MITP-Net: A deep-learning framework for short-term indoor temperature predictions in multi-zone buildings

Indoor temperature prediction is an essential component of building control and energy saving. Although existing indoor temperature prediction frameworks have achieved remarkable progress, they struggle to achieve high performance due to information, method, application, and sim-to-real gaps. Aiming...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Building and environment Ročník 239; s. 110388
Hlavní autoři: Xing, Tian, Sun, Kailai, Zhao, Qianchuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.07.2023
Témata:
ISSN:0360-1323, 1873-684X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Indoor temperature prediction is an essential component of building control and energy saving. Although existing indoor temperature prediction frameworks have achieved remarkable progress, they struggle to achieve high performance due to information, method, application, and sim-to-real gaps. Aiming to fill these gaps, we propose a novel deep-learning framework for short-term indoor temperature prediction in multi-zone buildings. In particular, we expand the sensing information and formulate the multi-zone indoor temperature prediction (MITP) problem. To improve the prediction performance, we employ information fusion and encoder–decoder architecture to the MITP problem and propose MITP-Net. We set up 11 ablation experiments to compare the prediction performance of relative frameworks. To evaluate frameworks’ performance, we publicly release a dataset including 2-week real operating data in a multi-zone office with a 1-min sampling interval (829,440 digits in total). Compared with existing deep-learning frameworks, MITP-Net significantly raises the prediction accuracy and can flexibly adjust the lengths of input and prediction sequences for different requirements. We provide the usage steps of MITP-Net and publish the operating data and codes on the GitHub repository: https://github.com/XingTian1994/MITP-Net. •We formulate the MITP problem and propose a novel deep-learning prediction framework.•MITP-Net utilizes a two-stage information fusion method for multi-modal data.•MITP-Net adopts the encoder–decoder architecture for variable sequences length.•We publicly release a real multi-zone office dataset and verify MITP-Net.•MITP-Net significantly improves the performance compared to existing methods.
AbstractList Indoor temperature prediction is an essential component of building control and energy saving. Although existing indoor temperature prediction frameworks have achieved remarkable progress, they struggle to achieve high performance due to information, method, application, and sim-to-real gaps. Aiming to fill these gaps, we propose a novel deep-learning framework for short-term indoor temperature prediction in multi-zone buildings. In particular, we expand the sensing information and formulate the multi-zone indoor temperature prediction (MITP) problem. To improve the prediction performance, we employ information fusion and encoder–decoder architecture to the MITP problem and propose MITP-Net. We set up 11 ablation experiments to compare the prediction performance of relative frameworks. To evaluate frameworks’ performance, we publicly release a dataset including 2-week real operating data in a multi-zone office with a 1-min sampling interval (829,440 digits in total). Compared with existing deep-learning frameworks, MITP-Net significantly raises the prediction accuracy and can flexibly adjust the lengths of input and prediction sequences for different requirements. We provide the usage steps of MITP-Net and publish the operating data and codes on the GitHub repository: https://github.com/XingTian1994/MITP-Net. •We formulate the MITP problem and propose a novel deep-learning prediction framework.•MITP-Net utilizes a two-stage information fusion method for multi-modal data.•MITP-Net adopts the encoder–decoder architecture for variable sequences length.•We publicly release a real multi-zone office dataset and verify MITP-Net.•MITP-Net significantly improves the performance compared to existing methods.
ArticleNumber 110388
Author Sun, Kailai
Zhao, Qianchuan
Xing, Tian
Author_xml – sequence: 1
  givenname: Tian
  orcidid: 0000-0003-0528-2644
  surname: Xing
  fullname: Xing, Tian
  email: xingt19@mails.tsinghua.edu.cn
– sequence: 2
  givenname: Kailai
  orcidid: 0000-0003-1648-3409
  surname: Sun
  fullname: Sun, Kailai
  email: skl18@mails.tsinghua.edu.cn
– sequence: 3
  givenname: Qianchuan
  orcidid: 0000-0002-7952-5621
  surname: Zhao
  fullname: Zhao, Qianchuan
  email: zhaoqc@mail.tsinghua.edu.cn
BookMark eNqFkMtKAzEUhoNUsK2-guQFMiaT6UwqLizFS6FeFl24C5nkjKbOjSSt6NObWt24KRwInMP38-cboUHbtYDQOaMJoyy_WCflxtYG2m2S0pQnjFEuxBEaMlFwkovsZYCGlOeUMJ7yEzTyfk0jOOXZENmHxeqZPEK4xDNsAHpSg3KtbV9x5VQDH517x1XnsH_rXCABXINta7q4CdD04FTYOMC9A2N1sF3r4xk3mzpY8hV74p9uMc6fouNK1R7Oft8xWt3erOb3ZPl0t5jPlkSnaRGIKZjIsyKbTKZGM8FKwWhWpKYyWaGATkutdDxmZZysKlLNy1wIVuVQmiLnfIyu9rHadd47qKS2Qe2aBadsLRmVO2tyLf-syZ01ubcW8fwf3jvbKPd5GLzegxD_trXgpNcWWh29ONBBms4eivgGXiSPYg
CitedBy_id crossref_primary_10_1016_j_jobe_2024_110411
crossref_primary_10_1016_j_buildenv_2025_112729
crossref_primary_10_1016_j_buildenv_2023_110807
crossref_primary_10_1016_j_buildenv_2025_113641
crossref_primary_10_3390_buildings13082002
crossref_primary_10_1016_j_jobe_2025_113714
crossref_primary_10_3390_jmse13030405
Cites_doi 10.3390/w13081031
10.1016/j.apenergy.2018.09.052
10.1016/j.enbuild.2018.06.039
10.1016/j.enbuild.2020.109965
10.1016/j.buildenv.2022.109354
10.1016/j.buildenv.2022.109164
10.1016/j.enbuild.2016.03.046
10.1007/s00521-006-0047-9
10.1109/JSEN.2019.2923982
10.3390/en15072623
10.1007/s12273-013-0142-7
10.1016/j.enbuild.2016.03.054
10.1016/j.buildenv.2021.108633
10.1016/j.apenergy.2019.04.065
10.1016/j.enbuild.2004.09.009
10.1016/j.scs.2020.102328
10.1016/j.enbuild.2017.06.076
10.1016/j.buildenv.2019.03.062
10.1016/j.buildenv.2021.108164
10.1016/j.buildenv.2022.108938
10.1016/j.enbuild.2019.109473
10.1016/j.patter.2022.100605
10.1109/23.589532
10.1016/j.ins.2011.12.028
10.1016/j.buildenv.2021.108581
10.1016/j.enbuild.2021.111379
10.1016/j.enbuild.2010.04.006
10.1007/s00530-010-0182-0
10.1186/s40537-021-00444-8
10.3390/en12112122
10.1016/j.enbuild.2012.06.024
10.1016/j.energy.2021.121228
10.3390/s18113610
10.1016/j.enbuild.2019.109451
10.1016/j.future.2017.09.082
10.1016/j.enbuild.2018.03.082
10.1016/j.buildenv.2021.108327
10.1214/09-SS054
10.1109/JIOT.2017.2647881
10.1016/j.energy.2022.123856
10.1016/j.asoc.2018.03.043
10.1016/j.buildenv.2020.107432
10.1016/j.apenergy.2020.114683
10.1016/j.apenergy.2021.117486
10.1109/JSEN.2019.2922409
10.1016/j.enbuild.2019.06.029
10.1016/j.buildenv.2022.108964
10.1016/j.buildenv.2022.109511
10.1016/j.buildenv.2021.108355
10.1016/j.enpol.2021.112293
10.1016/j.buildenv.2018.10.062
10.1016/j.apenergy.2019.01.022
10.1016/j.enbuild.2021.111593
10.1016/j.apenergy.2020.116117
10.1016/j.buildenv.2022.109536
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.buildenv.2023.110388
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-684X
ExternalDocumentID 10_1016_j_buildenv_2023_110388
S0360132323004158
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SAC
SET
VH1
WUQ
ZMT
~HD
ID FETCH-LOGICAL-c227t-d7186474559dc181b810472dfd47ae09bcac4554b54b4f72c3b6881f6ebd7633
ISSN 0360-1323
IngestDate Sat Nov 29 07:20:56 EST 2025
Tue Nov 18 22:20:49 EST 2025
Fri Feb 23 02:35:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Encoder–decoder architecture
Multi-zone temperature prediction
Multiple sensor information
Gated recurrent unit network
Information fusion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227t-d7186474559dc181b810472dfd47ae09bcac4554b54b4f72c3b6881f6ebd7633
ORCID 0000-0003-1648-3409
0000-0003-0528-2644
0000-0002-7952-5621
ParticipantIDs crossref_citationtrail_10_1016_j_buildenv_2023_110388
crossref_primary_10_1016_j_buildenv_2023_110388
elsevier_sciencedirect_doi_10_1016_j_buildenv_2023_110388
PublicationCentury 2000
PublicationDate 2023-07-01
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Building and environment
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lamb, Alias Parth Goyal, Zhang, Zhang, Courville, Bengio (b59) 2016; 29
Jung, Jeoung, Hong (b4) 2022; 208
Plageras, Psannis, Stergiou, Wang, Gupta (b42) 2018; 82
Liu, Luh, Sun (b49) 2022
Wu, Su, Cheng, Shao, Deng, Liu (b51) 2018; 68
Du, Zandi, Kotevska, Kurte, Munk, Amasyali, Mckee, Li (b65) 2021; 281
Yang, Wan, Ng, Dubey, Henze, Rai, Baskaran (b66) 2019; 203
Dong, Cao, Lee (b21) 2005; 37
Dey, Salem (b53) 2017
Gao, Liu, Cao, Hwang, Radermacher (b24) 2021; 301
Oliveira Panão, Santos, Mateus, Carrilho da Graça (b15) 2016; 121
Sun, Zhao, Zhang, Hu (b61) 2022; 254
Minoli, Sohraby, Occhiogrosso (b43) 2017; 4
Du, Narasimhan (b70) 2019
Alzubaidi, Zhang, Humaidi, Al-Dujaili, Duan, Al-Shamma, Santamaría, Fadhel, Al-Amidie, Farhan (b30) 2021; 8
Zhou, Guo, Han, Wang, Lu, Shi, Kou (b32) 2022; 215
Xue, Pan, Lin, Song, Qi, Wang (b34) 2019; 12
Sun, Zhao, Zou (b44) 2020; 216
Taheri, Razban (b37) 2021; 205
Dong, Lam (b67) 2014; 7
Qian, Tang, Gao, Dong, Liang, Liu (b36) 2022; 223
Masood, Gantassi, Ardiansyah, Choi (b47) 2022; 15
Xu, Wang, Lin, Xiao, Huang, Zhang (b48) 2021; 13
Arlot, Celisse (b63) 2010; 4
Li, Wang, Zhang, Mu (b1) 2022; 219
Gao, Ruan (b29) 2021; 252
Bergmeir, Benítez (b64) 2012; 191
Chaudhuri, Soh, Li, Xie (b7) 2019; 248
Thomas, Soleimani-Mohseni (b22) 2006; 16
Magalhães, Leal, Horta (b10) 2017; 151
Wang, Hong, Piette (b12) 2020; 263
Monteiro, Zanin, Menasalvas Ruiz, Pimentão, Alexandre da Costa Sousa (b13) 2018; 18
Verma, Prakash, Srivastava, Kumar, Mukhopadhyay (b40) 2019; 19
Al Dakheel, Del Pero, Aste, Leonforte (b41) 2020; 61
Sun, Ma, Liu, Zhao (b57) 2022; 222
Xing, Li, Zhang (b14) 2018; 174
Nsangou, Kenfack, Nzotcha, Ngohe Ekam, Voufo, Tamo (b18) 2022; 250
Jiang, Gong, Qin, Zhu (b28) 2022
Fu, Zhang, Li (b54) 2016
Atrey, Hossain, El Saddik, Kankanhalli (b56) 2010; 16
Xu, Chen, Wang, Guo, Yuan (b11) 2019; 148
Che, Tso, Sun, Ip, Lee, Chao, Lau (b8) 2019; 201
Han, Zhao, Leung, Ma, Wang (b25) 2021; 21
Sola, Sevilla (b62) 1997; 44
Yang, Wan, Ng, Zhang, Babu, Zhang, Chen, Dubey (b68) 2018; 170
Dmitrewski, Molina-Solana, Arcucci (b69) 2022; 215
Xing, Yan, Sun, Wang, Wang, Zhao (b60) 2022
Č.ović, Pandžić, Dvorkin (b16) 2022; 211
Tian, Cheng, Lin (b31) 2022; 208
Mba, Meukam, Kemajou (b23) 2016; 121
Elmaz, Eyckerman, Casteels, Latré, Hellinckx (b27) 2021; 206
Ren, Cao (b39) 2019
Park, Kim, Kang, Chung, Choi (b58) 2018
Sun, Chen, Cao, Gao, Xia, Qi, Wu (b5) 2021; 235
Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (b45) 2014
Xu, Wang, Tang (b35) 2019; 237
Xu, Sun, Zhang, Zhao, Lin (b55) 2019; 32
Papadopoulos, Kontokosta, Vlachokostas, Azar (b3) 2019; 155
Heo, Zavala (b19) 2012; 53
Anand, Sekhar, Cheong, Santamouris, Kondepudi (b52) 2019; 204
Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio, Neural Machine Translation by Jointly Learning to Align and Translate, in: 3rd International Conference on Learning Representations, ICLR 2015, 2015.
Fang, Crimier, Scanu, Midelet, Alyafi, Delinchant (b33) 2021
Liu, Xu, Zheng, Lin, Wu, Huang, Li (b38) 2021; 206
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b26) 2017; 30
Afroz, Urmee, Shafiullah, Higgins (b9) 2018; 231
Li, Zhang, Zhao, Ren (b6) 2021; 187
Idahosa, Akotey (b2) 2021; 154
Yu, Haghighat, Fung, Yoshino (b17) 2010; 42
Martínez-Comesaña (b20) 2022
Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, Andrew Y. Ng, Multimodal Deep Learning, in: ICML, 2011, pp. 689–696.
Xu (10.1016/j.buildenv.2023.110388_b48) 2021; 13
Lamb (10.1016/j.buildenv.2023.110388_b59) 2016; 29
Xu (10.1016/j.buildenv.2023.110388_b55) 2019; 32
Ren (10.1016/j.buildenv.2023.110388_b39) 2019
Han (10.1016/j.buildenv.2023.110388_b25) 2021; 21
Minoli (10.1016/j.buildenv.2023.110388_b43) 2017; 4
10.1016/j.buildenv.2023.110388_b50
Č.ović (10.1016/j.buildenv.2023.110388_b16) 2022; 211
Verma (10.1016/j.buildenv.2023.110388_b40) 2019; 19
Fu (10.1016/j.buildenv.2023.110388_b54) 2016
Li (10.1016/j.buildenv.2023.110388_b6) 2021; 187
Yang (10.1016/j.buildenv.2023.110388_b68) 2018; 170
Masood (10.1016/j.buildenv.2023.110388_b47) 2022; 15
Dey (10.1016/j.buildenv.2023.110388_b53) 2017
Sun (10.1016/j.buildenv.2023.110388_b57) 2022; 222
Wu (10.1016/j.buildenv.2023.110388_b51) 2018; 68
Bergmeir (10.1016/j.buildenv.2023.110388_b64) 2012; 191
Xu (10.1016/j.buildenv.2023.110388_b35) 2019; 237
Elmaz (10.1016/j.buildenv.2023.110388_b27) 2021; 206
Chaudhuri (10.1016/j.buildenv.2023.110388_b7) 2019; 248
Alzubaidi (10.1016/j.buildenv.2023.110388_b30) 2021; 8
Li (10.1016/j.buildenv.2023.110388_b1) 2022; 219
Che (10.1016/j.buildenv.2023.110388_b8) 2019; 201
10.1016/j.buildenv.2023.110388_b46
Liu (10.1016/j.buildenv.2023.110388_b49) 2022
Xing (10.1016/j.buildenv.2023.110388_b60) 2022
Xing (10.1016/j.buildenv.2023.110388_b14) 2018; 174
Anand (10.1016/j.buildenv.2023.110388_b52) 2019; 204
Jung (10.1016/j.buildenv.2023.110388_b4) 2022; 208
Fang (10.1016/j.buildenv.2023.110388_b33) 2021
Heo (10.1016/j.buildenv.2023.110388_b19) 2012; 53
Du (10.1016/j.buildenv.2023.110388_b65) 2021; 281
Monteiro (10.1016/j.buildenv.2023.110388_b13) 2018; 18
Nsangou (10.1016/j.buildenv.2023.110388_b18) 2022; 250
Papadopoulos (10.1016/j.buildenv.2023.110388_b3) 2019; 155
Yang (10.1016/j.buildenv.2023.110388_b66) 2019; 203
Gao (10.1016/j.buildenv.2023.110388_b24) 2021; 301
Atrey (10.1016/j.buildenv.2023.110388_b56) 2010; 16
Dong (10.1016/j.buildenv.2023.110388_b67) 2014; 7
Dong (10.1016/j.buildenv.2023.110388_b21) 2005; 37
Wang (10.1016/j.buildenv.2023.110388_b12) 2020; 263
Sun (10.1016/j.buildenv.2023.110388_b5) 2021; 235
Tian (10.1016/j.buildenv.2023.110388_b31) 2022; 208
Oliveira Panão (10.1016/j.buildenv.2023.110388_b15) 2016; 121
Qian (10.1016/j.buildenv.2023.110388_b36) 2022; 223
Taheri (10.1016/j.buildenv.2023.110388_b37) 2021; 205
Martínez-Comesaña (10.1016/j.buildenv.2023.110388_b20) 2022
Thomas (10.1016/j.buildenv.2023.110388_b22) 2006; 16
Dmitrewski (10.1016/j.buildenv.2023.110388_b69) 2022; 215
Cho (10.1016/j.buildenv.2023.110388_b45) 2014
Arlot (10.1016/j.buildenv.2023.110388_b63) 2010; 4
Mba (10.1016/j.buildenv.2023.110388_b23) 2016; 121
Yu (10.1016/j.buildenv.2023.110388_b17) 2010; 42
Sun (10.1016/j.buildenv.2023.110388_b44) 2020; 216
Sun (10.1016/j.buildenv.2023.110388_b61) 2022; 254
Liu (10.1016/j.buildenv.2023.110388_b38) 2021; 206
Idahosa (10.1016/j.buildenv.2023.110388_b2) 2021; 154
Jiang (10.1016/j.buildenv.2023.110388_b28) 2022
Gao (10.1016/j.buildenv.2023.110388_b29) 2021; 252
Vaswani (10.1016/j.buildenv.2023.110388_b26) 2017; 30
Plageras (10.1016/j.buildenv.2023.110388_b42) 2018; 82
Magalhães (10.1016/j.buildenv.2023.110388_b10) 2017; 151
Zhou (10.1016/j.buildenv.2023.110388_b32) 2022; 215
Al Dakheel (10.1016/j.buildenv.2023.110388_b41) 2020; 61
Xu (10.1016/j.buildenv.2023.110388_b11) 2019; 148
Xue (10.1016/j.buildenv.2023.110388_b34) 2019; 12
Park (10.1016/j.buildenv.2023.110388_b58) 2018
Afroz (10.1016/j.buildenv.2023.110388_b9) 2018; 231
Du (10.1016/j.buildenv.2023.110388_b70) 2019
Sola (10.1016/j.buildenv.2023.110388_b62) 1997; 44
References_xml – start-page: 1672
  year: 2018
  end-page: 1678
  ident: b58
  article-title: Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture
  publication-title: 2018 IEEE Intelligent Vehicles Symposium
– volume: 82
  start-page: 349
  year: 2018
  end-page: 357
  ident: b42
  article-title: Efficient IoT-based sensor BIG data collection–processing and analysis in smart buildings
  publication-title: Future Gener. Comput. Syst.
– reference: Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, Andrew Y. Ng, Multimodal Deep Learning, in: ICML, 2011, pp. 689–696.
– start-page: 21
  year: 2021
  ident: b33
  article-title: Multi-zone indoor temperature prediction with LSTM-based sequence to sequence model
  publication-title: Energy Build.
– volume: 53
  start-page: 7
  year: 2012
  end-page: 18
  ident: b19
  article-title: Gaussian process modeling for measurement and verification of building energy savings
  publication-title: Energy Build.
– volume: 252
  year: 2021
  ident: b29
  article-title: Interpretable deep learning model for building energy consumption prediction based on attention mechanism
  publication-title: Energy Build.
– volume: 208
  year: 2022
  ident: b31
  article-title: Modelling indoor environment indicators using artificial neural network in the stratified environments
  publication-title: Build. Environ.
– volume: 151
  start-page: 332
  year: 2017
  end-page: 343
  ident: b10
  article-title: Modelling the relationship between heating energy use and indoor temperatures in residential buildings through artificial neural networks considering occupant behavior
  publication-title: Energy Build.
– volume: 208
  year: 2022
  ident: b4
  article-title: Occupant-centered real-time control of indoor temperature using deep learning algorithms
  publication-title: Build. Environ.
– reference: Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio, Neural Machine Translation by Jointly Learning to Align and Translate, in: 3rd International Conference on Learning Representations, ICLR 2015, 2015.
– volume: 32
  year: 2019
  ident: b55
  article-title: Understanding and improving layer normalization
  publication-title: Advances in Neural Information Processing Systems
– volume: 263
  year: 2020
  ident: b12
  article-title: Building thermal load prediction through shallow machine learning and deep learning
  publication-title: Appl. Energy
– start-page: 17
  year: 2019
  ident: b39
  article-title: Development and application of linear ventilation and temperature models for indoor environmental prediction and HVAC systems control
  publication-title: Sustainable Cities Soc.
– start-page: 12
  year: 2022
  ident: b20
  article-title: Optimisation of thermal comfort and indoor air quality estimations applied to in-use buildings combining NSGA-III and XGBoost
  publication-title: Sustainable Cities Soc.
– volume: 121
  start-page: 32
  year: 2016
  end-page: 42
  ident: b23
  article-title: Application of artificial neural network for predicting hourly indoor air temperature and relative humidity in modern building in humid region
  publication-title: Energy Build.
– volume: 16
  start-page: 81
  year: 2006
  end-page: 89
  ident: b22
  article-title: Artificial neural network models for indoor temperature prediction: Investigations in two buildings
  publication-title: Neural Comput. Appl.
– volume: 281
  year: 2021
  ident: b65
  article-title: Intelligent multi-zone residential HVAC control strategy based on deep reinforcement learning
  publication-title: Appl. Energy
– volume: 222
  year: 2022
  ident: b57
  article-title: MPSN: Motion-aware pseudo-siamese network for indoor video head detection in buildings
  publication-title: Build. Environ.
– volume: 206
  year: 2021
  ident: b27
  article-title: CNN-LSTM architecture for predictive indoor temperature modeling
  publication-title: Build. Environ.
– start-page: 324
  year: 2016
  end-page: 328
  ident: b54
  article-title: Using LSTM and GRU neural network methods for traffic flow prediction
  publication-title: 2016 31st Youth Academic Annual Conference of Chinese Association of Automation
– volume: 187
  year: 2021
  ident: b6
  article-title: Experimental study of an indoor temperature fuzzy control method for thermal comfort and energy saving using wristband device
  publication-title: Build. Environ.
– volume: 12
  start-page: 2122
  year: 2019
  ident: b34
  article-title: District heating load prediction algorithm based on feature fusion LSTM model
  publication-title: Energies
– volume: 21
  start-page: 7833
  year: 2021
  end-page: 7848
  ident: b25
  article-title: A review of deep learning models for time series prediction
  publication-title: IEEE Sens. J.
– volume: 61
  year: 2020
  ident: b41
  article-title: Smart buildings features and key performance indicators: A review
  publication-title: Sustainable Cities Soc.
– volume: 4
  start-page: 269
  year: 2017
  end-page: 283
  ident: b43
  article-title: IoT considerations, requirements, and architectures for smart buildings—energy optimization and next-generation building management systems
  publication-title: IEEE Internet Things J.
– volume: 68
  start-page: 13
  year: 2018
  end-page: 23
  ident: b51
  article-title: Multi-sensor information fusion for remaining useful life prediction of machining tools by adaptive network based fuzzy inference system
  publication-title: Appl. Soft Comput.
– volume: 4
  start-page: 40
  year: 2010
  end-page: 79
  ident: b63
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Stat. Surv.
– volume: 203
  year: 2019
  ident: b66
  article-title: Experimental study of a model predictive control system for active chilled beam (ACB) air-conditioning system
  publication-title: Energy Build.
– volume: 174
  start-page: 134
  year: 2018
  end-page: 146
  ident: b14
  article-title: An identification method for room temperature dynamic model based on analytical solution in VAV system
  publication-title: Energy Build.
– year: 2022
  ident: b28
  article-title: Attention-LSTM architecture combined with Bayesian hyperparameter optimization for indoor temperature prediction
  publication-title: Build. Environ.
– volume: 8
  start-page: 53
  year: 2021
  ident: b30
  article-title: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions
  publication-title: J. Big Data
– volume: 237
  start-page: 180
  year: 2019
  end-page: 195
  ident: b35
  article-title: Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load
  publication-title: Appl. Energy
– volume: 18
  start-page: 3610
  year: 2018
  ident: b13
  article-title: Indoor temperature prediction in an IoT scenario
  publication-title: Sensors
– volume: 16
  start-page: 345
  year: 2010
  end-page: 379
  ident: b56
  article-title: Multimodal fusion for multimedia analysis: A survey
  publication-title: Multimedia Syst.
– volume: 219
  year: 2022
  ident: b1
  article-title: A strategy of improving indoor air temperature prediction in HVAC system based on multivariate transfer entropy
  publication-title: Build. Environ.
– volume: 148
  start-page: 128
  year: 2019
  end-page: 135
  ident: b11
  article-title: Improving prediction performance for indoor temperature in public buildings based on a novel deep learning method
  publication-title: Build. Environ.
– volume: 30
  start-page: 11
  year: 2017
  ident: b26
  article-title: Attention is all you need
  publication-title: 31st Conference on Neural Information Processing Systems
– volume: 191
  start-page: 192
  year: 2012
  end-page: 213
  ident: b64
  article-title: On the use of cross-validation for time series predictor evaluation
  publication-title: Inform. Sci.
– volume: 7
  start-page: 89
  year: 2014
  end-page: 106
  ident: b67
  article-title: A real-time model predictive control for building heating and cooling systems based on the occupancy behavior pattern detection and local weather forecasting
  publication-title: Build. Simul.
– volume: 13
  start-page: 1031
  year: 2021
  ident: b48
  article-title: FM-GRU: A time series prediction method for water quality based on seq2seq framework
  publication-title: Water
– volume: 29
  year: 2016
  ident: b59
  article-title: Professor forcing: A new algorithm for training recurrent networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 254
  year: 2022
  ident: b61
  article-title: Indoor occupancy measurement by the fusion of motion detection and static estimation
  publication-title: Energy and Buildings
– volume: 154
  year: 2021
  ident: b2
  article-title: A social constructionist approach to managing HVAC energy consumption using social norms – a randomised field experiment
  publication-title: Energy Policy
– volume: 205
  year: 2021
  ident: b37
  article-title: Learning-based CO2 concentration prediction: Application to indoor air quality control using demand-controlled ventilation
  publication-title: Build. Environ.
– start-page: 1597
  year: 2017
  end-page: 1600
  ident: b53
  article-title: Gate-variants of gated recurrent unit (GRU) neural networks
  publication-title: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems
– volume: 223
  year: 2022
  ident: b36
  article-title: Improving indoor air flow and temperature prediction with local measurements based on CFD-EnKF data assimilation
  publication-title: Build. Environ.
– volume: 170
  start-page: 25
  year: 2018
  end-page: 39
  ident: b68
  article-title: A state-space thermal model incorporating humidity and thermal comfort for model predictive control in buildings
  publication-title: Energy Build.
– start-page: 1696
  year: 2019
  end-page: 1705
  ident: b70
  article-title: Task-agnostic dynamics priors for deep reinforcement learning
  publication-title: International Conference on Machine Learning
– volume: 44
  start-page: 1464
  year: 1997
  end-page: 1468
  ident: b62
  article-title: Importance of input data normalization for the application of neural networks to complex industrial problems
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 155
  start-page: 350
  year: 2019
  end-page: 359
  ident: b3
  article-title: Rethinking HVAC temperature setpoints in commercial buildings: The potential for zero-cost energy savings and comfort improvement in different climates
  publication-title: Build. Environ.
– volume: 250
  year: 2022
  ident: b18
  article-title: Explaining household electricity consumption using quantile regression, decision tree and artificial neural network
  publication-title: Energy
– volume: 215
  year: 2022
  ident: b32
  article-title: Real-time prediction of indoor humidity with limited sensors using cross-sample learning
  publication-title: Build. Environ.
– year: 2022
  ident: b49
  article-title: Integrating machine learning and mathematical optimization for job shop scheduling
– volume: 37
  start-page: 545
  year: 2005
  end-page: 553
  ident: b21
  article-title: Applying support vector machines to predict building energy consumption in tropical region
  publication-title: Energy Build.
– volume: 206
  year: 2021
  ident: b38
  article-title: Thermal preference prediction based on occupants’ adaptive behavior in indoor environments- a study of an air-conditioned multi-occupancy office in China
  publication-title: Build. Environ.
– volume: 201
  start-page: 202
  year: 2019
  end-page: 215
  ident: b8
  article-title: Energy consumption, indoor thermal comfort and air quality in a commercial office with retrofitted heat, ventilation and air conditioning (HVAC) system
  publication-title: Energy Build.
– volume: 301
  year: 2021
  ident: b24
  article-title: Comparing deep learning models for multi energy vectors prediction on multiple types of building
  publication-title: Appl. Energy
– volume: 211
  year: 2022
  ident: b16
  article-title: Learning indoor temperature predictions for optimal load ensemble control
  publication-title: Electr. Power Syst. Res.
– volume: 204
  year: 2019
  ident: b52
  article-title: Occupancy-based zone-level VAV system control implications on thermal comfort, ventilation, indoor air quality and building energy efficiency
  publication-title: Energy Build.
– volume: 216
  year: 2020
  ident: b44
  article-title: A review of building occupancy measurement systems
  publication-title: Energy Build.
– year: 2022
  ident: b60
  article-title: Honeycomb: An open-source distributed system for smart buildings
  publication-title: Patterns
– volume: 248
  start-page: 44
  year: 2019
  end-page: 53
  ident: b7
  article-title: A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings
  publication-title: Appl. Energy
– volume: 231
  start-page: 29
  year: 2018
  end-page: 53
  ident: b9
  article-title: Real-time prediction model for indoor temperature in a commercial building
  publication-title: Appl. Energy
– volume: 19
  start-page: 9036
  year: 2019
  end-page: 9046
  ident: b40
  article-title: Sensing, controlling, and IoT infrastructure in smart building: A review
  publication-title: IEEE Sens. J.
– volume: 215
  year: 2022
  ident: b69
  article-title: Cntrlda: A building energy management control system with real-time adjustments. Application to indoor temperature
  publication-title: Build. Environ.
– volume: 235
  year: 2021
  ident: b5
  article-title: A dynamic control strategy of district heating substations based on online prediction and indoor temperature feedback
  publication-title: Energy
– volume: 15
  start-page: 2623
  year: 2022
  ident: b47
  article-title: A multi-step time-series clustering-based Seq2Seq LSTM learning for a single household electricity load forecasting
  publication-title: Energies
– volume: 42
  start-page: 1637
  year: 2010
  end-page: 1646
  ident: b17
  article-title: A decision tree method for building energy demand modeling
  publication-title: Energy Build.
– volume: 121
  start-page: 92
  year: 2016
  end-page: 103
  ident: b15
  article-title: Validation of a lumped RC model for thermal simulation of a double skin natural and mechanical ventilated test cell
  publication-title: Energy Build.
– start-page: 1724
  year: 2014
  end-page: 1734
  ident: b45
  article-title: Learning phrase representations using RNN encoder–decoder for statistical machine translation
  publication-title: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
– volume: 29
  year: 2016
  ident: 10.1016/j.buildenv.2023.110388_b59
  article-title: Professor forcing: A new algorithm for training recurrent networks
– volume: 13
  start-page: 1031
  issue: 8
  year: 2021
  ident: 10.1016/j.buildenv.2023.110388_b48
  article-title: FM-GRU: A time series prediction method for water quality based on seq2seq framework
  publication-title: Water
  doi: 10.3390/w13081031
– volume: 231
  start-page: 29
  year: 2018
  ident: 10.1016/j.buildenv.2023.110388_b9
  article-title: Real-time prediction model for indoor temperature in a commercial building
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.052
– volume: 174
  start-page: 134
  year: 2018
  ident: 10.1016/j.buildenv.2023.110388_b14
  article-title: An identification method for room temperature dynamic model based on analytical solution in VAV system
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.06.039
– volume: 216
  year: 2020
  ident: 10.1016/j.buildenv.2023.110388_b44
  article-title: A review of building occupancy measurement systems
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.109965
– volume: 222
  year: 2022
  ident: 10.1016/j.buildenv.2023.110388_b57
  article-title: MPSN: Motion-aware pseudo-siamese network for indoor video head detection in buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109354
– volume: 219
  year: 2022
  ident: 10.1016/j.buildenv.2023.110388_b1
  article-title: A strategy of improving indoor air temperature prediction in HVAC system based on multivariate transfer entropy
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109164
– volume: 211
  year: 2022
  ident: 10.1016/j.buildenv.2023.110388_b16
  article-title: Learning indoor temperature predictions for optimal load ensemble control
  publication-title: Electr. Power Syst. Res.
– year: 2022
  ident: 10.1016/j.buildenv.2023.110388_b49
– volume: 121
  start-page: 32
  year: 2016
  ident: 10.1016/j.buildenv.2023.110388_b23
  article-title: Application of artificial neural network for predicting hourly indoor air temperature and relative humidity in modern building in humid region
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.03.046
– volume: 16
  start-page: 81
  issue: 1
  year: 2006
  ident: 10.1016/j.buildenv.2023.110388_b22
  article-title: Artificial neural network models for indoor temperature prediction: Investigations in two buildings
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-006-0047-9
– start-page: 12
  year: 2022
  ident: 10.1016/j.buildenv.2023.110388_b20
  article-title: Optimisation of thermal comfort and indoor air quality estimations applied to in-use buildings combining NSGA-III and XGBoost
  publication-title: Sustainable Cities Soc.
– ident: 10.1016/j.buildenv.2023.110388_b50
– volume: 21
  start-page: 7833
  issue: 6
  year: 2021
  ident: 10.1016/j.buildenv.2023.110388_b25
  article-title: A review of deep learning models for time series prediction
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2923982
– volume: 15
  start-page: 2623
  issue: 7
  year: 2022
  ident: 10.1016/j.buildenv.2023.110388_b47
  article-title: A multi-step time-series clustering-based Seq2Seq LSTM learning for a single household electricity load forecasting
  publication-title: Energies
  doi: 10.3390/en15072623
– volume: 7
  start-page: 89
  issue: 1
  year: 2014
  ident: 10.1016/j.buildenv.2023.110388_b67
  article-title: A real-time model predictive control for building heating and cooling systems based on the occupancy behavior pattern detection and local weather forecasting
  publication-title: Build. Simul.
  doi: 10.1007/s12273-013-0142-7
– volume: 121
  start-page: 92
  year: 2016
  ident: 10.1016/j.buildenv.2023.110388_b15
  article-title: Validation of a lumped RC model for thermal simulation of a double skin natural and mechanical ventilated test cell
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.03.054
– volume: 208
  year: 2022
  ident: 10.1016/j.buildenv.2023.110388_b4
  article-title: Occupant-centered real-time control of indoor temperature using deep learning algorithms
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108633
– volume: 248
  start-page: 44
  year: 2019
  ident: 10.1016/j.buildenv.2023.110388_b7
  article-title: A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.04.065
– volume: 37
  start-page: 545
  issue: 5
  year: 2005
  ident: 10.1016/j.buildenv.2023.110388_b21
  article-title: Applying support vector machines to predict building energy consumption in tropical region
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2004.09.009
– volume: 61
  year: 2020
  ident: 10.1016/j.buildenv.2023.110388_b41
  article-title: Smart buildings features and key performance indicators: A review
  publication-title: Sustainable Cities Soc.
  doi: 10.1016/j.scs.2020.102328
– volume: 151
  start-page: 332
  year: 2017
  ident: 10.1016/j.buildenv.2023.110388_b10
  article-title: Modelling the relationship between heating energy use and indoor temperatures in residential buildings through artificial neural networks considering occupant behavior
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.06.076
– volume: 155
  start-page: 350
  year: 2019
  ident: 10.1016/j.buildenv.2023.110388_b3
  article-title: Rethinking HVAC temperature setpoints in commercial buildings: The potential for zero-cost energy savings and comfort improvement in different climates
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.03.062
– volume: 205
  year: 2021
  ident: 10.1016/j.buildenv.2023.110388_b37
  article-title: Learning-based CO2 concentration prediction: Application to indoor air quality control using demand-controlled ventilation
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108164
– start-page: 1724
  year: 2014
  ident: 10.1016/j.buildenv.2023.110388_b45
  article-title: Learning phrase representations using RNN encoder–decoder for statistical machine translation
– volume: 215
  year: 2022
  ident: 10.1016/j.buildenv.2023.110388_b69
  article-title: Cntrlda: A building energy management control system with real-time adjustments. Application to indoor temperature
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.108938
– volume: 204
  year: 2019
  ident: 10.1016/j.buildenv.2023.110388_b52
  article-title: Occupancy-based zone-level VAV system control implications on thermal comfort, ventilation, indoor air quality and building energy efficiency
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.109473
– volume: 30
  start-page: 11
  year: 2017
  ident: 10.1016/j.buildenv.2023.110388_b26
  article-title: Attention is all you need
– volume: 32
  year: 2019
  ident: 10.1016/j.buildenv.2023.110388_b55
  article-title: Understanding and improving layer normalization
– year: 2022
  ident: 10.1016/j.buildenv.2023.110388_b60
  article-title: Honeycomb: An open-source distributed system for smart buildings
  publication-title: Patterns
  doi: 10.1016/j.patter.2022.100605
– volume: 44
  start-page: 1464
  issue: 3
  year: 1997
  ident: 10.1016/j.buildenv.2023.110388_b62
  article-title: Importance of input data normalization for the application of neural networks to complex industrial problems
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.589532
– start-page: 324
  year: 2016
  ident: 10.1016/j.buildenv.2023.110388_b54
  article-title: Using LSTM and GRU neural network methods for traffic flow prediction
– volume: 191
  start-page: 192
  year: 2012
  ident: 10.1016/j.buildenv.2023.110388_b64
  article-title: On the use of cross-validation for time series predictor evaluation
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2011.12.028
– volume: 208
  year: 2022
  ident: 10.1016/j.buildenv.2023.110388_b31
  article-title: Modelling indoor environment indicators using artificial neural network in the stratified environments
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108581
– volume: 252
  year: 2021
  ident: 10.1016/j.buildenv.2023.110388_b29
  article-title: Interpretable deep learning model for building energy consumption prediction based on attention mechanism
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2021.111379
– volume: 42
  start-page: 1637
  issue: 10
  year: 2010
  ident: 10.1016/j.buildenv.2023.110388_b17
  article-title: A decision tree method for building energy demand modeling
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2010.04.006
– volume: 16
  start-page: 345
  issue: 6
  year: 2010
  ident: 10.1016/j.buildenv.2023.110388_b56
  article-title: Multimodal fusion for multimedia analysis: A survey
  publication-title: Multimedia Syst.
  doi: 10.1007/s00530-010-0182-0
– volume: 8
  start-page: 53
  issue: 1
  year: 2021
  ident: 10.1016/j.buildenv.2023.110388_b30
  article-title: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00444-8
– volume: 12
  start-page: 2122
  issue: 11
  year: 2019
  ident: 10.1016/j.buildenv.2023.110388_b34
  article-title: District heating load prediction algorithm based on feature fusion LSTM model
  publication-title: Energies
  doi: 10.3390/en12112122
– volume: 53
  start-page: 7
  year: 2012
  ident: 10.1016/j.buildenv.2023.110388_b19
  article-title: Gaussian process modeling for measurement and verification of building energy savings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.06.024
– volume: 235
  year: 2021
  ident: 10.1016/j.buildenv.2023.110388_b5
  article-title: A dynamic control strategy of district heating substations based on online prediction and indoor temperature feedback
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121228
– start-page: 1672
  year: 2018
  ident: 10.1016/j.buildenv.2023.110388_b58
  article-title: Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture
– ident: 10.1016/j.buildenv.2023.110388_b46
– volume: 18
  start-page: 3610
  issue: 11
  year: 2018
  ident: 10.1016/j.buildenv.2023.110388_b13
  article-title: Indoor temperature prediction in an IoT scenario
  publication-title: Sensors
  doi: 10.3390/s18113610
– volume: 203
  year: 2019
  ident: 10.1016/j.buildenv.2023.110388_b66
  article-title: Experimental study of a model predictive control system for active chilled beam (ACB) air-conditioning system
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.109451
– volume: 82
  start-page: 349
  year: 2018
  ident: 10.1016/j.buildenv.2023.110388_b42
  article-title: Efficient IoT-based sensor BIG data collection–processing and analysis in smart buildings
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.09.082
– volume: 170
  start-page: 25
  year: 2018
  ident: 10.1016/j.buildenv.2023.110388_b68
  article-title: A state-space thermal model incorporating humidity and thermal comfort for model predictive control in buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.03.082
– volume: 206
  year: 2021
  ident: 10.1016/j.buildenv.2023.110388_b27
  article-title: CNN-LSTM architecture for predictive indoor temperature modeling
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108327
– volume: 4
  start-page: 40
  year: 2010
  ident: 10.1016/j.buildenv.2023.110388_b63
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Stat. Surv.
  doi: 10.1214/09-SS054
– volume: 4
  start-page: 269
  issue: 1
  year: 2017
  ident: 10.1016/j.buildenv.2023.110388_b43
  article-title: IoT considerations, requirements, and architectures for smart buildings—energy optimization and next-generation building management systems
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2647881
– volume: 250
  year: 2022
  ident: 10.1016/j.buildenv.2023.110388_b18
  article-title: Explaining household electricity consumption using quantile regression, decision tree and artificial neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123856
– start-page: 21
  year: 2021
  ident: 10.1016/j.buildenv.2023.110388_b33
  article-title: Multi-zone indoor temperature prediction with LSTM-based sequence to sequence model
  publication-title: Energy Build.
– volume: 68
  start-page: 13
  year: 2018
  ident: 10.1016/j.buildenv.2023.110388_b51
  article-title: Multi-sensor information fusion for remaining useful life prediction of machining tools by adaptive network based fuzzy inference system
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.03.043
– volume: 187
  year: 2021
  ident: 10.1016/j.buildenv.2023.110388_b6
  article-title: Experimental study of an indoor temperature fuzzy control method for thermal comfort and energy saving using wristband device
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2020.107432
– volume: 263
  year: 2020
  ident: 10.1016/j.buildenv.2023.110388_b12
  article-title: Building thermal load prediction through shallow machine learning and deep learning
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114683
– volume: 301
  year: 2021
  ident: 10.1016/j.buildenv.2023.110388_b24
  article-title: Comparing deep learning models for multi energy vectors prediction on multiple types of building
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117486
– volume: 19
  start-page: 9036
  issue: 20
  year: 2019
  ident: 10.1016/j.buildenv.2023.110388_b40
  article-title: Sensing, controlling, and IoT infrastructure in smart building: A review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2922409
– volume: 201
  start-page: 202
  year: 2019
  ident: 10.1016/j.buildenv.2023.110388_b8
  article-title: Energy consumption, indoor thermal comfort and air quality in a commercial office with retrofitted heat, ventilation and air conditioning (HVAC) system
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.06.029
– start-page: 1597
  year: 2017
  ident: 10.1016/j.buildenv.2023.110388_b53
  article-title: Gate-variants of gated recurrent unit (GRU) neural networks
– volume: 215
  year: 2022
  ident: 10.1016/j.buildenv.2023.110388_b32
  article-title: Real-time prediction of indoor humidity with limited sensors using cross-sample learning
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.108964
– volume: 223
  year: 2022
  ident: 10.1016/j.buildenv.2023.110388_b36
  article-title: Improving indoor air flow and temperature prediction with local measurements based on CFD-EnKF data assimilation
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109511
– volume: 206
  year: 2021
  ident: 10.1016/j.buildenv.2023.110388_b38
  article-title: Thermal preference prediction based on occupants’ adaptive behavior in indoor environments- a study of an air-conditioned multi-occupancy office in China
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108355
– volume: 154
  year: 2021
  ident: 10.1016/j.buildenv.2023.110388_b2
  article-title: A social constructionist approach to managing HVAC energy consumption using social norms – a randomised field experiment
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2021.112293
– volume: 148
  start-page: 128
  year: 2019
  ident: 10.1016/j.buildenv.2023.110388_b11
  article-title: Improving prediction performance for indoor temperature in public buildings based on a novel deep learning method
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.10.062
– volume: 237
  start-page: 180
  year: 2019
  ident: 10.1016/j.buildenv.2023.110388_b35
  article-title: Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.022
– start-page: 17
  year: 2019
  ident: 10.1016/j.buildenv.2023.110388_b39
  article-title: Development and application of linear ventilation and temperature models for indoor environmental prediction and HVAC systems control
  publication-title: Sustainable Cities Soc.
– start-page: 1696
  year: 2019
  ident: 10.1016/j.buildenv.2023.110388_b70
  article-title: Task-agnostic dynamics priors for deep reinforcement learning
– volume: 254
  year: 2022
  ident: 10.1016/j.buildenv.2023.110388_b61
  article-title: Indoor occupancy measurement by the fusion of motion detection and static estimation
  publication-title: Energy and Buildings
  doi: 10.1016/j.enbuild.2021.111593
– volume: 281
  year: 2021
  ident: 10.1016/j.buildenv.2023.110388_b65
  article-title: Intelligent multi-zone residential HVAC control strategy based on deep reinforcement learning
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.116117
– year: 2022
  ident: 10.1016/j.buildenv.2023.110388_b28
  article-title: Attention-LSTM architecture combined with Bayesian hyperparameter optimization for indoor temperature prediction
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109536
SSID ssj0016934
Score 2.465332
Snippet Indoor temperature prediction is an essential component of building control and energy saving. Although existing indoor temperature prediction frameworks have...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110388
SubjectTerms Encoder–decoder architecture
Gated recurrent unit network
Information fusion
Multi-zone temperature prediction
Multiple sensor information
Title MITP-Net: A deep-learning framework for short-term indoor temperature predictions in multi-zone buildings
URI https://dx.doi.org/10.1016/j.buildenv.2023.110388
Volume 239
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-684X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016934
  issn: 0360-1323
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELagcIDDanmsYF_ygRsytLYbJ3urViDgULGih94i23FEUBUq2iK0v37HrzRlkQCtVqqiyonrxvNlMh7PfIPQUcZLW1M7IRJeX4RLo4jU3ZJIWvaE7iaWBs0VmxDDYToeZ3FHd-bKCYi6Tp-esul_FTW0gbBt6uw7xN38KDTAdxA6HEHscHyT4EEZXZOh8S6_48KYKZlE_0cZQ7FcdOHsFmxvYnXzMazM7228oQEr2rMsW_aAotJNqLmLPCS_78EoVaGU9mxlRzg0ut2IVvpclOg4FE8ZtfB4s6h9REc1kVXLhe3ct7-su-V2Ea4OjgnKmiDW4C2LGTPL8CSfpdUlsAL2Ss14pZsKRpLUR2pGrUw9x9FfGt47G-5O3K3C3ZzYoW0yA_PlAZ-xZ9_YAe141FGL9dN1tEFFPwMFuDG4PBtfNVtOScYC15j_g6108pdHe9mSaVkno4_oQ1hW4IGHww5aM_Uu2m6RTe6hKgLjBx7gFVjgBhYYYIGXsMAeFrgFC9yCBZzGS1jgBhb7aHR-Nvp5QUKhDaIpFXNSgIGScMFhdVloMPlUagk8aFEWXEjTzZSWGk5yBR9eCqqZStK0VyZGFfB-Yp9Qp4ZxDhCGNiVd2XowDRUtZV_1WEGZMZwpKfgh6sc5y3Ugobe1UCZ5jDa8y-Nc53aucz_Xh-i06Tf1NCyv9siiSPJgTHojMQckvdL38z_0_YK2lg_DV9SZPyzMN7SpH-fV7OF7AN0futyfOg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MITP-Net%3A+A+deep-learning+framework+for+short-term+indoor+temperature+predictions+in+multi-zone+buildings&rft.jtitle=Building+and+environment&rft.au=Xing%2C+Tian&rft.au=Sun%2C+Kailai&rft.au=Zhao%2C+Qianchuan&rft.date=2023-07-01&rft.pub=Elsevier+Ltd&rft.issn=0360-1323&rft.eissn=1873-684X&rft.volume=239&rft_id=info:doi/10.1016%2Fj.buildenv.2023.110388&rft.externalDocID=S0360132323004158
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon