoyancy-driven flows
  publication-title: J. Eng. Math.
  doi: 10.1007/s10665-011-9504-2
– volume: 76
  start-page: 1938
  year: 2018
  ident: 10.1016/j.amc.2022.127599_bib0010
  article-title: A uniquely solvable, energy stable numerical scheme for the functionalized cahn–hilliard equation and its convergence analysis
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-018-0690-1
– volume: 225
  start-page: 107342
  year: 2022
  ident: 10.1016/j.amc.2022.127599_bib0030
  article-title: Simple and practical method for the simulations of two-component PFC models for binary colloidal crystals on curved surfaces
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2022.107342
– volume: 8
  start-page: 97
  year: 2020
  ident: 10.1016/j.amc.2022.127599_bib0032
  article-title: Nonlinear multigrid implementation for the two-dimensional cahn–hilliard equation
  publication-title: Mathematics
  doi: 10.3390/math8010097
– volume: 362
  start-page: 574
  year: 2019
  ident: 10.1016/j.amc.2022.127599_bib0011
  article-title: An energy stable fourth order finite difference scheme for the cahn–hilliard equation
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.05.039
– volume: 178
  start-page: 141
  year: 2019
  ident: 10.1016/j.amc.2022.127599_bib0028
  article-title: Multi-phase-field modeling using a conservative allen–cahn equation for multiphase flow
  publication-title: Comput. Fluid
  doi: 10.1016/j.compfluid.2018.08.023
– volume: 330
  start-page: 11
  year: 2018
  ident: 10.1016/j.amc.2022.127599_bib0034
  article-title: Mathematical modeling and computational simulation of phase separation in ternary mixtures
  publication-title: Appl. Math. Comput.
– volume: 88
  start-page: 60
  year: 2021
  ident: 10.1016/j.amc.2022.127599_bib0016
  article-title: Numerical approximation of the two-component PFC models for binary colloidal crystals: efficient, decoupled, and second-order unconditionally energy stable schemes
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-021-01564-2
SSID ssj0007614
Score 2.4545546
Snippet •A linear, totally decoupled, and second-order scheme for the ternary CAC fluids.•The proposed scheme is highly efficient and is very easy to implement.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 127599
SubjectTerms Dissipation law
Finite difference method
Multigrid algorithm
Three-phase conservative allen–Cahn fluids
Title An efficient time-dependent auxiliary variable approach for the three-phase conservative Allen–Cahn fluids
URI https://dx.doi.org/10.1016/j.amc.2022.127599
Volume 438
WOSCitedRecordID wos000876442900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xvOQDJyqvEsdx4mO0WgQVrJAoUuESObZDU2VDtZtUPfILuPAP-SXYsZ22y0OAxCWKLDuOPF-cmfHMNwA8jXmqcSAp4kIJRDiRiHERIx7StAyJCljZk7i-Sk5P0_mcvRmNvvhcmHWdNE262bDVfxW1btPCNqmzfyHu4aG6Qd9roeurFru-_pHgs8YEaVR9omNfOh75QrfthHebqq5MoNxa28h91pQnFR_iDVstXYVWC24D2Z3Xdq0mmam64oMjomO-aCZl3VU2U3hgsnVa7dlAB3vhU-dW3f6x_8z6Xj8sqmU3NL53_utp12w0cj9uww9cFolu3OnuikFPTWK9sxacCwNHPurZ-9V8bs1e6KcxrlAUBHb7U3Z7TpMIxdSSnPr9m1h6mB_-BdYtsTziZ4aqEuMjw2VvqzFdoth-a-YyU2HcH03HV8CB6ZuOwUH28mQ-Hf7tCbVs8f7d_Dl5HzF4aaKfazo72svsJrjhzA6YWbjcAiPV3AbXX2-FdAfUWQMH4MB94MABONADB3rgQA0cqJ8Dd4ADd4EDe-B8-_zVQAZayNwF756fzI5fIFeLAwmMkxZJgYmiJJRhiUVQSlEIoj9_HvNEW5xpwRPO4pIyQRQOeCwFjUPOqKCKFlQwEt0D4-ZTo-4DqCSTNCwKc6JMSip4KUtGZUp4GWGZRIcg8OuWC0dUb-ql1LmPSFzmeqlzs9S5XepD8GwYsrIsLb_rTLwwcqdmWvUx18j59bAH_zbsIbi2hfwjMG7PO_UYXBXrtro4f-Lw9R2giaZH
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+time-dependent+auxiliary+variable+approach+for+the+three-phase+conservative+Allen%E2%80%93Cahn+fluids&rft.jtitle=Applied+mathematics+and+computation&rft.au=Tan%2C+Zhijun&rft.au=Yang%2C+Junxiang&rft.au=Chen%2C+Jianjun&rft.au=Kim%2C+Junseok&rft.date=2023-02-01&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.eissn=1873-5649&rft.volume=438&rft_id=info:doi/10.1016%2Fj.amc.2022.127599&rft.externalDocID=S0096300322006725
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon