Robust support vector machine classifier with truncated loss function by gradient algorithm

The support vector machine (SVM) is an increasingly important tool in machine learning. Despite its popularity, the SVM classifier can be adversely affected under the presence of noise in the training dataset. The SVM can be fit in the regularization framework of Loss + Penalty. The loss function pl...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & industrial engineering Ročník 172; s. 108630
Hlavní autori: Zhu, Wenxin, Song, Yunyan, Xiao, Yingyuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.10.2022
Predmet:
ISSN:0360-8352, 1879-0550
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The support vector machine (SVM) is an increasingly important tool in machine learning. Despite its popularity, the SVM classifier can be adversely affected under the presence of noise in the training dataset. The SVM can be fit in the regularization framework of Loss + Penalty. The loss function plays an essential role which is used to keep the fidelity of the resulting model to the data. Most SVMs use convex losses, however, they often suffer from the negative impact of points far away from their own classes. This paper proposes a new nonconvex differentiable loss, namely huberied truncated pinball loss, which can be able to reduce the effects of noise in the training sample. The SVM classifier with the huberied truncated pinball loss (HTPSVM) is proposed. The HTPSVM combines the elastic net penalty and the nonconvex huberied truncated pinball loss. It inherits the benefits of both ℓ1 and ℓ2 norm regularizers. The HTPSVM involves nonconvex minimization, the accelerated proximal gradient (APG) algorithm was used to solve the corresponding optimization. To evaluate the performance of classifiers, classification accuracy and area under ROC curve (AUC) were employed as the accuracy indicators. The numerical results show that our new classifier is effective. Friedman and Nemenyi post hoc tests of the experimental results indicate that the proposed HTPSVM is shown to be more robust to noise than HSVM, PSVM and HHSVM. •We propose a novel robust and smooth loss function.•Accelerated proximal gradient algorithm is applied to solve the proposed method.•Classification accuracy and AUC are employed to evaluate the performance of classifiers.•Statistical evaluation of the experimental results shows the effectiveness of the proposed method.
AbstractList The support vector machine (SVM) is an increasingly important tool in machine learning. Despite its popularity, the SVM classifier can be adversely affected under the presence of noise in the training dataset. The SVM can be fit in the regularization framework of Loss + Penalty. The loss function plays an essential role which is used to keep the fidelity of the resulting model to the data. Most SVMs use convex losses, however, they often suffer from the negative impact of points far away from their own classes. This paper proposes a new nonconvex differentiable loss, namely huberied truncated pinball loss, which can be able to reduce the effects of noise in the training sample. The SVM classifier with the huberied truncated pinball loss (HTPSVM) is proposed. The HTPSVM combines the elastic net penalty and the nonconvex huberied truncated pinball loss. It inherits the benefits of both ℓ1 and ℓ2 norm regularizers. The HTPSVM involves nonconvex minimization, the accelerated proximal gradient (APG) algorithm was used to solve the corresponding optimization. To evaluate the performance of classifiers, classification accuracy and area under ROC curve (AUC) were employed as the accuracy indicators. The numerical results show that our new classifier is effective. Friedman and Nemenyi post hoc tests of the experimental results indicate that the proposed HTPSVM is shown to be more robust to noise than HSVM, PSVM and HHSVM. •We propose a novel robust and smooth loss function.•Accelerated proximal gradient algorithm is applied to solve the proposed method.•Classification accuracy and AUC are employed to evaluate the performance of classifiers.•Statistical evaluation of the experimental results shows the effectiveness of the proposed method.
ArticleNumber 108630
Author Xiao, Yingyuan
Song, Yunyan
Zhu, Wenxin
Author_xml – sequence: 1
  givenname: Wenxin
  surname: Zhu
  fullname: Zhu, Wenxin
  email: zhuwenxin@tjau.edu.cn
  organization: Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, 300384, Tianjin, China
– sequence: 2
  givenname: Yunyan
  orcidid: 0000-0003-2329-6038
  surname: Song
  fullname: Song, Yunyan
  email: songyunyanlg@email.tjut.edu.cn
  organization: College of Science, Tianjin University of Technology, 300384, Tianjin, China
– sequence: 3
  givenname: Yingyuan
  surname: Xiao
  fullname: Xiao, Yingyuan
  email: yyxiao@tjut.edu.cn
  organization: Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, 300384, Tianjin, China
BookMark eNp9kMtqQjEQhkNpoWr7AN3lBY6dJJ4bXRXpDYRCcddFmFyORo4nkkSLb9-IXXXhavjh_4aZb0yuBz9YQh4YTBmw6nEz1c5OOXCec1MJuCIj1tRtAWUJ12QEooKiESW_JeMYNwAwK1s2It9fXu1jonG_2_mQ6MHq5APdol67wVLdY4yuczbQH5fWNIX9oDFZQ3sfI-1ySs4PVB3pKqBxdkgU-5UPuby9Izcd9tHe_80JWb6-LOfvxeLz7WP-vCg053UqDG8B0QpsmWgaZCUoNLU2nJWdNaxU2gglZsBEZZhRrepQtXqmTYeoayUmhJ3X6pBvCraTu-C2GI6SgTzJkRuZ5ciTHHmWk5n6H6NdwtMrKaDrL5JPZ9Lmjw5ZjIy5MmhrXMjupPHuAv0LCmOENQ
CitedBy_id crossref_primary_10_1016_j_procs_2024_03_033
crossref_primary_10_1007_s11042_024_19543_8
crossref_primary_10_1109_ACCESS_2025_3589260
crossref_primary_10_1016_j_aei_2024_102619
crossref_primary_10_3390_pr13092858
crossref_primary_10_1016_j_knosys_2024_112236
crossref_primary_10_1007_s11590_024_02132_x
crossref_primary_10_1016_j_ins_2024_120832
crossref_primary_10_1016_j_enconman_2024_119292
Cites_doi 10.1111/j.1467-9868.2005.00503.x
10.1214/aoms/1177731944
10.1145/1961189.1961199
10.1016/j.amc.2020.125186
10.1109/TPAMI.2013.178
10.1007/s10044-015-0485-z
10.1093/biostatistics/kxg046
10.1023/A:1008288411710
10.1162/08997660360581958
10.1093/bioinformatics/btm579
10.1162/NECO_a_00837
10.1109/72.788646
10.1166/asl.2014.5640
10.1137/080716542
10.1198/016214507000000617
10.1002/cjs.10105
10.1007/s00500-014-1448-9
10.1080/01621459.1937.10503522
10.1007/s11063-013-9336-3
10.1016/j.engappai.2020.103635
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2022.108630
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2022_108630
S0360835222006180
GrantInformation_xml – fundername: Major Research Project of National Nature Science Foundation of China
  grantid: 91646117
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c227t-d290aae3a91388a150bad7cd215fed15bcd3b340136d1db9bfab9c4cdfaac7b3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000874930200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Tue Nov 18 21:55:14 EST 2025
Sat Nov 29 07:20:09 EST 2025
Fri Feb 23 02:36:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Friedman test
Nemenyi post hoc test
Support vector machine
Accelerated proximal gradient algorithm
Huberized truncated pinball loss
AUC
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227t-d290aae3a91388a150bad7cd215fed15bcd3b340136d1db9bfab9c4cdfaac7b3
ORCID 0000-0003-2329-6038
ParticipantIDs crossref_primary_10_1016_j_cie_2022_108630
crossref_citationtrail_10_1016_j_cie_2022_108630
elsevier_sciencedirect_doi_10_1016_j_cie_2022_108630
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yuille, Rangarajan (b36) 2003; 15
Natalia, Grischa, Lichter, Benner (b21) 2011; 12
Nemenyi (b22) 1963
Bradley, Mangasarian (b4) 1998; 98
Nesterov, Y. (2007). Gradient methods for minimizing composite objective function. CORE DISCUSSION PAPER.
Friedman (b11) 1940; 11
Li, Zhou, Liang (b18) 2017
Ji, Trevor (b15) 2004; 5
Yang, Han, Li (b34) 2015; 19
Park, Liu (b24) 2011; 39
Zou, Hastie, Zou, Hastie (b38) 2005; 67
Zhu, Song, Xiao (b37) 2020; 91
Sriperumbudur (b26) 2009; 22
Jia, Wu, Dong (b16) 2019; 125
Wahono, Herman, Ahmad (b29) 2014; 20
Bishop (b3) 2006
Friedman (b10) 1937; 32
Huang, Shi, Suykens (b14) 2014; 36
Chapelle, Haffner, Vapnik (b6) 2002; 10
An, Tao (b1) 1997; 11
Hampel, Ronchetti, Rousseeuw (b12) 2011
Wang, Zhu, Zou (b32) 2008
Demisar, Schuurmans (b7) 2006; 7
Beck, Teboulle (b2) 2009; 2
Huang, Shi, Suykens (b13) 2013; 36
Li, Lin (b17) 2015
Steinwart, Christmann (b27) 2008
Chang, Lin (b5) 2011
Feng, Yang, Huang (b9) 2016; 28
Dua, Graff (b8) 2019
Wang, Cao, Pei (b30) 2020; 377
Michael, Stephen (b20) 2014
Vapnik (b28) 1995
Rockafellar, wets (b25) 1997
Liu (b19) 2007; 102
Wang, Zhu, Zhong (b31) 2015; 41
Xu, Akrotirianakis, Chakraborty (b33) 2016; 19
Yao, Kwok (b35) 2016
Chapelle (10.1016/j.cie.2022.108630_b6) 2002; 10
Vapnik (10.1016/j.cie.2022.108630_b28) 1995
Jia (10.1016/j.cie.2022.108630_b16) 2019; 125
Friedman (10.1016/j.cie.2022.108630_b11) 1940; 11
Natalia (10.1016/j.cie.2022.108630_b21) 2011; 12
Zou (10.1016/j.cie.2022.108630_b38) 2005; 67
Rockafellar (10.1016/j.cie.2022.108630_b25) 1997
Yao (10.1016/j.cie.2022.108630_b35) 2016
Beck (10.1016/j.cie.2022.108630_b2) 2009; 2
Hampel (10.1016/j.cie.2022.108630_b12) 2011
Steinwart (10.1016/j.cie.2022.108630_b27) 2008
Wang (10.1016/j.cie.2022.108630_b30) 2020; 377
Li (10.1016/j.cie.2022.108630_b17) 2015
Yuille (10.1016/j.cie.2022.108630_b36) 2003; 15
Bishop (10.1016/j.cie.2022.108630_b3) 2006
Yang (10.1016/j.cie.2022.108630_b34) 2015; 19
Feng (10.1016/j.cie.2022.108630_b9) 2016; 28
An (10.1016/j.cie.2022.108630_b1) 1997; 11
Michael (10.1016/j.cie.2022.108630_b20) 2014
Park (10.1016/j.cie.2022.108630_b24) 2011; 39
Friedman (10.1016/j.cie.2022.108630_b10) 1937; 32
Zhu (10.1016/j.cie.2022.108630_b37) 2020; 91
Chang (10.1016/j.cie.2022.108630_b5) 2011
Wang (10.1016/j.cie.2022.108630_b32) 2008
Huang (10.1016/j.cie.2022.108630_b14) 2014; 36
Wahono (10.1016/j.cie.2022.108630_b29) 2014; 20
Dua (10.1016/j.cie.2022.108630_b8) 2019
Nemenyi (10.1016/j.cie.2022.108630_b22) 1963
Sriperumbudur (10.1016/j.cie.2022.108630_b26) 2009; 22
Ji (10.1016/j.cie.2022.108630_b15) 2004; 5
Li (10.1016/j.cie.2022.108630_b18) 2017
Liu (10.1016/j.cie.2022.108630_b19) 2007; 102
Bradley (10.1016/j.cie.2022.108630_b4) 1998; 98
Wang (10.1016/j.cie.2022.108630_b31) 2015; 41
Demisar (10.1016/j.cie.2022.108630_b7) 2006; 7
10.1016/j.cie.2022.108630_b23
Huang (10.1016/j.cie.2022.108630_b13) 2013; 36
Xu (10.1016/j.cie.2022.108630_b33) 2016; 19
References_xml – volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: b38
  article-title: Regularization and variable selection via the elastic net
  publication-title: Journal of the Royal Statal Society
– volume: 22
  start-page: 1759
  year: 2009
  end-page: 1767
  ident: b26
  article-title: The convergence of the concave-convex procedure
  publication-title: Advances in Neural Information Processing Systems
– volume: 20
  start-page: 1945
  year: 2014
  end-page: 1950
  ident: b29
  article-title: A comparison framework of classification models for software defect prediction
  publication-title: Advanced Ence Letters
– year: 2019
  ident: b8
  article-title: UCI machine learning repository
– start-page: 412
  year: 2008
  end-page: 419
  ident: b32
  article-title: Hybrid huberized support vector machines for microarray classification and gene selection
  publication-title: Bioinformatics
– year: 2016
  ident: b35
  article-title: Efficient inexact proximal gradient algorithm for nonconvex problems
  publication-title: The 26th international joint conference on artificial intelligence
– volume: 36
  start-page: 984
  year: 2014
  end-page: 997
  ident: b14
  article-title: Support vector machine classifier with pinball loss
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 102
  start-page: 974
  year: 2007
  end-page: 983
  ident: b19
  article-title: Robust truncated hinge loss support vector machines
  publication-title: Journal of the American Statistical Association
– volume: 39
  start-page: 300
  year: 2011
  end-page: 323
  ident: b24
  article-title: Robust penalized logistic regression with truncated loss functions
  publication-title: The Canadian Journal of Statistics
– volume: 11
  start-page: 253
  year: 1997
  end-page: 285
  ident: b1
  article-title: Solving a class of linearly constrained indefinite quadratic problems by D.C. Algorithms
  publication-title: Journal of Global Optimization
– volume: 2
  start-page: 183
  year: 2009
  end-page: 202
  ident: b2
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM Journal on Imaging Sciences
– volume: 91
  year: 2020
  ident: b37
  article-title: Support vector machine classifier with huberized pinball loss
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 10
  start-page: 1055
  year: 2002
  end-page: 1064
  ident: b6
  article-title: Support vector machines for histogram-based image classification
  publication-title: IEEE Transactions on Neural Networks
– volume: 377
  year: 2020
  ident: b30
  article-title: Robust extreme learning machine in the presence of outliers by iterative reweighted algorithm
  publication-title: Applied Mathematics and Computation
– volume: 11
  start-page: 86
  year: 1940
  end-page: 92
  ident: b11
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: The Annals of Mathematical Statistics
– year: 2014
  ident: b20
  article-title: CVX: Matlab software for disciplined convex programming
– volume: 41
  start-page: 89
  year: 2015
  end-page: 106
  ident: b31
  article-title: Robust support vector regression with generalized loss function and applications
  publication-title: Neural Processing Letters
– volume: 15
  start-page: 915
  year: 2003
  end-page: 936
  ident: b36
  article-title: The concave-convex procedure
  publication-title: Neural Computation
– volume: 32
  start-page: 675
  year: 1937
  end-page: 701
  ident: b10
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: Journal of the American Statistical Association
– volume: 36
  start-page: 984
  year: 2013
  end-page: 997
  ident: b13
  article-title: Support vector machine classifier with pinball loss
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 125
  year: 2019
  ident: b16
  article-title: An inexact proximal gradient algorithm with extrapolation for a class of nonconvex nonsmooth optimization problems
  publication-title: Journal of Inequalities and Applications
– reference: Nesterov, Y. (2007). Gradient methods for minimizing composite objective function. CORE DISCUSSION PAPER.
– year: 2011
  ident: b5
  article-title: Libsvm: A library for support vector machines
  publication-title: Acm Transactions on Intelligent Systems and Technology
– start-page: 2111
  year: 2017
  end-page: 2119
  ident: b18
  article-title: Convergence analysis of proximal gradient with momentum for nonconvex optimization
  publication-title: Proceedings of the 34th international conference on machine learning, PMLR, Vol. 70
– year: 1963
  ident: b22
  article-title: Distribution-free multiple comparisons
– year: 2011
  ident: b12
  article-title: Robust statistics: The approach based on influence functions
– volume: 5
  start-page: 427
  year: 2004
  end-page: 443
  ident: b15
  article-title: Classification of gene microarrays by penalized logistic regression
  publication-title: Biostats
– volume: 19
  start-page: 2871
  year: 2015
  end-page: 2882
  ident: b34
  article-title: A bilateral-truncated-loss based robust support vector machine for classification problems
  publication-title: Soft Computing
– volume: 98
  start-page: 82
  year: 1998
  end-page: 90
  ident: b4
  article-title: Feature selection via concave minimization and support vector machines
  publication-title: Machine Learning Proceedings of the Fifteenth International Conference
– year: 1997
  ident: b25
  article-title: Variational analysis
– volume: 19
  start-page: 989
  year: 2016
  end-page: 1005
  ident: b33
  article-title: Proximal gradient method for huberized support vector machine
  publication-title: Pattern Analysis and Applications
– year: 2006
  ident: b3
  article-title: Pattern recognition and machine learning
– volume: 28
  start-page: 1217
  year: 2016
  end-page: 1247
  ident: b9
  article-title: Robust support vector machines for classification with nonconvex and smooth losses
  publication-title: Neural Computation
– year: 1995
  ident: b28
  article-title: The nature of statistical learning theory
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b7
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– volume: 12
  year: 2011
  ident: b21
  article-title: Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data. Becker et al
  publication-title: BMC Bioinformatics
– year: 2008
  ident: b27
  article-title: Support vector machines
– start-page: 379
  year: 2015
  end-page: 387
  ident: b17
  article-title: Accelerated proximal gradient methods for nonconvex programming
  publication-title: Proceedings of the 28th international conference on neural information processing systems, Vol. 1
– year: 2011
  ident: 10.1016/j.cie.2022.108630_b12
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 10.1016/j.cie.2022.108630_b38
  article-title: Regularization and variable selection via the elastic net
  publication-title: Journal of the Royal Statal Society
  doi: 10.1111/j.1467-9868.2005.00503.x
– year: 1995
  ident: 10.1016/j.cie.2022.108630_b28
– year: 2006
  ident: 10.1016/j.cie.2022.108630_b3
– volume: 11
  start-page: 86
  year: 1940
  ident: 10.1016/j.cie.2022.108630_b11
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177731944
– start-page: 379
  year: 2015
  ident: 10.1016/j.cie.2022.108630_b17
  article-title: Accelerated proximal gradient methods for nonconvex programming
– volume: 12
  issue: 138
  year: 2011
  ident: 10.1016/j.cie.2022.108630_b21
  article-title: Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data. Becker et al
  publication-title: BMC Bioinformatics
– year: 2011
  ident: 10.1016/j.cie.2022.108630_b5
  article-title: Libsvm: A library for support vector machines
  publication-title: Acm Transactions on Intelligent Systems and Technology
  doi: 10.1145/1961189.1961199
– volume: 98
  start-page: 82
  year: 1998
  ident: 10.1016/j.cie.2022.108630_b4
  article-title: Feature selection via concave minimization and support vector machines
  publication-title: Machine Learning Proceedings of the Fifteenth International Conference
– volume: 377
  year: 2020
  ident: 10.1016/j.cie.2022.108630_b30
  article-title: Robust extreme learning machine in the presence of outliers by iterative reweighted algorithm
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2020.125186
– ident: 10.1016/j.cie.2022.108630_b23
– volume: 125
  year: 2019
  ident: 10.1016/j.cie.2022.108630_b16
  article-title: An inexact proximal gradient algorithm with extrapolation for a class of nonconvex nonsmooth optimization problems
  publication-title: Journal of Inequalities and Applications
– start-page: 2111
  year: 2017
  ident: 10.1016/j.cie.2022.108630_b18
  article-title: Convergence analysis of proximal gradient with momentum for nonconvex optimization
– volume: 36
  start-page: 984
  issue: 5
  year: 2014
  ident: 10.1016/j.cie.2022.108630_b14
  article-title: Support vector machine classifier with pinball loss
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2013.178
– volume: 19
  start-page: 989
  issue: 4
  year: 2016
  ident: 10.1016/j.cie.2022.108630_b33
  article-title: Proximal gradient method for huberized support vector machine
  publication-title: Pattern Analysis and Applications
  doi: 10.1007/s10044-015-0485-z
– volume: 36
  start-page: 984
  issue: 5
  year: 2013
  ident: 10.1016/j.cie.2022.108630_b13
  article-title: Support vector machine classifier with pinball loss
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2013.178
– year: 2014
  ident: 10.1016/j.cie.2022.108630_b20
– year: 2019
  ident: 10.1016/j.cie.2022.108630_b8
– volume: 5
  start-page: 427
  issue: 3
  year: 2004
  ident: 10.1016/j.cie.2022.108630_b15
  article-title: Classification of gene microarrays by penalized logistic regression
  publication-title: Biostats
  doi: 10.1093/biostatistics/kxg046
– volume: 11
  start-page: 253
  issue: 3
  year: 1997
  ident: 10.1016/j.cie.2022.108630_b1
  article-title: Solving a class of linearly constrained indefinite quadratic problems by D.C. Algorithms
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008288411710
– volume: 15
  start-page: 915
  issue: 4
  year: 2003
  ident: 10.1016/j.cie.2022.108630_b36
  article-title: The concave-convex procedure
  publication-title: Neural Computation
  doi: 10.1162/08997660360581958
– start-page: 412
  issue: 3
  year: 2008
  ident: 10.1016/j.cie.2022.108630_b32
  article-title: Hybrid huberized support vector machines for microarray classification and gene selection
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm579
– volume: 7
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.cie.2022.108630_b7
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– volume: 28
  start-page: 1217
  issue: 6
  year: 2016
  ident: 10.1016/j.cie.2022.108630_b9
  article-title: Robust support vector machines for classification with nonconvex and smooth losses
  publication-title: Neural Computation
  doi: 10.1162/NECO_a_00837
– year: 1997
  ident: 10.1016/j.cie.2022.108630_b25
– volume: 10
  start-page: 1055
  issue: 5
  year: 2002
  ident: 10.1016/j.cie.2022.108630_b6
  article-title: Support vector machines for histogram-based image classification
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.788646
– volume: 22
  start-page: 1759
  year: 2009
  ident: 10.1016/j.cie.2022.108630_b26
  article-title: The convergence of the concave-convex procedure
  publication-title: Advances in Neural Information Processing Systems
– year: 2008
  ident: 10.1016/j.cie.2022.108630_b27
– volume: 20
  start-page: 1945
  issue: 10–12
  year: 2014
  ident: 10.1016/j.cie.2022.108630_b29
  article-title: A comparison framework of classification models for software defect prediction
  publication-title: Advanced Ence Letters
  doi: 10.1166/asl.2014.5640
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 10.1016/j.cie.2022.108630_b2
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM Journal on Imaging Sciences
  doi: 10.1137/080716542
– volume: 102
  start-page: 974
  issue: 479
  year: 2007
  ident: 10.1016/j.cie.2022.108630_b19
  article-title: Robust truncated hinge loss support vector machines
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214507000000617
– volume: 39
  start-page: 300
  issue: 2
  year: 2011
  ident: 10.1016/j.cie.2022.108630_b24
  article-title: Robust penalized logistic regression with truncated loss functions
  publication-title: The Canadian Journal of Statistics
  doi: 10.1002/cjs.10105
– volume: 19
  start-page: 2871
  issue: 10
  year: 2015
  ident: 10.1016/j.cie.2022.108630_b34
  article-title: A bilateral-truncated-loss based robust support vector machine for classification problems
  publication-title: Soft Computing
  doi: 10.1007/s00500-014-1448-9
– volume: 32
  start-page: 675
  year: 1937
  ident: 10.1016/j.cie.2022.108630_b10
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1937.10503522
– year: 1963
  ident: 10.1016/j.cie.2022.108630_b22
– volume: 41
  start-page: 89
  issue: 1
  year: 2015
  ident: 10.1016/j.cie.2022.108630_b31
  article-title: Robust support vector regression with generalized loss function and applications
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-013-9336-3
– year: 2016
  ident: 10.1016/j.cie.2022.108630_b35
  article-title: Efficient inexact proximal gradient algorithm for nonconvex problems
– volume: 91
  year: 2020
  ident: 10.1016/j.cie.2022.108630_b37
  article-title: Support vector machine classifier with huberized pinball loss
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.103635
SSID ssj0004591
Score 2.4217255
Snippet The support vector machine (SVM) is an increasingly important tool in machine learning. Despite its popularity, the SVM classifier can be adversely affected...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108630
SubjectTerms Accelerated proximal gradient algorithm
AUC
Friedman test
Huberized truncated pinball loss
Nemenyi post hoc test
Support vector machine
Title Robust support vector machine classifier with truncated loss function by gradient algorithm
URI https://dx.doi.org/10.1016/j.cie.2022.108630
Volume 172
WOSCitedRecordID wos000874930200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9RAFJ8oeNADCmoE0cyBk003_e70SAxEiSFE97DEQzNfJSXQ3Wy3ZPe_981Xu6AYOHBpmsnMa9P3y5vfe33zHkIHSSYzEibMF4xRP8lI5ZNIpr7ksPlHqqAa011LfuSnp2QyKc5sQL_V7QTypiHLZTF7UlXDGChbHZ19hLp7oTAA96B0uILa4fogxf-csq5deG03U9Tau9Fhee9aJ01Kjyu2XFfqjIkJwc47VRYWaOcVbJee2uY0IoCVXsx1OpiKCV9M5zD5ep3JunYQrQZPPXQAkUOFwyEq3elcPtks6x6Mv2wy8HnXrAaITmqqg7fnsHzV2XEblQCH1uW3DaexAl-xu1uW1nTpsbZS9Xgy_2T-MuMmonA5AvM2UtJHw9zbJbPvbGV9gqHLXbssQUSpRJRGxHO0GeVpAfZv8_D70eRkrbK86a7o3tv9Ade5gHfe498cZo2XjN-gLetQ4EMDhG30TDY76LV1LrA13e0OerVWefIt-m1Qgi1KsEEJtijBA0qwQgnuUYIVSrBDCWYr7FCCe5S8Q-Pjo_HXb77ts-HzKMoXvoiKgFIZ0yKMCaHgIjAqci6ADVZShCnjImaxcsQzEQpWsIqygidcVJTynMXv0UYzbeQHhIOEJxkL04wGRSJISqIq5rBEZixWdZd2UeA-HCjG5JqoVihX5b0K20Vf-iUzU4Dlf5MTp43SMkjDDEtA1v3L9h7zjI_o5QD4fbQBGpCf0At-s6jb-WcLqz8m6pS8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+support+vector+machine+classifier+with+truncated+loss+function+by+gradient+algorithm&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Zhu%2C+Wenxin&rft.au=Song%2C+Yunyan&rft.au=Xiao%2C+Yingyuan&rft.date=2022-10-01&rft.issn=0360-8352&rft.volume=172&rft.spage=108630&rft_id=info:doi/10.1016%2Fj.cie.2022.108630&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2022_108630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon